网络控制系统 ppt
合集下载
工业控制系统网络架构介绍.ppt
工业控制网络最底层的是 现场总线控制网络,包含现场 控制层和现场设备层,是自动 化系统与现场设备相连的唯一 网络,是整个控制系统的关键 环节。
过程控制与监控网络
现场总线控制网络的上 一层是过程控制与监控网络层, 这一层包含生产管理层和过程 监控层。
企业办公网络
最上面一层是企业网络层, 即图中的企业资源层,负责公司 日常的商业计划和物流管理、工 程系统等,主要涉及企业应用资 源,如企业资源配置ERP、 生 产制造执行系统MES和办公自 动化OA等与企业运营息息相关 的系统,通常由各种功能的计算 机构成。谢谢工业控制系统网络架构介绍
通常将工业控制网络定义为以具有通信能力的传感器、 执行器、测控仪表作为网络节点、以现场总线或以太网等作 为通信介质,连接成开放式、数字化、多节点通信,从而完 成测量控制任务的网络。
工业控制系统网络架构介绍
工业控制系统网络架构介绍
工业控制系统网络架构介绍
现场总线控制网络
过程控制与监控网络
现场总线控制网络的上 一层是过程控制与监控网络层, 这一层包含生产管理层和过程 监控层。
企业办公网络
最上面一层是企业网络层, 即图中的企业资源层,负责公司 日常的商业计划和物流管理、工 程系统等,主要涉及企业应用资 源,如企业资源配置ERP、 生 产制造执行系统MES和办公自 动化OA等与企业运营息息相关 的系统,通常由各种功能的计算 机构成。谢谢工业控制系统网络架构介绍
通常将工业控制网络定义为以具有通信能力的传感器、 执行器、测控仪表作为网络节点、以现场总线或以太网等作 为通信介质,连接成开放式、数字化、多节点通信,从而完 成测量控制任务的网络。
工业控制系统网络架构介绍
工业控制系统网络架构介绍
工业控制系统网络架构介绍
现场总线控制网络
CRH5列车网络控制系统
I/O NON I/O NON Red. Red.
网关1故障
I/O NON Red.
I/O Red.
2
I/O NON
Red.
网关1故障
二、 MPU冗余性
• MPU的冗余类型为热备冗余。两个MPU均 可管理其MVB总线(单条或多条)。它们 读取相同的输入,并执行相同的任务。 在故障情况下一个会自动接替另一个。 同一总线上的所有设备均由同一MPU发送 指令。 • 当MPU1故障时,MPU2替代了MPU1作为 MVB“1”和MVB“2”线上的主控制器。
四、 MPU-LT, MPU-LC
• MPU(Main Processing Unit,主处理单 元),负责对相应车辆输出指令和控制。 • 在每一车组中(4辆车)有2对MPU。其中 的2个(MPU-LT)控制牵引和信号设备总 线上的所有设备,而另外2个(MPU-LC) 则控制车内设施和CAN总线上的所有设备。 • MPU功能任务周期可认为不超过100 ms (目标值为50 ms)。
Remote I/O Modules (BT panel) 远程 I/O模块(BT面板)
CLT:
EXT. DOORS
GW:
External Doors外部门
Gateway WTB/MVB 网关 WTB/MVB
TCU:
TD:
Traction Control Unit 牵引控制单元
Driver’s Diagnostic display 司机诊断显示器
• 人机接口设备:
–司机室主监视器 –司机室诊断监视器 –本地监视器(在列车长室) –控制杆、开关、按钮、灯 –位于低压配电柜和司机台上的低压零部件 (继电器、二极管…)。
• 与原型车SM3的改变之处:
网络接入控制系统知识介绍
终端信息
IP信息
网络信息
自动分类
多元素绑定
身份认证管理
定制化企业门户展示,个性化Portal展示界面,自动完成终端的页面推送
员工常驻类
来宾访客类
身份认证
注册
授权
准入控制管理
指纹不匹配 指纹匹配
丢弃 放行
网络资源
准入控制管理
主动方式
主动发送 探测数据包
准入系统
返回:端口号、TCP错误标志、起始序列 号、起始窗口、SNMP、NETBIOS、标 志信息等
你可以做什 么?
动态授权
你是谁?
