数码管显示程序+初始化程序
51单片机数码管0到99循环程序代码
51单片机数码管0到99循环程序代码1. 概述在嵌入式系统的开发中,数码管是一种常见的输出设备,可以用于显示数字、字符等信息。
而51单片机是一种广泛应用的微控制器,其结合了强大的功能和灵活的应用,能够很好地驱动数码管。
本文将介绍如何使用51单片机编写一个循环显示0到99的程序,通过数码管输出这些数字。
2. 电路连接我们需要连接51单片机和数码管。
通常我们使用的是共阴数码管,其连接方式如下:- VCC连接到5V电源- GND连接到GND- DIO(数据输入/输出)连接到51单片机的IO口3. 程序设计下面是一个简单的C语言程序设计,用于控制数码管显示0到99的数字。
```c#include <reg51.h>sbit DIO = P2^0; // 数码管数据输入/输出sbit CL = P2^1; // 数码管片选信号unsigned char code numCode[10] = { 0xc0, // 00xf9, // 10xa4, // 20xb0, // 30x99, // 40x92, // 50x82, // 60xf8, // 70x80, // 80x90 // 9};//延时函数void delay(unsigned int i) {unsigned int j,k;for (j=i;j>0;j--)for(k=110;k>0;k--);}void display(unsigned char num) { CL = 1; //关闭片选DIO = numCode[num / 10]; //十位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);CL = 1; //关闭片选DIO = numCode[num 10]; //个位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);}void m本人n() {unsigned char i,j;while(1) {for(i=0;i<10;i++) {for(j=0;j<10;j++) {display(i * 10 + j);}}}}```4. 程序说明- 首先定义了数码管的连接引脚,以及0~9的显示编码。
数码管动态显示程序编写步骤
数码管动态显示程序编写步骤一、准备工作在编写数码管动态显示程序之前,我们需要准备以下工作:1. 硬件设备:数码管、开发板等;2. 开发环境:Arduino IDE等;3. 相关库函数:例如“TM1637.h”库。
二、引入库函数在编写数码管动态显示程序之前,我们首先需要在代码中引入相应的库函数。
在Arduino IDE中,可以通过“库管理器”来搜索并安装需要的库函数。
三、初始化设置在开始编写程序之前,我们需要先对数码管进行初始化设置。
这包括设置数码管的引脚连接方式、亮度等参数。
四、定义变量在程序中我们需要定义一些变量来保存要显示的数字、字符等信息。
可以根据需要定义不同类型的变量,例如整型、字符型等。
五、编写显示函数编写一个显示函数来控制数码管的显示效果。
该函数可以接收一个参数,用来指定要显示的内容。
六、主函数在主函数中,我们可以通过调用显示函数来控制数码管的显示效果。
可以根据需要设置循环次数、延时时间等参数,来实现不同的显示效果。
七、编译与上传在编写完程序后,我们需要将代码进行编译,并将程序上传到开发板中进行运行。
在Arduino IDE中,可以点击“编译”按钮进行代码的编译,然后点击“上传”按钮将代码上传到开发板。
八、调试与优化在程序运行过程中,可能会出现一些问题,例如数码管显示异常、数字错误等。
这时候我们需要对程序进行调试,并进行相应的优化。
可以通过添加调试信息、查看变量的值等方式来进行调试。
九、总结通过以上步骤,我们可以编写出一个简单的数码管动态显示程序。
通过调整不同的参数和函数,我们可以实现不同的显示效果。
读者可以根据自己的需求进一步扩展和优化程序,实现更加复杂的功能。
编写数码管动态显示程序并不复杂,只需要按照上述步骤进行操作即可。
希望本篇文章对读者有所帮助,能够让大家更好地理解和掌握数码管动态显示程序的编写方法。
祝大家编程愉快!。
数码管实验报告实训步骤
一、实验目的1. 理解数码管的显示原理,掌握数码管的分类和应用。
2. 学习使用51单片机控制数码管显示数字的方法。
3. 熟悉数码管驱动电路的设计与搭建。
4. 培养动手实践能力和问题解决能力。
二、实验原理数码管是一种常用的显示器件,由多个发光二极管(LED)组成,能够显示数字、字母或符号。
根据LED的连接方式,数码管分为共阴极和共阳极两种类型。
本实验采用共阴极数码管。
共阴极数码管的特点是当LED的阴极接地时,LED会发光,从而显示出相应的数字或符号。
