单项式乘多项式练习题含答案

合集下载

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:2222=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题含答案原式=2(2*(-2)*2+(-2)*2*2)-2(2*(-2)*1-1)-(-2)*2-22(-8+(-8))-2(-4)-(-4)16-(-8)+420所以答案为-20.2.计算:1)6x^2*3xy2)(4a-b^2)(-2b)考点:单项式乘多项式;整式的乘法.分析:先将单项式和多项式相乘,再将结果进行合并同类项,最后化简.解答:(1)6x^2*3xy=18x^3y2)(4a-b^2)(-2b)=-8ab+2b^33.(3x^2y-2x+1)(-2xy)考点:整式的乘法.分析:将两个多项式进行乘法,然后合并同类项,最后化简.解答:(3x^2y-2x+1)(-2xy)=-6x^3y^2+4x^2y-2xy4.计算:1)(-12a^2b^2c)*(-abc^2)^22)(3a^2b-4ab^2-5ab-1)*(-2ab^2)考点:单项式乘单项式;整式的乘法.分析:(1)将两个单项式相乘,然后将结果进行乘方运算,最后化简;(2)将整式和单项式相乘,然后合并同类项,最后化简.解答:(1) (-12a^2b^2c)*(-abc^2)^2=-12a^3b^5c^52) (3a^2b-4ab^2-5ab-1)*(-2ab^2)=-6a^3b^3+8a^2b^4+10ab^3+2ab^25.计算:-6a*(-(-a+2))考点:单项式乘单项式.分析:先将两个单项式相乘,然后化简.解答:-6a*(-(-a+2))=6a^2-12a6.计算:-3x*(2x^2-x+4)考点:单项式乘多项式.分析:将单项式和多项式相乘,然后合并同类项,最后化简.解答:-3x*(2x^2-x+4)=-6x^3+3x^2-12x7.先化简,再求值3a(2a^2-4a+3)-2a^2(3a+4),其中a=-28.考点:整式的加减;整式的乘法;化简求值.分析:先将两个整式相乘,然后合并同类项,再将字母的值代入求出原代数式的值.解答:3a(2a^2-4a+3)-2a^2(3a+4)=6a^3-12a^2+9a+(-6a^3-8a^2)20a^2+9a当a=-28时,答案为:-.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高2米。

七年级数学下册《单项式乘以多项式》典型例题.课时训练(含答案)

七年级数学下册《单项式乘以多项式》典型例题.课时训练(含答案)