内网管理困惑
终端类型多样化
接入方式多样化
VPN
操作系统多样化
安卓
苹果
微软
linux
使用者身份不明
非法终端接入 终端安全无法保障 私接网络设备
各自为政
违规操作
产品的解决思路及目标
• 设备收集与分类
• IP地址资源监控
• 交换机资源监控
可知
可信
资产的收集与监控 终端授权、安检
行为规范管理类
➢系统服务检查 ➢必须安装的软件 ➢必须运行的进程 ➢禁止安装的软件 ➢禁止运行的进程 ➢杀毒软件检查
终端安全管理
检查结果
一键修复
访问控制管理
访问控制 准入控制
数据库
VPN/Firewal l
准入成失功败
天清网络接入控制
日志报表管理(6/6)
产品部署及应用场景
BSS系统
ERP系统
网关 ➢ 数据防泄密 邮件网关 ➢ 融合安全网关(T-
MSG)
审计系列
➢ WEB应用审计(BA) ➢ 数据库审计(DBA) ➢ 防火墙安全策略伴侣 ➢ 安全域流检测
第一章控制网络系统概述
1.3.2 控制网络系统的研究现状
国内外学者对于控制网络系统理论与应用的研究,目 前主要集中在以下几个方面: 1.对于各种控制网络协议本身性能和特性的分析与对 比。这主要包括数学建模分析、计算机仿真和实 际网络实验结果。 2.针对各种控制网络协议的改进方法、网络通讯调度 算法以及路由算法等方面的研究。这主要体现在 两个层次上。局域网内协议改进与通讯调度算法 的研究集中在网络数据链路层,即MAC和LLC子 协议层。广域网研究表现为寻求不同网络间基于 路径或时间最短的路由算法。 3.解决由于采用了控制网络技术,对系统性能和控制 策略上带来的影响。闭环控制网络系统中信息传 输延时、数据丢失和分帧传输都将对控制网络系 统的稳定性和控制性能带来不利影响。
1.1.2 控制网络系统的特点
1.分布式的网络体系结构 2.全数字化通讯 3.模块化的功能设计 4.节点间较强的藕合性 5.网络通讯的强实时性 6.低成本和恶劣环境的适应性 7.网络的局域性 8.系统的开放性和兼容性 9.系统的可扩展性和易重构性
1.1.3 控制网络系统的优点
1.提高了控制系统的精度和可靠性 2.增强了系统信息集成能力,有利于不同网 络的互连集成 3.便于安装和维护 4.可以降低系统成本 5.可以作为实现各种复杂分布式或优化控制 算法的应用平台 6.对于系统开发者和用户而言,它都打破了 技术垄断
1.5.2
现场总线的发展
ISA/SP50:1984年 Profibus:1986年 ISP和ISPF:1992年 WbrldFIP:1993年 HARI…和HCF:1986年 FF(FielbdusFoundatino):1994年 不同行业的大公司利用自身的行业背景,推出了适合一定应 用领域的现场总线,如德国Boseh公司推出的CAN (eontrollerAreaNetwokr)、美国Echeofn公司推出的 onW6rkS等。 现场总线自二十世纪八十年代产生以来,经历了市场的竞争、 淘汰、合并与重组等过程。自二十世纪八十年代产生以来, 经历了市场的竞争、淘汰、合并与重组等过程,到目前为 止,世界上各式各样的现场总线有100多种,其中,宣称为 开放型的现场总线就有40多种。
智能控制第7章 模糊神经网络控制与自适应神经网络PPT课件
fj(4)=max(u1(4),u2(4),...,up(4)), aj(4)=fj(4) 且第三、四层节点之间的连接系数wji(4)=1
第五层
❖有两种模式
❖从上到下的信号传输方式 ,同第一层。
❖从下到上是精确化计算,如果采用重心法, 有
fj(5 ) w ( j5 )iu i(5 ) (m ( j5 )i (j5 )i)u i(5 ), i
E fj(4)
E fj(5)
fj(5) fj(4)
E fj(5)
fj(5) u(j5)
u(j5) fj(4)
E fj(5)
m(5) ji
u (5) (5)
ji i
u(j5)
i
u (5) (5) (5) jj jj
(j5i)ui(5))(
m u ) (5) (5) (5) (5)
图7-2 :规则节点合并示例
2. 有导师学习阶段
❖可采用BP学习
E1(y(t)ˆy(t))2min 2
w(t1)w(t)(E w)
E w ( n E )e ( n w t)e tE f w f E f fa w a
第五层
m E (j5)i a E (j5) a fj((j5 5))
wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感34如果被控系统yk1fykyk1uk1gukwwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感351tdltdltdltdl神经网络n神经网络n331基于神经网络的模型参考自适应控制结构图参考模型wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感3671wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感37则控制系统的误差方程为其中wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感383233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感393233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感40对于yk1fykyk1uk1guk可得如果存在可用神经网络逼近之
第五层
❖有两种模式
❖从上到下的信号传输方式 ,同第一层。
❖从下到上是精确化计算,如果采用重心法, 有
fj(5 ) w ( j5 )iu i(5 ) (m ( j5 )i (j5 )i)u i(5 ), i
E fj(4)
E fj(5)
fj(5) fj(4)
E fj(5)
fj(5) u(j5)
u(j5) fj(4)
E fj(5)
m(5) ji
u (5) (5)
ji i
u(j5)
i
u (5) (5) (5) jj jj
(j5i)ui(5))(
m u ) (5) (5) (5) (5)
图7-2 :规则节点合并示例
2. 有导师学习阶段
❖可采用BP学习
E1(y(t)ˆy(t))2min 2
w(t1)w(t)(E w)
E w ( n E )e ( n w t)e tE f w f E f fa w a
第五层
m E (j5)i a E (j5) a fj((j5 5))
wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感34如果被控系统yk1fykyk1uk1gukwwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感351tdltdltdltdl神经网络n神经网络n331基于神经网络的模型参考自适应控制结构图参考模型wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感3671wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感37则控制系统的误差方程为其中wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感383233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感393233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感40对于yk1fykyk1uk1guk可得如果存在可用神经网络逼近之
《信号控制系统》课件
系统组成与功能
系统组成
信号控制系统主要由信号源、信号传 输设备和信号接收设备三部分组成。
功能
实现信号的发送、传输、接收和处理 ,支持多种通信协议和数据格式,满 足不同应用需求。
应用领域与发展趋势
应用领域
信号控制系统广泛应用于通信、交通 、工业自动化等领域,支持语音、数 据、图像等多种信息的传输和控制。
系统调试与优化
要点一
系统调试
在系统开发过程中,对软硬件进行测试和调试,确保系统 正常运行。
要点二
系统优化
根据测试结果,对系统软硬件进行优化,提高系统性能和 稳定性。
04
信号控制系统的应用案例
工业自动化生产线控制
总结词
实现生产线的自动化、高效化
VS
详细描述
信号控制系统在工业自动化生产线中发挥 着关键作用,通过实时监测生产线状态, 控制生产设备的启停、速度等,确保生产 流程的顺畅进行,提高生产效率和产品质 量。
智能化决策
通过大数据分析和机器学习技术,实现信号控制系统的智能化决策 ,提高交通效率。
人机交互界面
优化人机交互界面,提高操作便捷性和用户体验。
安全与可靠性问题研究
安全防护技术
加强信号控制系统的安全防护,防止网络攻击和数据 泄露。
可靠性保障
研究信号控制系统的可靠性保障机制,提高系统的稳 定性和可用性。
故障预测与诊断
利用大数据和预测性维护技术,实现对信号控制系统 故障的预测和快速诊断。
THANKS
感谢观看
发展趋势