数码管由七个或八个LED组成,分别对应数字0-9或字母A-F。
三、实验器材1. 51单片机开发板2. 共阴极数码管3. 连接线4. 电源5. 示波器(可选)四、实验步骤1. 硬件连接(1)将数码管的阴极(GND)连接到单片机的GND引脚。
(2)将数码管的阳极(A-G或A-F)分别连接到单片机的P0、P1、P2等引脚。
(3)将数码管的位选引脚(DP或COM)连接到单片机的另一个引脚,用于控制数码管的显示。
2. 软件设计(1)编写初始化程序,设置单片机的P0、P1、P2等引脚为输出模式。
(2)编写数码管显示函数,根据需要显示的数字或字母,将对应的段码输出到数码管的阳极引脚。
(3)编写主程序,实现数码管动态显示数字0-9或字母A-F。
3. 动态显示(1)初始化数码管显示,清屏显示数字0。
(2)循环读取按键输入,根据按键值更新数码管显示的数字。
(3)使用定时器中断或延时函数实现数码管动态刷新。
4. 实验测试(1)连接电源,打开单片机开发板。
(2)使用示波器观察数码管的段码引脚,确认数码管显示正常。
(3)通过按键输入,测试数码管的动态显示功能。
五、实验结果与分析1. 硬件连接正确,数码管显示正常。
2. 数码管动态显示数字0-9,按键输入能够实时更新显示的数字。
3. 数码管刷新频率适中,显示效果稳定。
六、实验总结通过本次实验,我们学习了数码管的显示原理和驱动方法,掌握了使用51单片机控制数码管显示数字的技术。
基础实验(数码管显示)含代码
实验一基础实验(数码管显示)一、实验内容使用MCS-51汇编语言编写程序,完成如下功能:1. 使用三个数码管显示十进制数值(001~999,可任意设置);2. 每隔1秒,该数值自动减一,直到归零;3. 归零后的下一秒,显示一个新的十进制数值(001~999,可任意设置);4. 每隔1秒,新数值继续自动减一,直到再次归零;5. 重新执行步骤1,循环往复。
6. 当开关S1按下时,暂停计数;S1松开时,恢复计数。
二、数码管显示原理如图所示,三段式数码管由三片74HC164级联控制三个数码管的显示,其中使用单片机P4.5作为模拟串口数据,使用P4.4模拟串口时钟,CLR端接高电平。
使用上一个74HC164的Q7作为下一个74HC164的输入端。
要想输出一个字形码,就需要从高位到低位依次向移位寄存器输出8个比特。
移位寄存器的数据线和时钟线分别接到单片机的P4.5和P4.4管脚,可以使用MCS-51里面的位操作指令进行输出。
连续输出3个字形,24个bit之后,欲显示的字形将稳定地显示在数码管上,程序可以转而执行其他工作。
三、实验流程图1.主程序流程图开始初始化定义计数器R6,R5,R4定义码表TAB 0-9根据R6偏移从TAB取数送到算术寄存器A中调用SHOW子程序根据R5偏移从TAB取数送入算术寄存器A中调用SHOW子程序根据R4偏移从TAB取数送入算术寄存器A中调用SHOW子程序调用延时子程序S1按下?是循环延时否R6减一即个位减一R6为-1?是R5减一即十位减一重新初始化R6否R5为-1?否是R4减一即百位减一重新初始化R5R4为-1?重新初始化R4否2.显示子程序SHOW 流程图3.延时子程序DELAY 流程图子程序SHOW 开始R0初始化计数时钟置0右移AC 标志位送入DATA时钟置1,上跳R0=0?是RET否子程序DELAY 开始RI 初始化为80R3减一R3为0?是R2减一R2为0?是R1减一是R1为0?否R2初始化为200R3初始化为250否否是四、程序源代码 0000H2.LJMP START 0050H4.START:5.P4 EQU 0C0H6.P4SW EQU 0BBH7.CLK EQU P4.48.DAT EQU P4.59.SW EQU P3.610.MOV P4SW, #70H11.LP:12. MOV R6, #913. MOV R5, #914. MOV R4, #915.LOOP:16. MOV DPTR, #TAB17. MOV A,R618. MOV DPTR,#TAB19. MOVC A,@A+DPTR20. LCALL SHOW21.22. MOV A,R523. MOV DPTR,#TAB24. MOVC A,@A+DPTR25. LCALL SHOW26.27. MOV A,R428. MOV DPTR,#TAB29. MOVC A,@A+DPTR30. LCALL SHOW31. LCALL DELAY32.33.PAUSE:34. NOP35. JNB SW,PAUSE36. DEC R637. CJNE R6,#-1,LOOP38.39. DEC R540. MOV R6,#941. CJNE R5,#-1,LOOP42. DEC R443. MOV