《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

单项式乘多项式练习题含答案

单项式乘多项式练习题含答案

单项式乘多项式练习题含答案原式=2(ab+ab) - 2(ab-1) - ab - 24ab - 2ab + 2 + ab - 23ab代入a=-2,b=2得:3ab=3(-2)(2)=-122.计算:1)6x^3xy2)(4a-b)(-2b)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.对于第二个式子,使用分配律展开括号,然后合并同类项即可.解答:1)6x^3xy = 6x^(3+1)y = 6x^4y2)(4a-b)(-2b) = -8ab + 2b^23.(3xy-2x+1)(-2xy)考点:多项式乘法.分析:根据多项式乘法的法则,将第一个括号中的每一项分别乘以第二个括号中的每一项,然后合并同类项即可.解答:(3xy-2x+1)(-2xy) = -6x^2y^2 + 4xy - 2xy4.计算:1)(-12abc)(-abc)2)(3ab-4ab-5ab-1)(-2ab)考点:单项式乘法;整式的加减.分析:对于第一个式子,根据单项式乘法的法则,将两个单项式相乘即可;对于第二个式子,使用分配律展开括号,然后合并同类项即可.解答:1)(-12abc)(-abc) = 12a^2b^2c^22)(3ab-4ab-5ab-1)(-2ab) = 12a^2b^2 + 2ab5.计算:-6a(-7a+2a-1)考点:单项式乘法;整式的加减.分析:根据单项式乘法的法则,将两个单项式相乘,然后合并同类项即可.解答:-6a(-7a+2a-1) = -6a(-5a-1) = 30a^2 + 6a6.-3x(2x-x+4)考点:整式的加减.分析:根据整式的加减法则,将括号中的每一项乘以系数-3,然后合并同类项即可.解答:-3x(2x-x+4) = -6x^2 + 3x - 12x7.先化简,再求值3a(2a-4a+3)-2a(3a+4),其中a=-2考点:整式的加减—化简求值;整式的加减.分析:先根据整式的加减法则化简式子,然后代入a=-2求值即可.解答:3a(2a-4a+3)-2a(3a+4) = 3a(-2a+3) - 2a(3a+4)6a^2 + 9a - 6a^2 - 8a12a^2 + a代入a=-2得:-12a^2+a=-12(-2)^2+(-2)=508.(-ab)(b-a+2)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.解答:(-ab)(b-a+2) = -ab^2 + a^2b - 2ab9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高h米.1)求防洪堤坝的横断面积;2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:梯形面积公式;体积公式.分析:对于第一问,根据梯形面积公式计算横断面积;对于第二问,将横断面积与长度相乘,再乘以坝高即可得到体积.解答:1)横断面积 = (上底+下底)×高÷2 = (a+a+2b)×h÷2 =(2a+2b)h÷2 = (a+b)h2)体积 = 横断面积×长度×坝高 = (a+b)h×100×h =100h(a+b)h = 100h^2(a+b)10.2ab(5ab+3ab)考点:单项式乘法.分析:根据单项式乘法的法则,将两个单项式相乘即可.解答:2ab(5ab+3ab) = 16a^2b^211.计算:(a+b+c)^2考点:二次方公式.分析:根据二次方公式展开式子即可.解答:(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc12.计算:2x(x-x+3)考点:整式的加减.分析:根据整式的加减法则,将括号中的每一项乘以系数2,然后合并同类项即可.解答:2x(x-x+3) = 2x(3) = 6x13.(-4a+12ab-7ab)(-4a)考点:整式的加减;单项式乘法.分析:使用分配律展开括号,然后合并同类项即可.解答:(-4a+12ab-7ab)(-4a) = 16a^2 - 8ab14.计算:xy(3xy-xy+y)考点:整式的加减.分析:根据整式的加减法则,将括号中的每一项乘以系数xy,然后合并同类项即可.解答:xy(3xy-xy+y) = 2xy^215.(-2ab)(3a-2ab-4b)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.解答:(-2ab)(3a-2ab-4b) = -6a^2b + 4ab^2 + 8ab16.(-2ab)(3b-4a+6)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.解答:(-2ab)(3b-4a+6) = -6ab^2 + 8a^2b - 12ab17.某同学在计算一个多项式乘以-3x时,因抄错运算符号,算成了加上-3x,得到的结果是x-4x+1,那么正确的计算结果是多少?考点:多项式乘法;整式的加减.分析:根据多项式乘法的法则,将多项式中的每一项乘以-3x,然后合并同类项即可.解答:x-4x+1 = -3x(x+2) + 7x,正确的计算结果为-3x(x+2) + 7x = -3x^2 - 6x + 7x = -3x^2 + x18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:方程求解.分析:根据题目中的条件列方程组,解出a、b、c、d的值即可.解答:由1△2=3得:a+2b+2c=3由2△3=4得:2a+3b+6c=4由x△d=x得:ax+bd+cdx=x将x=0代入上式得:bd=0,由于d不为零,所以b=0代入前两个式子得:a+4c=3,2a+12c=4解得:a=-5,c=2/3代入最后一个式子得:-5x+2/3xd=x解得:d=15/2分析:这篇文章主要考查了单项式与多项式相乘的运算法则和整式的化简,以及应用题中的梯形面积公式的应用。

(完整版)单项式乘多项式练习题(含答案)

(完整版)单项式乘多项式练习题(含答案)