随着技术的发展,信号控制系统正朝 着数字化、网络化、智能化的方向发 展,将进一步提高信号传输的效率和 可靠性,拓展应用领域。
02
第十三章神经网络建模与控制ppt课件
辨识器取串-并联结构,其中的NN取二维高斯RBF网络。 其中散布系数SC=1,中心参数是程序内部自设的。
13.3 基于神经网络的系统辨识示例
例4 基于CMAC的非线性动态系统辨识 仿真系统模型为: y(k) 5y(k -1) u3(k -1) 2.5 y2 (k -1)
系统输入信号为:
u(k) 0.6cos(2k / 60) 0.4cos(2k / 40)
例1 线性离散系统辨识示例
其中function.prbs(n1,n,k1,k2,k3,k4)是产生M序列的函数 n1 –--n1阶M序列→Np=(2p-1) n----M序列的总长度 Ki (i=1,…4)----M序列参数 K3一般取0,K4一般取0, K1 K2选择使Np达到最大值 程序 Bianshi_ADLINE_L.M 采用的是离线辨识方法 Bianshi_ADLINE_Z.M 采用的是在线辨识方法 函数prbs.M是产生M序列的函数
5y(k -1) 2.5 y2 (k -1)
u 3 (k
-1)
系统输入信号为:
u(k) 0.6cos(2k / 60) 0.4cos(2k / 40)
辨识器的输入/输出为:[u(k), y(k)]/ yˆ(k)
PID神经网络的输入/输出为:[u(k 1), y(k 1)]/ yˆ(k)
PID神经网络输出层用线性节点,准则函数取
n1
① y(k 1) ai y(k i) g(u(k)u(k 1) i0
n=2,m=0时的并联结构如图3所示。
u(k m))
g +∑ +
u(k)
N +× +
y(k+1)
Z-1
∑+ a0 + a1 Z-1
工业控制网络技术培训讲义PPT课件( 41页)
application software is written independently from the type of controller
OperatorIT
Historian (Information
Manager)
the drivers still exist, but the clients do not see them anymore
•系统的分散性 •系统的开放性 •产品的互操作性 •环境的适应性 •使用的经济性 •维护的简易性 •系统的可靠性
几种有影响的现场总线
(1)CAN总线
CAN是德国Bosch公司从20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间 的数据交换而开发的一种串行数据通信协议。
(2)LonWorks控制网络和Lon总线
操作站 高速数据通道
监控机
数据采集装置
过程控制单元
其基本结构由监控机、操作 站、数据采集装置、过程控 制单元及高速数据通道等5部 分组成。
第二代DCS的基本结构
•第二代DCS的基本结构
主计算机
操作站
LLAANN
子
系
网关
统
网关
一般工业网
组成:
系统管理站 (1)局部网络 (LAN) ; (2)节点工作站,即指过程控制单元(PCU); (3)中央操作站,它是挂接在LAN上的节点 工作站,负责对全系统的信息进行综合管 理,是系统的主操作站;
给定
检测
DDC计算机 控制
生产过程
图 SCC系统原理图
8
计算机工业网络基础
• 网络协议及其层次结构
在通信网络中,对所有的节点来说,它们都要共享网络中 的资源或相互之间要进行信息交换,但由于连接到网上的计算 机或设备可能出自不同的生产厂家,型号也不尽相同,再加上 软硬件的差异,这些都给节点之间的通信带来了困难。因此在 通信网络中所有“成员”必须遵循某种相互都能接受的一组规 则,以便实现彼此的通信和资源共享。这些规则的集合称为网 络协议。在计算机网络中各终端用户之间,用户与资源之间或 资源与资源之间的对话与合作必须按照预先规定的协议进行。
《神经网络控制》课件
1 神经网络控制的局限性
神经网络控制需要大量的数据和计算资源,对模型的训练和调整要求较高。
2 神经网络控制的挑战
在复杂系统的实时控制和稳定性问题上,神经网络控制仍然面临挑战。
3 神经网络控制未来发展的方向
未来,神经网络控制将更加注重与其他控制技术的结合,如模糊控制、强化学习等。
总结
神经网络控制的优势 和局限性
《神经网络控制》PPT课 件
# 神经网络控制PPT课件
介绍神经网络控制
定义神经网络控制
神经网络控制是利用神经网络模型来设计控制器,实现对系统的控制和优化。
神经网络控制的作用和优势
神经网络控制具有非线性建模能力和适应性,可以处理复杂系统和非线性控制问题。