R5,#944. CJNE R4,#-1,LOOP45. MOV R4,#946. LJMP LOOP47.48.SHOW:49. MOV R0,#850.SLP:51. CLR CLK52. RLC A53. MOV DAT,C54. SETB CLK55. DJNZ R0,SLP56. RET57.58.DELAY:59. MOV R1,#8060.SD:61. MOV R2,#20062.SD1:63. MOV R3,#25064.SD2:65. DJNZ R3,SD266. DJNZ R2,SD167. DJNZ R1,SD68.RET69.70.TAB:71. DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H72.73.74.END75.TAB:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H五、思考题1.MCS51中有哪些可存取的单元,存取方式如何?它们之间的区别和联系有哪些?答:MCS51单片机中,包含程序存储器ROM、数据存储器RAM和特殊功能寄存器(SFRs),其中数据存储器还包含内部RAM,内部扩展RAM和片外RAM。
《PLC应用与实践(三菱)》 配套教学案例:数码管循环显示数字
数码管循环显示数字
1.案例原理与提示
(1) 数码管的ABCDEFG七段对应Y0~Y6,计数器循环计数。
(2) 用数据寄存器存放变化的数字,用INC(加1)指令使数字不断递增,用CMP(比较)指令实现数据的循环。
(3) 也可以用功能指令直接七段译码。
2. 案例实施过程
1) I/O分配
数码显示控制输入/输出端口分配表如下表所示。
数码显示控制输入/输出端口分配表
2) 控制程序编写
数码显示控制程序梯形图如下图所示。
数码显示控制程序梯形图
用数据寄存器D0存放变化的数字0~9。
由特殊功能继电器M8013产生秒脉冲,采用加1指令使D0中的数据不断递增,每过一秒加1。
当D0中的数据递增为10时,D0中再次
赋值为0。
程序中M8002对程序初始化,把K0(十制数0)放入数据寄存器D0中。
当比较指令(CMP)的比较结果为等于时(D0=10),M11=1,则D0中赋值0。
当SB12断开时,D0=0,[INCP D0]指令不工作,数码管上显示0。
3) 接线与调试
数码显示控制外部接线图如下图所示。
数码显示控制外部接线图
3. 思考与提升
(1) 当SB12开关闭合时,数码管就循环显示0~A,每个数字显示0.5s;当SB12开关断开时,数码管上显示“H”。
(2) 当SB12开关闭合时,数码管就循环显示9~0,每个数字显示0.8s。
51单片机数码管显示0到99实验原理
51单片机数码管显示0到99实验原理51单片机是一种常用的单片机微控制器,它可以用来完成各种控制任务,包括数码管显示。
数码管是一种显示器件,可以用来显示数字、字母或符号等。
在本实验中,我们将使用51单片机控制数码管显示从0到99的数字。
实验原理如下:1. 51单片机介绍:51单片机是一种基于Intel 8051架构的微控制器。
它是一种具有48KB的程序存储器和52个输入/输出引脚的芯片。
单片机通过内部时钟和逻辑电路来执行各种任务。
2.数码管介绍:数码管是一种由LED组成的显示器件。
一般用于显示数字,通过控制LED的亮灭来显示不同的数字。
常见的数码管有共阳极和共阴极两种类型。
3.共阳极数码管原理:共阳极数码管的原理是通过控制不同的引脚来点亮相应的LED。
在显示数字0到9时,需要同时点亮特定的LED。
通过控制引脚为高电平来点亮对应的LED,其他引脚保持低电平。
4.共阴极数码管原理:共阴极数码管的原理与共阳极相反,需要使引脚为低电平来点亮相应的LED。
其他引脚保持高电平。
5. 51单片机控制数码管原理:通过设置51单片机的输出引脚和电平,可以控制数码管的显示。
首先需要将数码管的引脚连接到51单片机的输出引脚上,并设置相应的输出模式和电平。
然后通过程序来控制输出引脚的电平,从而控制数码管的亮灭。
实验步骤如下:1.连接电路:首先将51单片机与数码管进行连接。
根据具体的实验条件,选择合适的数码管和电路图。
2.编写程序:使用51单片机的编程软件(如Keil C等),编写控制数码管的程序。
程序应该包括初始化引脚、设置输出模式和控制引脚电平等内容。
3.烧录程序:将编写好的程序烧录到51单片机的程序存储器中。
通过编程软件将程序下载到单片机中。
4.检查电路:验证电路连接是否正确。
可以通过使用示波器或万用表等工具来检查引脚的电平和波形。
5.运行实验:将电路通电,观察数码管的显示效果。
通过控制程序中的循环和延时等参数,可以实现数字的滚动显示、闪烁显示等效果。
51单片机(四位数码管的显示)程序