单项式乘多项式练习题一.解答题(共18小题)1. 先化简,再求值:2 (a 2b+ab 2)- 2 (a 2b - 1)- ab 2 - 2,其中 a=-2, b=2.2. 计算:2 (1) 6x ?3xy 23. (3x 2y - 2x+1 ) (- 2xy )4. 计算:2 2 1 2 2(1) (- 12a b c ) ? (- pabc ) = ________________ ;(2) (3a 2b - 4ab 2- 5ab - 1) ? (- 2ab 2) =_____________________ .1^-1 25. 计算:-6a?(-专耳-£a+2)6. - 3x? (2x - x+4)2 27.先化简,再求值 3a ( 2a 2- 4a+3)- 2a 2 (3a+4),其中 a=- 29.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽(a+2b )米,坝高米.(1)求防洪堤坝的横断面积; 2(2) ( 4a - b ) (- 2b )(2)如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?16.计算: (-2a 2b ) 3 (3b 2- 4a+6)17.某同学在计算一个多项式乘以-3x 2时,因抄错运算符号,算成了加上- 3x 2,得到的结果是x 2- 4x+1,那么正确的计算结果是多少? 18.对任意有理数 x 、y 定义运算如下:x △ y=ax+by+cxy ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及 乘法运算,如当 a=1, b=2, c=3时,I △ 3=1 X +2 X 3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求a 、b 、c 、d 的值. 210. 2ab (5ab+3a b ) 11•计算:(一斗瓷/)° (3砂-4,+1)212 .计算:2x (x - x+3) 13. (- 4a 3+12a 2b - 7a 3b 3) (- 4a 2) = ________________14 .计算:xy 2 (3x 2y - xy 2+y )15 . (- 2ab ) (3a 2- 2ab - 4b 2)参考答案与试题解析一.解答题(共18小题)1. 先化简,再求值:2 (a2b+ab2)- 2 (a2b- 1)- ab2- 2,其中a=-2, b=2.考点:整式的加减一化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并冋类项,最后将字母的值代入求出原代数式的值. 解答:解:原式=2a2b+2ab2- 2a?b+2 - ab2- 22 2 2 2=(2a b- 2a b) + (2ab - ab ) + (2 - 2)2=0+ab=ab2当a=- 2, b=2 时,原式=(-2)疋2= - 2^4O点评:一 8.本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并冋类项的法则和方法.2. 计算:(1)6x2?3xy(2)(4a- b2) (- 2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1) 6x ?3xy=18x y;2 3(2) (4a- b2) (- 2b) = - 8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.23. (3x y - 2x+1 ) (- 2xy)考点:单项式乘多项式.分析:解答:点评:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.2 32 2解:(3x y- 2x+1 ) (- 2xy) =- 6x y +4x y - 2xy .本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4. 计算:2 2 2、2 '445(1) (- 12a b c) ? (—abc ) = -— a b e4 4(2) (3a2b - 4ab2- 5ab- 1) ? (- 2ab2) = - 6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幕相乘;单项式乘单项式,把他们的系数,相同字母的幕分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解: (1) (- 12a2b2e) ? (- gabc2) 2,4=(-12a2b2c) ?舄廿|16=—3 J 4 5.故答案为:-上a4b4c5;42 2 2(2) (3a2b —4ab2—5ab—1) ? (—2ab2),=3a2b? (—2ab2)—4ab2? (—2ab2)—5ab? (—2ab2)—1? (—2ab2),=—6a3b3+8a2b4+10a2b3+2ab2.故答案为:-6a b +8a b +10a b +2ab .点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5. 计算:—6a? (― 2^2 —ga+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:—6a? ( —2 '—丄a+2) =3a3+2a2—12a.2 3点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.26. —3x? (2x —x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:-3x? (2x2—x+4),=—3x?2x2—3x? (—x)—3x?4, =-6x3+3x2—12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7•先化简,再求值3a ( 2a2—4a+3)—2a2(3a+4),其中a=—2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并冋类项,最后代入已知的数值计算即可.解答:解:3a (2a2- 4a+3)—2a2(3a+4)3 2 3 2 2=6a —12a +9a - 6a —8a = - 20a +9a, 当a=—2 时,原式=—20 >4 —9 >2= —98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并冋类项,这是各地中考的常考点.8 计算:(-=a2b)(二b2-二a+二)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.31 2.3 3. 