神经网络控制的发展历程
神经网络控制起源于20世纪80年代,经历了多个阶段的发展,如BP神经网络、RBF神经网络 等。
神经网络控制具有非线性建模 能力和适应性,但对数据和计 算资源要求较高。
神经网络控制的发展 前景
神经网络控制在自动化控制领 域有着广阔的应用前景,将与 其他技术相结合。
未来研究方向
进一步研究神经网络控制与其 他控制技术的融合,提高控制 系统的稳定性和性能。
神经网络的基本单元是神经元,其模型
前馈神经网络和反馈神经网络
2
和激活函数决定了神经网络的行为和表 达能力。
前馈神经网络是一种信息传递方向单一
的网络结构,而反馈神经网络具有循环
连接,在动态系统的控制中应用广泛。
3
训练神经网络的方法
常见的神经网络训练方法包括反向传播 算法、遗传算法、粒子群优化等,用于 调整网络参数以实现优化和学习。
神经网络控制实例
倒立摆控制
自适应神经网络PID
神经网络控制需要大量的数据和计算资源,对模型的训练和调整要求较高。
2 神经网络控制的挑战
在复杂系统的实时控制和稳定性问题上,神经网络控制仍然面临挑战。
3 神经网络控制未来发展的方向
未来,神经网络控制将更加注重与其他控制技术的结合,如模糊控制、强化学习等。
总结
神经网络控制的优势 和局限性
《神经网络控制》PPT课 件
# 神经网络控制PPT课件
介绍神经网络控制
定义神经网络控制
神经网络控制是利用神经网络模型来设计控制器,实现对系统的控制和优化。
神经网络控制的作用和优势
神经网络控制具有非线性建模能力和适应性,可以处理复杂系统和非线性控制问题。
神经网络控制的发展历程
神经网络控制起源于20世纪80年代,经历了多个阶段的发展,如BP神经网络、RBF神经网络 等。
神经网络控制具有非线性建模 能力和适应性,但对数据和计 算资源要求较高。
神经网络控制的发展 前景
神经网络控制在自动化控制领 域有着广阔的应用前景,将与 其他技术相结合。
未来研究方向
进一步研究神经网络控制与其 他控制技术的融合,提高控制 系统的稳定性和性能。
神经网络的基本单元是神经元,其模型
前馈神经网络和反馈神经网络
2
和激活函数决定了神经网络的行为和表 达能力。
前馈神经网络是一种信息传递方向单一
的网络结构,而反馈神经网络具有循环
连接,在动态系统的控制中应用广泛。
3
训练神经网络的方法
常见的神经网络训练方法包括反向传播 算法、遗传算法、粒子群优化等,用于 调整网络参数以实现优化和学习。
神经网络控制实例
倒立摆控制
自适应神经网络PID
网络控制系统PPT课件
14
4.2 数据特性
在NCS中,需要传输的数据可分为3类:周 期数据、猝发数据和非实时数据。
周期数据如各种传感器和控制器的I/O信号和 部分状态监测数据,它对时间有严格的要求,一 般不允许有秒级的时延。猝发数据如报警信号和 紧急操作指令,它对实时性的要求比周期数据更 高。非实时数据如用户编程数据和组态数据,他 对时间的要求并不严格,允许有一定时延,但这 类数据的长度较长且不确定,数据量较大,对带 宽的占用率较为敏感,一般以小型或微型文件的 形式出现。
NCS的主要优点是系统连线少、可靠性高、结构灵活、 易于系统扩展和维护以及能够实现信息资源共享等。
2
2. 网络控制系统结构
网络控制系统有两种主要的结构:直接结构和递阶结 构。直接结构,它是由一个或多个控制器、被控对象及网 络组成。被控对象与传感器、执行器相连,而控制器与被 控对象可以分布在地理上不同的位置,所有的信号都通过 网络传输,直接构成反馈控制回路。其结构如图2-1。
10
3.5实时调度
长期以来,控制系统的设计和实时系统的发展是分开 的,几乎所有基于控制的系统设计都分为控制方案设计和 数字实现两个独立的步骤进行。这种分离虽然有一定的好 处,但也有其负面影响,那就是控制领域和实时调度的研 究人员对对方领域的研究缺乏了解。
实时调度就是将控制和调度结合起来,总的来说可以 分为两类:静态调度和动态调度。静态调度算法要求对任 务有完全的认识,既要求对任务的时限、计算时间、过程 约束和未来释放时间等有全面而准确的了解。
12
4.网络控制系统的评价标准及数据特性
4.1 评价标准
对NCS的评价通常有两种标准:网络服务质量(QoS) 和系统控制性能(QoP)。
网络服务质量的评价指标包括网络吞吐量、传输效率、 误码率、时延可预测性和任务可调度性。
4.2 数据特性
在NCS中,需要传输的数据可分为3类:周 期数据、猝发数据和非实时数据。