51单片机(四位数码管的显示)程序基于单片机V1或V2实验系统,编写一个程序,实现以下功能:1)首先在数码管上显示“P_ _ _”4个字符;2)等待按键,如按了任何一个键,则将这4个字符清除,改为显示“0000”4个字符(为数字的0)。
最佳答案下面这个程序是4x4距阵键盘,LED数码管显示,一共可以到0-F显示,你可以稍微改一下就可以实现你的功能了,如还有问题请发信息,希望能帮上你!#include<at89x52.h>unsigned char codeDig[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1 ,0x86,0x8e}; //gongyang数码管0-F 代码unsigned char k; //设置全局变量k 为键盘的键值/************************************键盘延时函数****************************/void key_delay(void) //延时函数{int t;for(t=0;t<500;t++);}/************************************键盘扫描函数******************************/void keyscan(void) //键盘扫描函数{unsigned char a;P2 = 0xf0; //键盘初始化if(P2!=0xf0) //有键按下?{key_delay(); //延时if(P2!=0xf0) //确认真的有键按下?{P2 = 0xfe; //使行线P2.4为低电平,其余行为高电平key_delay();a = P2; //a作为缓存switch (a) //开始执行行列扫描{case 0xee:k=15;break;case 0xde:k=11;break;case 0xbe:k=7;break;case 0x7e:k=3;break;default:P2 = 0xfd; //使行线P2.5为低电平,其余行为高电平a = P2;switch (a){case 0xed:k=14;break;case 0xdd:k=10;break;case 0xbd:k=6;break;case 0x7d:k=2;break;default:P2 = 0xfb; //使行线P2.6为低电平,其余行为高电平a = P2;switch (a){case 0xeb:k=13;break;case 0xdb:k=9;break;case 0xbb:k=5;break;case 0x7b:k=1;break;default:P2 = 0xf7; //使行线P2.7为低电平,其余行为高电平a = P2;switch (a){case 0xe7:k=12;break;case 0xd7:k=8;break;case 0xb7:k=4;break;case 0x77:k=0;break;default:break;}}}break;}}}}/****************************** ***主函数*************************************/ void main(void){while(1){keyscan(); //调用键盘扫描函数switch(k) //查找按键对应的数码管显示代码{case 0:P0=Dig[0];break;case 1:P0=Dig[1];break;case 2:P0=Dig[2];break;case 3:P0=Dig[3];break;case 4:P0=Dig[4];break;case 5:P0=Dig[5];break;case 6:P0=Dig[6];break;case 7:P0=Dig[7];break;case 8:P0=Dig[8];break;case 9:P0=Dig[9];break;case 10:P0=Dig[10];break;case 11:P0=Dig[11];break;case 12:P0=Dig[12];break;case 13:P0=Dig[13];break;case 14:P0=Dig[14];break;case 15:P0=Dig[15];break;default:break; //退出}}}/**********************************end***************************************/。
max7219驱动数码管程序(51单片机+STM32 MAX7219数码管程序案例)
SPI1_InitStructure.SPI_FirstBit=SPI_FirstBit_MSB; //高位MSB在先