1 2. =——a b +—a b — — a b. 3 战本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a+2b )米,坝高米.(1) 求防洪堤坝的横断面积; (2) 如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积 >坝长.解答:解:(1)防洪堤坝的横断面积 S=_[a+ (a+2b ) ] J a2 2=^a (2a+2b ) 4= ^a 2+」ab .2 2故防洪堤坝的横断面积为(ga 2+gab )平方米;(2)堤坝的体积 V=Sh= (ga 2』ab ) J 00=50a 2+50ab .故这段防洪堤坝的体积是(50a 2+50ab )立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积 >长度,熟练掌握单项式乘多项式的运算法则是解题的关键.2 10. 2ab (5ab+3a b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab ( 5ab+3a 2b ) =10a 2b 2+6a 3b 2;故答案为:10a 2b 2+6a 3b 2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:(.一 2〔3勒- + l )考点: 单项式乘多项式.分析: 先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(—丄xy 2) 2 ( 3xy — 4xy 2+1)」x 2y 4 (3xy — 4xy 2+1)4解答: 解:「甕)嚕飞叫),(-丄 a2b )匕, 点评: =(- 驴(—护)(4a )3 6 124 y +才 y • 点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.212 .计算:2x (x 2- x+3) 考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:2x (x 2- x+3)=2x?x 2 - 2x?x+2x?33 2=2x - 2x +6x .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理. 13. (- 4a 3+12a 2b -7a 3b 3) (- 4a 2) = 16a 5- Ag/b+ZBa 'b 3考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-4a 3+i2a 2b -7a 3b 3) (- 4a 2) =16a 5- 48a 4b+28a 5b 3.故答案为:16a 5- 48a 4b+28a 5b 3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14 .计算:xy 2 (3x 2y - xy 2+y )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:原式=xy 2 (3x 2y )- xy 2?xy 2+xy 2?y33 v 2 4 3=3x y - x y +xy .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2 215. (- 2ab ) (3a - 2ab - 4b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-2ab ) (3a 2- 2ab - 4b 2)2 2=(-2ab ) ? (3a 2)- (- 2ab ) ? (2ab )- (- 2ab ) ? (4b 2)c 3’ ,2’ 2 c ’ 3=-6a b+4a b +8ab .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16 .计算:(-2a 2b ) 3 (3b 2- 4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(- 2a 2b ) 3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式 的每一项,再把所得的积相加计算即可.解答:解:(-2 a 2 b ) 3 (3b 2- 4a+6) = - 8a 6b 3? (3b 2- 4a+6) =-24a 6b 5+32a 7b 3 - 48a 6b 3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的 处理.Jx 3y 5- x417.某同学在计算一个多项式乘以- 3x2时,因抄错运算符号,算成了加上- 3x2,得到的结果是x2- 4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以- 3x2得出正确结果.解答:解:这个多项式是(x2- 4x+1) -( - 3x2) =4x2- 4x+1 , (3 分)正确的计算结果是:(4x2-4x+1) ? (- 3x2) = - 12x4+12x3- 3x2. (3 分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△ y=ax+by+cxy ,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2, c=3时,I△ 3=1 X+2 X3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 , 并且有一个不为零的数d使得对任意有理数x△ d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:—1 —ij由*△ d=x,得ax+bd+cdx=x,即(a+cd - 1)x+bd=0,得J ①,由2=3,得a+2b+2c=3②,[bd=O2△ 3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:T %△ d=x, /• ax+bd+cdx=x ,(a+cd - 1) x+bd=0 ,•/有一个不为零的数d使得对任意有理数x △ d=x,则有Lbd=O•••〔△ 2=3 , ••• a+2b+2c=3 ②, •/ 2^ 3=4 , • 2a+3b+6c=4 ③,1=0•有方程组a+2c=3詔亦址二4护5解得_1卫二4故a的值为5、b的值为0、c的值为-1、d的值为4.点评: 本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x △ d=x ,得出方程(a+cd - 1)x+bd=0,得到方程组fa+cd- 1=0\bd=0,求出b的值.。