周期数据如各种传感器和控制器的I/O信号和 部分状态监测数据,它对时间有严格的要求,一 般不允许有秒级的时延。猝发数据如报警信号和 紧急操作指令,它对实时性的要求比周期数据更 高。非实时数据如用户编程数据和组态数据,他 对时间的要求并不严格,允许有一定时延,但这 类数据的长度较长且不确定,数据量较大,对带 宽的占用率较为敏感,一般以小型或微型文件的 形式出现。
NCS的主要优点是系统连线少、可靠性高、结构灵活、 易于系统扩展和维护以及能够实现信息资源共享等。
2
2. 网络控制系统结构
网络控制系统有两种主要的结构:直接结构和递阶结 构。直接结构,它是由一个或多个控制器、被控对象及网 络组成。被控对象与传感器、执行器相连,而控制器与被 控对象可以分布在地理上不同的位置,所有的信号都通过 网络传输,直接构成反馈控制回路。其结构如图2-1。
10
3.5实时调度
长期以来,控制系统的设计和实时系统的发展是分开 的,几乎所有基于控制的系统设计都分为控制方案设计和 数字实现两个独立的步骤进行。这种分离虽然有一定的好 处,但也有其负面影响,那就是控制领域和实时调度的研 究人员对对方领域的研究缺乏了解。
实时调度就是将控制和调度结合起来,总的来说可以 分为两类:静态调度和动态调度。静态调度算法要求对任 务有完全的认识,既要求对任务的时限、计算时间、过程 约束和未来释放时间等有全面而准确的了解。
12
4.网络控制系统的评价标准及数据特性
4.1 评价标准
对NCS的评价通常有两种标准:网络服务质量(QoS) 和系统控制性能(QoP)。
网络服务质量的评价指标包括网络吞吐量、传输效率、 误码率、时延可预测性和任务可调度性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④数据单元在传输中由于网络阻塞、连接中断等原因会导致 时序差错和数据包丢失等现象。
-
9
,
第十五章 网络控制系统
,
, 15.4.2 连续系统模型
。 连续型NCSs系统模型是指将网络控制系统看成一个连续系统进 行分析与设计。系统的动力学模型可以表示为
其中
z& (t)ex& & ((tt))A A1211
第十五章 网络控制系统
目录
15.1 网络控制系统概述
15.2 网络控制系统概念和结构
15.3 网络控制系统的时序
15.4 网络控制系统模型
15.5 通信约束下的网络控制系统稳定性分析
15.6 网络控制系统控制- 器设计
1
第十五章 网络控制系统
15.1 网络控制系统概述
21世纪是一个网络化的时代,网络的普遍性决定了其在生活 中的广泛应用。对网络系统的研究最早始于20世纪50年代, 如随机图ER模型等。随着国际标准化组织的开放系统互连 基本参考模型,即通常提到的七层协议(1977)问世以来, 第三代的计算机网络得到了学术界的广泛关注。该网络使 用户能共享其中的大多数硬、软件和数据资源、减少计算 机的负荷,提高网络的可靠性并使得计算机具有可扩展性 和可换性。在无尺度网络模型的引入和小世界模型的基础 上,有关复杂网络的研究得到了进一步深入。比如,通信 网络、计算机网络、电力网、供水网、食品供应网、交通 网、银行金融系统、油管输网、输气管网、输油管网以及 控制网络等大量实际复杂网络中都含有无尺度以及小世界 的特性。目前,复杂网络已经在生物学、社会学和计算机 科学等相关领域中发挥了举-足轻重的作用。李伯虎院士 2
NCSs中采样速率由采样周期间隔以及数据的产生速率决定, 因此和网络的服务质量QoS(quality of service)有一定的关系。
①数据产生速率
②采样周期
15.3.2 延迟与抖动分析
网络化控传制感器系统中的延迟与抖动如图所示
k 3
k 2
k 1
k
k 1
控制器
执行器
- thk ,thk1,...,t0k ,tk1
15.4 网络控制系统模型
15.4.1 NCSs中的基本假设
由于网络的引入,使得控制系统的分析变得非常复杂,并往
往造成控制系统定常性、完整性、因果性和确定性的丧失
等[7]。
-
8
第十五章 网络控制系统
针对网络中的可变因素,同时也是NCSs建模的主要参数,已 有的假设主要集中在以下几方面:
①关于驱动方式的假设
1) 时延整形法[9]。
2) 多模型控制法[10]。
3) 随机控制方法[11]。
4) Lyapunov-Krasovskii方法[7, 13]。
5) 切换控制方法[14]。
6) 预测控制方法[15]。
7) 其他控制算法[16]。
-
6
第十五章 网络控制系统
15.3 网络控制系统的时序
15.3.1 采样速率分析
间的互联提供数据传输,使得该区域内不同地点的用户实
现协调操作及资源共享,是一种网络化实时和全分布式的
反馈系统。
T
执行器
对象
传感器
ca
网络
sc
控制器
网络控制系统的框参考图输入
-
4
第十五章 网络控制系统