SPI1_InitStructure.SPI_CPOL = SPI_CPOL_High; //选择了串行时钟的稳态,时钟悬空高
*功能:STM32_SPI1硬件配置初始化
*入口参数:无
*出口参数:无
*说明:STM32_SPI1硬件配置初始化,使用3V3
****************************************************************************/
void SPI1_Init(void)
SPI1_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;//数据捕获于第二个时钟沿
SPI1_InitStructure.SPI_NSS = SPI_NSS_Soft;CPolynomial = 7;//CRC值计算的多项式
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1,ENABLE);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;
GPIO_Init(GPIOA,GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//SPI1相关引脚
数码管驱动程序实例
数码管驱动程序实例介绍数码管是一种常见的显示设备,通常用于显示数字和部分字母。
为了控制数码管的显示内容,我们需要编写一段驱动程序来控制数码管的工作。
本文将介绍一个数码管驱动程序的实例,包括硬件连接、代码编写和运行效果展示。
通过学习这个实例,你将了解到如何使用Arduino来驱动数码管进行数字显示。
硬件连接首先,我们需要准备以下硬件组件:•Arduino开发板•数码管(常见的有共阳极和共阴极两种类型)接下来,按照以下步骤进行硬件连接:1.将Arduino开发板与电脑连接,并打开Arduino IDE。
2.将数码管的引脚与Arduino开发板上的数字引脚相连。
具体连接方式取决于你使用的数码管类型,请参考相关资料或数据手册。
3.使用面包板或杜邦线等工具完成引脚连接。
代码编写完成硬件连接后,我们可以开始编写代码了。
以下是一个简单的数码管驱动程序示例:// 引入库#include <SevSeg.h>// 创建一个SevSeg对象并指定引脚SevSeg sevseg;void setup() {// 初始化数码管sevseg.begin(COMMON_CATHODE, 4, 3, 2, 1, 0, 6, 7, 5, 8);}void loop() {// 显示数字0-9for (int i = 0; i < 10; i++) {sevseg.setNumber(i);sevseg.refreshDisplay();delay(1000);}}代码解析:1.首先,我们引入了一个名为SevSeg的库,该库提供了控制数码管的函数和方法。
2.在setup()函数中,我们初始化了一个SevSeg对象,并指定了数码管的引脚连接方式。
这里使用的是共阳极数码管,如果你使用的是共阴极数码管,则需要将COMMON_CATHODE改为COMMON_ANODE。
3.在loop()函数中,我们通过一个循环来显示数字0-9。
利用按键操作数码管显示
利用按键操作数码管显示数码管是一种常见的显示设备,它由许多小型LED灯组成,可以通过按键操作实现不同数字的显示。
下面是一个利用按键操作数码管显示数字的示例程序:```c#include <Wire.h>#include <Adafruit_GFX.h>#include <Adafruit_LEDBackpack.h>#define BUTTON_PIN 2Adafruit_7segment display = Adafruit_7segment(;void setupinMode(BUTTON_PIN, INPUT_PULLUP);display.begin(0x70);display.setBrightness(15);void loostatic int number = 0;static int prevButtonState = HIGH;int buttonState = digitalRead(BUTTON_PIN);if (buttonState != prevButtonState && buttonState == LOW)number++;if (number > 9)number = 0;}display.writeDigitNum(0, number, false);display.writeDisplay(;}prevButtonState = buttonState;```这个程序使用`Adafruit_7segment`库来控制数码管显示。