单项式乘多项式练习试题(含答案)

单项式乘多项式练习试题(含答案)

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

单项式乘多项式试题精选附答案

单项式乘多项式试题精选附答案

单项式乘多项式试题精选附答案单项式乘多项式试题精选一.选择题(共13小题) 1.下列计算错误的是( ) A . (a 2b 3)2=a 4b 6B . (a 5)2=a 10C . 4x 2y •(﹣3x 4y 3)=﹣12x 6y 3D . 2x •(3x 2﹣x+5)=6x 3﹣2x 2+10x2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是( )A . (a ﹣b )2=a 2﹣2ab+b 2 B . (a+b )2=a 2+2ab+b 2C . 2a (a+b )=2a 2+2abD . (a+b )(a﹣b )=a 2﹣b 23.计算(﹣2a 3+3a 2﹣4a )(﹣5a 5)等于( ) A . 10a 15﹣15a 10+20a 5 B . ﹣7a 8﹣2a 7﹣9a 6 C . 10a 8+15a 7﹣20a 6 D . 10a 8﹣15a 7+20a 64.下列计算正确的是( )A . (﹣2a )•(3ab ﹣2a 2b )=﹣6a 2b ﹣4a 3bB . (2ab 2)•(﹣a 2+2b 2﹣1)=﹣4a 3b 4A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x11.(2013•本溪)下列运算正确的是()C.(3a2)2=6a4D.2a+3a=5a A.a3•a2=a6B.2a(3a﹣1)=6a3﹣112.(2011•湛江)下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+113.(2010•连云港)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+1 二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为_________.16.当a=﹣2时,则代数式的值为_________.17.若2x(x﹣1)﹣x(2x+3)=15,则x=_________.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=_________,n=_________.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=_________.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为_________.21.(2014•上海)计算:a(a+1)=_________.22.(1998•内江)计算:4x•(2x2﹣3x+1)=_________.23.(2009•贺州)计算:(﹣2a)•(a 3﹣1)=_________.三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).25.(2a2)•(3ab2﹣5ab3)26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?27.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.28.①xy•(x﹣y+1)②﹣3a(4a 2﹣a+b)29.化简:(1)a(3+a)﹣3(a+2);(2)2a 2b(﹣3ab2);(3)(x﹣)•(﹣12y).30.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.单项式乘多项式试题精选参考答案与试题解析一.选择题(共13小题)1.下列计算错误的是()A.(a2b3)2=a4b6B.(a5)2=a10C.4x2y•(﹣3x4y3)=﹣12x6y3 D.2x•(3x2﹣x+5)=6x3﹣2x2+10x考点:单项式乘单项式;幂的乘方与积的乘方;单项式乘多项式.分析:根据单项式乘单项式,单项式乘多项式以及幂的乘方与积的乘方的知识求解即可求得答案.解答:解:A、(a2b3)2=a4b6,故A选项正确,不符合题意;B、(a5)2=a10,故B选项正确,不符合题意;C、4x2y•(﹣3x4y3)=﹣12x6y4,故C选项错误,符合题意;D、2x•(3x2﹣x+5)=6x3﹣2x2+10x,故D选项正确,不符合题意.故选:C.点评:此题考查了单项式乘单项式,单项式乘多项式以及幂的乘方与积的乘方等知识,解题的关键是熟记法则.2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2abD.(a+b)(a﹣b)=a2﹣b2考点:单项式乘多项式.专题:几何图形问题.