网络给NCSs带来的关键问题有: ①执行器响应时刻和时延采样时刻之间存在不可忽略的滞后。 ②在某一时刻间隔内存在的数据时序抖动。 ③数据丢包。 一.被动分析方法 被动分析方法首先在不考虑网络情况下对控制器进行设计,
假设传感器都是采用时间驱动方式,采样周期为 ,执行器和 控制器存在时间和事件两种不同驱动方式的组合。
②关于传输时延 的假设
时滞 为常数、随机分布或符合某确定分布。 和 满足 或 。
③关于NCSs数据传输的假设 在NCSs中传输的每一数据包都是一个完整的数据,或者一个
完整的数据被分成多个数据包,即单包和多包传输问题。
15.4.3 离散系统模型
Ray等人[9]基于各节点均采用时间驱动方式提出了一种增广 的确定性离散系统模型。
R(s) E(s)
Gc (s)
U (s)
esca
e ssc
Gp(s) Y (s)
Wm(max )
1 s(1)max / 2 1 s(1)max / 2
第十五章 网络控制系统
高层控制器
第一层 网络
控制器1
控制器2
控制器k
第二层 网络
执行器1
执行器m
传感器1
传感器n
对象
网络控制系统的结构图
-
3
第十五章 网络控制系统
15.2 网络控制系统概念和结构
马里兰大学的学者G. C. Walsh在其论文中最早提及网络控制 系统“networked control systems”[2],但是未给出NCSs的 明确定义。通常认为NCSs是指某个区域现场所有传感器、 控制器以及执行器和通信网络全体的集合,为各种设备之
然后进一步考虑网络影响来分析闭环NCSs的系统性能。涉 及的主要方法有: 1) 网络摄动法[2]。 2) Lyapunov-Krasovskii方法[3-6]。 3) 其他方法。
-
5
第十五章 网络控制系统
二.主动分析方法
主动分析方法在考虑网络对NCSs影响的基础上进行,进而讨 论相应的系统分析以及控制器设计等问题。显然,与被动 分析方法相比,主动设计方法在控制器设计以及系统分析 过程中有效利用了网络信息,因而所得分析结果的保守性 更小,控制策略也更为合理。 主要的主动设计方法有:
A12x(t) A22e(t)
A 11
Ap
+B DC pcp
BcCp
BpCc
Ac
A 12
B
p
D c
Bc
Bp
0
ห้องสมุดไป่ตู้
A 21
C p
0
0
C
A 22
Cp
0
0 C A12
15.4.3 离散系统模型
Ray等人[9]基于各节点均采用时间驱动方式提出了一种增广的 确定性离散系统模型。
-
10
第十五章 网络控制系统
7
第十五章 网络控制系统
15.3.3 NCSs的节点驱动方式
NCSs中各节点的工作方式可以分为时间驱动 (time-driven) 和 事件驱动 (event-driven)两种。以控制器为例,所谓时间驱 动的工作方式是指控制器在时钟的作用下定时从等待队列 中取得反馈的采样信号,然后开始执行控制算法,产生决 策信息发送给执行器。而事件驱动即用事件“反馈信号到 达”,来驱动控制器执行控制算法产生决策信息。同样在 执行器结点也存在不同的驱动方式。与控制器和执行器不 同的是,传感器节点通常采用定长时间采样。
-
9
,
第十五章 网络控制系统
,
, 15.4.2 连续系统模型
。 连续型NCSs系统模型是指将网络控制系统看成一个连续系统进 行分析与设计。系统的动力学模型可以表示为
其中
z& (t)ex& & ((tt))A A1211
第十五章 网络控制系统
目录
15.1 网络控制系统概述
15.2 网络控制系统概念和结构
15.3 网络控制系统的时序
15.4 网络控制系统模型
15.5 通信约束下的网络控制系统稳定性分析
15.6 网络控制系统控制- 器设计
1
第十五章 网络控制系统
15.1 网络控制系统概述
21世纪是一个网络化的时代,网络的普遍性决定了其在生活 中的广泛应用。对网络系统的研究最早始于20世纪50年代, 如随机图ER模型等。随着国际标准化组织的开放系统互连 基本参考模型,即通常提到的七层协议(1977)问世以来, 第三代的计算机网络得到了学术界的广泛关注。该网络使 用户能共享其中的大多数硬、软件和数据资源、减少计算 机的负荷,提高网络的可靠性并使得计算机具有可扩展性 和可换性。在无尺度网络模型的引入和小世界模型的基础 上,有关复杂网络的研究得到了进一步深入。比如,通信 网络、计算机网络、电力网、供水网、食品供应网、交通 网、银行金融系统、油管输网、输气管网、输油管网以及 控制网络等大量实际复杂网络中都含有无尺度以及小世界 的特性。目前,复杂网络已经在生物学、社会学和计算机 科学等相关领域中发挥了举-足轻重的作用。李伯虎院士 2