首先,需要在Arduino IDE中安装`Adafruit_GFX`和`Adafruit_LEDBackpack`库。
然后,将数码管的SDA引脚连接到Arduino的A4引脚,SCL引脚连接到A5引脚,还需要将按键连接到2号引脚。
在程序的`setup(`函数中,初始化数码管显示,并设置亮度为最大。
数码管显示时钟程序
sbit RST = P1^2;
sbit RS = P2^0;
sbit RW = P2^1;
sbit EN = P2^2;
uchar *WEEK[]={"SUN","***","MON","TUS","WEN","THU","FRI","SAT"};
uchar LCD_DSY_BUFFER1[]={"DATE 00-00-00 "};
Set_LCD_POS(p);
for(i=0;i<16;i++)
{
Write_LCD_Data(s[i]);
DelayMS(1);
}
}
void Format_DateTime(uchar d,uchar *a)
{
a[0]=d/10+'0';
a[1]=d%10+'0';
}
void main()
{
Init_LCD();
从DS1302读1字节数据
**************************************/
BYTE DS1302_ReadByte()
{
BYTE i;
BYTE dat = 0;
for (i=0; i<8; i++) //8位计数器
{
SCLK = 0; //时钟线拉低
Delay(); //延时等待
Display_LCD_String(0x00,LCD_DSY_BUFFER1);
数码管静态显示程序源码解读
数码管静态显示程序源码解读数码管是一种常见的数字显示器件,它可以用来显示数字、字母、符号等信息。
在很多电子设备中,数码管都扮演着重要的角色。
本文将介绍数码管静态显示程序的源码,并对其进行解读。
数码管静态显示程序的源码如下:```#include <reg52.h>sbit D1 = P2^0;sbit D2 = P2^1;sbit D3 = P2^2;sbit D4 = P2^3;void main(){unsigned char num = 0;while(1){D1 = num % 10 == 1 ? 1 : 0;D2 = num % 10 == 2 ? 1 : 0;D3 = num % 10 == 3 ? 1 : 0;D4 = num % 10 == 4 ? 1 : 0;num++;if(num == 100){num = 0;}}}```该程序使用了51单片机的寄存器编程方式,通过控制P2口的四个引脚来控制数码管的显示。
其中,sbit是单片机中的一种特殊类型,用于定义单个引脚的输入输出状态。
在程序的主函数中,首先定义了一个无符号字符型变量num,并将其初始化为0。
然后进入一个无限循环,每次循环都会对num进行加1操作。
当num等于100时,将其重新赋值为0,以实现循环显示的效果。
在每次循环中,程序通过对num取模运算来判断应该显示哪些数字。
例如,当num % 10等于1时,将D1引脚设置为1,否则设置为0。
同理,对于D2、D3、D4引脚也进行了类似的操作。
这样就可以实现静态显示数字的效果。
需要注意的是,该程序只能显示0~4这五个数字,因为它只使用了四个引脚来控制数码管的显示。
如果要显示更多的数字,需要使用更多的引脚或者采用其他的显示方式。
数码管静态显示程序是一种比较简单的程序,通过对单片机的引脚进行控制,可以实现数字的静态显示。
对于初学者来说,这是一个很好的练手项目,可以帮助他们更好地理解单片机的编程原理。
温度自动采集及显示器设计的硬件连接图和程序流程图
温度自动采集设计总电路图
热电阻传感器及滤波放大电路
A/D转换电路
CPU与A/D转换器的连接
BCD数码管Hale Waihona Puke 示电路多点温度采集主程序流程:
系统初始化程序:
温度数据采集程序:
温度数据处理程序:
送数码显示程序:
用数码管(8位)显示的数字时钟程序
用数码管(8位)显示的数字时钟程序
一、程序概述
本程序使用单片机AT89S52,通过数码管(8位)显示当前时间,支持12小时制和24小时制切换,精度为秒。
二、程序实现
程序首先定义了数码管的连接方式和每个数字的位图数据,然后定义了时间变量和函数,包括:
1.初始化函数:设置数码管端口和时钟计数器的计数方式。
2.读时钟函数:读取时钟计数器及寄存器,返回当前时间的小时、分钟和秒数。
3.显示函数:将当前时间转化为8个数码管显示的位图数据,用数字和符号映射表将数字和符号的位图数据与数码管连接方式对应起来,输出到数码管上。
在主函数中,程序初始化后循环执行读时钟函数和显示函数,实现时钟的实时显示。