分析:由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.解答:解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:C.点评:本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.3.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()A . 10a 15﹣15a 10+20a 5B . ﹣7a 8﹣2a 7﹣9a 6C . 10a 8+15a 7﹣20a 6D . 10a 8﹣15a 7+20a 6考点:单项式乘多项式.分析:根据单项式乘以多项式的法则,单项式去乘多项式的每一项,再把所得的积相加,单项式乘以单项式的法则,系数与系数相乘,相同字母与相同字母相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式,计算即可. 解答: 解:(﹣2a 3+3a 2﹣4a )(﹣5a 5)=10a 8﹣15a 7+20a 6. 故选:D .点评: 本题主要考查单项式乘以多项式的法则,以及单项式的乘法法则,需要熟练掌握.4.下列计算正确的是( )A . (﹣2a )•(3ab ﹣2a 2b )=﹣6a 2b ﹣4a 3bB . (2ab 2)•(﹣a 2+2b 2﹣1)=﹣4a 3b 4 C . (abc )•(3a 2b ﹣2ab 2)=3a 3b 2﹣2a 2b 3 D . (ab )2•(3ab 2﹣c )=3a 3b 4﹣a 2b 2c考点:单项式乘多项式.分根据单项式乘以多项式法则,对各选项计算后利用排除析:法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.5.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()A.3a3﹣4a2B.a2C.6a3﹣8a2D.6a3﹣8a考点:单项式乘多项式;单项式乘单项式.分析:根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.解答:解:由题意知,V长方体=(3a﹣4)•2a•a=6a3﹣8a2.故选C.点评:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.6.适合2x(x﹣1)﹣x(2x﹣5)=12的x的值是()A.2B.1C.0D.4考点:单项式乘多项式;解一元一次方程.分析:先去括号,然后移项、合并化系数为1可得出答案.解答:解:去括号得:2x2﹣2x﹣2x2+5x=12,合并同类项得:3x=12,系数化为1得:x=4.故选D.点评:本题主要考查了单项式乘多项式的运算法则以及解一元一次方程.比较简单,去括号时,注意不要漏乘括号里的每一项.7.计算a(1+a)﹣a(1﹣a)的结果为()A.2a B.2a2C.0D.﹣2a+2a考点:单项式乘多项式.分按照单项式乘以多项式的法则展开后合并同类项即可.析:解答:解:原式=a+a2﹣a+a2 =2a2,故选B.点评:本题考查了单项式乘以多项式的知识,属于基本运算,应重点掌握.8.(2008•毕节地区)下列运算正确的是()A.(2x2)3=2x6B.(﹣2x)3•x2=﹣8x6C.3x2﹣2x(1﹣x)=x2﹣2xD.x÷x﹣3÷x2=x2考点:单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的乘法法则,单项式乘多项式的法则,同底数幂的除法,对各选项分析判断后利用排除法求解.解答:解:A、应为(2x2)3=23•(x2)3=8x6,故本选项错误;B、应为(﹣2x)3•x2=﹣8x3•x2=﹣8x5,故本选项错误;C、应为3x2﹣2x(1﹣x)=3x2﹣2x+2x2=5x2﹣2x,故本选项错误;D、x÷x﹣3÷x2=x1﹣(﹣3)﹣2=x2,正确.故选D.点评:本题考查积的乘方,同底数幂的除法法则,单项式乘单项式,单项式乘多项式,熟练掌握运算法则是解题的关键.9.(2009•眉山)下列运算正确的是()A.(x2)3=x5B.3x2+4x2=7x4C.(﹣x)9÷(﹣x)3=x6D.﹣x(x2﹣x+1)=﹣x3﹣x2﹣x考点:单项式乘多项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.专题:压轴题.分析:根据幂的乘方,底数不变指数相乘;合并同类项的法则;同底数幂相除,底数不变指数相减;单项式乘多项式的法则,对各选项分析判断后利用排除法求解.解答:解:A、应为(x2)3=x6,故本选项错误;B、应为3x2+4x2=7x2,故本选项错误;D、应为﹣x(x2﹣x+1)=﹣x3+x2﹣x,故本选项错误;C、(﹣x)9÷(﹣x)3=x6正确.故选C.点评:本题考查幂的乘方,合并同类项,同底数幂的除法,单项式乘多项式,熟练掌握运算性质和法则是解题的关键.10.