NCSs中采样速率由采样周期间隔以及数据的产生速率决定, 因此和网络的服务质量QoS(quality of service)有一定的关系。
①数据产生速率
②采样周期
15.3.2 延迟与抖动分析
网络化控传制感器系统中的延迟与抖动如图所示
k 3
k 2
k 1
k
k 1
控制器
执行器
- thk ,thk1,...,t0k ,tk1
15.4 网络控制系统模型
15.4.1 NCSs中的基本假设
由于网络的引入,使得控制系统的分析变得非常复杂,并往
往造成控制系统定常性、完整性、因果性和确定性的丧失
等[7]。
-
8
第十五章 网络控制系统
针对网络中的可变因素,同时也是NCSs建模的主要参数,已 有的假设主要集中在以下几方面:
①关于驱动方式的假设
1) 时延整形法[9]。
2) 多模型控制法[10]。
3) 随机控制方法[11]。
4) Lyapunov-Krasovskii方法[7, 13]。
5) 切换控制方法[14]。
6) 预测控制方法[15]。
7) 其他控制算法[16]。
-
6
第十五章 网络控制系统
15.3 网络控制系统的时序
15.3.1 采样速率分析
间的互联提供数据传输,使得该区域内不同地点的用户实
现协调操作及资源共享,是一种网络化实时和全分布式的
反馈系统。
T
执行器
对象
传感器
ca
网络
sc
控制器
网络控制系统的框参考图输入
-
4
第十五章 网络控制系统
网络给NCSs带来的关键问题有: ①执行器响应时刻和时延采样时刻之间存在不可忽略的滞后。 ②在某一时刻间隔内存在的数据时序抖动。 ③数据丢包。 一.被动分析方法 被动分析方法首先在不考虑网络情况下对控制器进行设计,
假设传感器都是采用时间驱动方式,采样周期为 ,执行器和 控制器存在时间和事件两种不同驱动方式的组合。
②关于传输时延 的假设
时滞 为常数、随机分布或符合某确定分布。 和 满足 或 。
③关于NCSs数据传输的假设 在NCSs中传输的每一数据包都是一个完整的数据,或者一个
完整的数据被分成多个数据包,即单包和多包传输问题。
15.4.3 离散系统模型
Ray等人[9]基于各节点均采用时间驱动方式提出了一种增广 的确定性离散系统模型。
R(s) E(s)
Gc (s)
U (s)
esca
e ssc
Gp(s) Y (s)
Wm(max )
1 s(1)max / 2 1 s(1)max / 2
第十五章 网络控制系统
高层控制器
第一层 网络
控制器1
控制器2
控制器k
第二层 网络
执行器1
执行器m
传感器1
传感器n
对象
网络控制系统的结构图
-
3
第十五章 网络控制系统
15.2 网络控制系统概念和结构
马里兰大学的学者G. C. Walsh在其论文中最早提及网络控制 系统“networked control systems”[2],但是未给出NCSs的 明确定义。通常认为NCSs是指某个区域现场所有传感器、 控制器以及执行器和通信网络全体的集合,为各种设备之
然后进一步考虑网络影响来分析闭环NCSs的系统性能。涉 及的主要方法有: 1) 网络摄动法[2]。 2) Lyapunov-Krasovskii方法[3-6]。 3) 其他方法。
-
5
第十五章 网络控制系统
二.主动分析方法
主动分析方法在考虑网络对NCSs影响的基础上进行,进而讨 论相应的系统分析以及控制器设计等问题。显然,与被动 分析方法相比,主动设计方法在控制器设计以及系统分析 过程中有效利用了网络信息,因而所得分析结果的保守性 更小,控制策略也更为合理。 主要的主动设计方法有:
A12x(t) A22e(t)
A 11
Ap
+B DC pcp
BcCp
BpCc
Ac
A 12
B
p
D c
Bc
Bp
0
ห้องสมุดไป่ตู้
A 21
C p
0
0
C
A 22
Cp
0
0 C A12
15.4.3 离散系统模型
Ray等人[9]基于各节点均采用时间驱动方式提出了一种增广的 确定性离散系统模型。
-
10
第十五章 网络控制系统
7
第十五章 网络控制系统
15.3.3 NCSs的节点驱动方式
NCSs中各节点的工作方式可以分为时间驱动 (time-driven) 和 事件驱动 (event-driven)两种。以控制器为例,所谓时间驱 动的工作方式是指控制器在时钟的作用下定时从等待队列 中取得反馈的采样信号,然后开始执行控制算法,产生决 策信息发送给执行器。而事件驱动即用事件“反馈信号到 达”,来驱动控制器执行控制算法产生决策信息。同样在 执行器结点也存在不同的驱动方式。与控制器和执行器不 同的是,传感器节点通常采用定长时间采样。