三、程序特点
1.采用8位数码管显示,时间更加直观。
2.支持12小时制和24小时制切换,适用于不同场景。
3.实现精度为秒的实时显示,更加准确。
四、程序优化
1.增加闹钟功能,提醒用户打卡或者起床。
2.加入温度传感器模块,实现显示温度的功能。
3.优化显示效果,增加字体和颜色等选项。
五、程序应用
本程序可应用于家庭、办公室、学校等场合,用于显示时间,提醒用户合理安排时间和时间管理,也可作为DIY电子制作的教学和实验材料,提高学生的动手实践能力和电子信息技术水平。
PIC18F458控制数码管显示1~8数字程序
PIC18F458控制数码管显示1~8数字程序本程序是基于PIC18F458控制LED数码管显示1~8数字的C语言程序,笔者也是刚刚学习PIC单片机,也是和大家一起学习交流吧!不多说了,先贴程序:#include "p18f458.h"static volatile int table[20]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0XD8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0x7f,0xbf,0x89,0xff};//段码volatile unsigned char data;/*初始化子程序*/void initial(){TRISA=0x00; /*A口设置为输出*/TRISC=0x00; /*SDO引脚为输出,SCK引脚为输出*/ INTCON=0x00; /*关闭所有中断*/SSPCON1=0x30; /*SSPEN=1;CKP=1,FOSC/4*/SSPSTAT=0xC0; /*时钟下降沿发送数据*/PIR1=0; /*清除SSPIF标志*/}/*显示子程序*/void SPILED(char data){PORTAbits.RA5=0;/*LACK送低电平,为锁存做准备*/SSPBUF=data; /*启动发送*/do{;}while(PIR1bits.SSPIF==0); /*等待发送完毕*/ PIR1bits.SSPIF=0; /*清除SSPIF标志*/PORTAbits.RA5=1; /*最后给锁存信号,代表显示任务完成*/}/*主程序*/main(){unsigned i;initial(); /*系统初始化*/for(i=8;i>0;i--) /*连续发送8个数据*/{data=table[i]; /*通过数组的转换获得待显示的段码*/SPILED(data); /*发送显示段码显示*/ }for(;;)//无限循环{}}。
采用两个数码管显示数字51的编程程序
题目:采用两个数码管显示数字51的编程程序目录:一、概述二、程序设计思路三、程序实现步骤1. 初始化2. 初步设计3. 完善代码四、程序分析与优化五、总结一、概述数码管是一种常见的数字显示设备,通过控制其中的LED灯来显示数字和字母。
在编程中,通过对数码管进行控制可以实现不同的数字和图案显示。
本文将介绍如何使用两个数码管来显示数字51的编程程序设计及实现。
二、程序设计思路1. 了解数码管的工作原理:在设计程序之前,需要深入了解数码管的工作原理,包括使用的控制芯片、引脚定义、显示规则等。
2. 分析数字51的显示规律:数字51可以分解为两位数字5和1,因此需要分别控制两个数码管显示对应的数字。
3. 设计控制程序:根据数码管的工作原理和数字51的显示规律,设计相应的控制程序,实现数字51在两个数码管上的显示。
三、程序实现步骤1. 初始化在编程前,首先需要对使用的数码管进行初始化设置,包括引脚定义、数码管类型、显示模式等。
```// 引入库文件#include <Arduino.h>#include <TM1637.h>// 定义数码管引脚#define CLK 2#define DIO 3// 实例化数码管对象TM1637 tm1637(CLK, DIO);```2. 初步设计根据数码管的排列方式和数字51的显示规律,设计初步的显示程序。
```void setup() {// 初始化数码管tm1637.init();tm1637.set(BRIGHTEST);}void loop() {// 显示数字5tm1637.display(0, 5);delay(1000);// 切换显示位置,显示数字1tm1637.display(1, 1);delay(1000);}```3. 完善代码根据初步设计的程序,进行完善和优化,确保程序能够准确显示数字51。
```void setup() {// 初始化数码管tm1637.init();tm1637.set(BRIGHTEST);}void loop() {// 显示数字5tm1637.display(1, 5);delay(1000);// 切换显示位置,显示数字1tm1637.display(0, 1);delay(1000);}```四、程序分析与优化- 程序设计过程中需要注意数码管的引脚连接,确保接线正确。
51单片机(四位数码管的显示)程序
51单片机(四位数码管的显示)程序基于单片机V1或V2实验系统,编写一个程序,实现以下功能:1)首先在数码管上显示“P_ _ _”4个字符;2)等待按键,如按了任何一个键,则将这4个字符清除,改为显示“0000”4个字符(为数字的0)。
最佳答案下面这个程序是4x4距阵键盘,LED数码管显示,一共可以到0-F显示,你可以稍微改一下就可以实现你的功能了,如还有问题请发信息,希望能帮上你!#include<at89x52.h>unsigned char codeDig[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1 ,0x86,0x8e}; //gongyang数码管0-F 代码unsigned char k; //设置全局变量k 为键盘的键值/************************************键盘延时函数****************************/void key_delay(void) //延时函数{int t;for(t=0;t<500;t++);}/************************************键盘扫描函数******************************/void keyscan(void) //键盘扫描函数{unsigned char a;P2 = 0xf0; //键盘初始化if(P2!=0xf0) //有键按下?{key_delay(); //延时if(P2!=0xf0) //确认真的有键按下?{P2 = 0xfe; //使行线P2.4为低电平,其余行为高电平key_delay();a = P2; //a作为缓存switch (a) //开始执行行列扫描{case 0xee:k=15;break;case 0xde:k=11;break;case 0xbe:k=7;break;case 0x7e:k=3;break;default:P2 = 0xfd; //使行线P2.5为低电平,其余行为高电平a = P2;switch (a){case 0xed:k=14;break;case 0xdd:k=10;break;case 0xbd:k=6;break;case 0x7d:k=2;break;default:P2 = 0xfb; //使行线P2.6为低电平,其余行为高电平a = P2;switch (a){case 0xeb:k=13;break;case 0xdb:k=9;break;case 0xbb:k=5;break;case 0x7b:k=1;break;default:P2 = 0xf7; //使行线P2.7为低电平,其余行为高电平a = P2;switch (a){case 0xe7:k=12;break;case 0xd7:k=8;break;case 0xb7:k=4;break;case 0x77:k=0;break;default:break;}}}break;}}}}/****************************** ***主函数*************************************/ void main(void){while(1){keyscan(); //调用键盘扫描函数switch(k) //查找按键对应的数码管显示代码{case 0:P0=Dig[0];break;case 1:P0=Dig[1];break;case 2:P0=Dig[2];break;case 3:P0=Dig[3];break;case 4:P0=Dig[4];break;case 5:P0=Dig[5];break;case 6:P0=Dig[6];break;case 7:P0=Dig[7];break;case 8:P0=Dig[8];break;case 9:P0=Dig[9];break;case 10:P0=Dig[10];break;case 11:P0=Dig[11];break;case 12:P0=Dig[12];break;case 13:P0=Dig[13];break;case 14:P0=Dig[14];break;case 15:P0=Dig[15];break;default:break; //退出}}}/**********************************end***************************************/。