(2014•湖州)计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=6x3+2x,故选:C.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.11.(2013•本溪)下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1C.(3a2)2=6a4D.2a+3a=5a考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用单项式乘多项式法则计算得到结果,即可作出判断;C、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.解答:解:A、a3•a2=a5,本选项错误;B、2a(3a﹣1)=6a2﹣2a,本选项错误;C、(3a2)2=9a4,本选项错误;D、2a+3a=5a,本选项正确,故选D点评:此题考查了单项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.12.(2011•湛江)下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则:底数不变,指数相加,以及合并同类项:只把系数相加,字母及其指数完全不变,幂的乘方法则:底数不变,指数相乘,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加分别求出即可.解答:解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.点评:此题主要考查了整式的混合运算,根据题意正确的掌握运算法则是解决问题的关键.13.(2010•连云港)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+1考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、幂的乘方和单项式乘以多项式的运算法则计算后利用排除法求解.解答:解:A、a+a=a2,很明显错误,应该为a+a=2a,故本选项错误;B、a•a2=a3,利用同底数幂的乘法,故本选项正确;C、应为(a2)3=a6,故本选项错误;D、a2(a+1)=a3+a2,故本选项错误.故选B.点本题主要考查幂的运算性质,单项式乘以多项式的法评:则,需要熟练掌握.二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为2a(a+b)=2a2+2ab.考点:单项式乘多项式.分析:由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.解答:解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.点评:本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.15.计算:2x2•(﹣3x3)=﹣6x5.考点:单项式乘多项式.专题:计算题.分析:根据单项式乘单项式的法则:系数的积作为积的系数,同底数的幂分别相乘也作为积的一个因式,进行计算即可.解答:解:2x2•(﹣3x3)=(﹣2×3)x2•x3 =﹣6x5.故答案为:﹣6x5.点评:本题考查了单项式乘单项式法则的应用,通过做此题培养了学生的理解能力和计算能力,题目比较好,难度不大.16.当a=﹣2时,则代数式的值为﹣8.考点:代数式求值;单项式乘多项式.专题:计算题.分析:根据单项式乘多项式法则展开,再合并同类项,把﹣2代入求出即可.解答:解:a=﹣2,a﹣2(1﹣a)=a﹣2+a=3a﹣2=3×(﹣2)﹣2 =﹣8.故答案为:﹣8.点评:本题考查了单项式乘多项式法则和求代数式的值等知识点的应用,主要看学生展开时是否漏乘和能否正确合并同类项.17.若2x(x﹣1)﹣x(2x+3)=15,则x=﹣3.考点:单项式乘多项式.分析:根据单项式乘多项式的法则,先去括号,再移项、合并同类项,系数化1,可求出x的值.解答:解:2x(x﹣1)﹣x(2x+3)=15,去括号,得2x2﹣2x﹣2x2﹣3x=15,合并同类项,得﹣5x=15,系数化为1,得x=﹣3.点评:此题是解方程题,实质也考查了单项式与多项式的乘法,注意符号的处理.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=3,n= 4.考点:单项式乘多项式.分析:按照多项式乘以单项式的法则展开后即可求得m、n的值.解答:解:原式=2x m+2y2﹣6x3y4 =2x5y2﹣6x3y n,∴m+2=5,n=4,∴m=3,n=4,故答案为:3,4.点评:本题考查了单项式乘以多项式,单项式乘以多项式就是用单项式乘以多项式中的每一项,然后相加.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=3a n b n+1﹣2a n+1b n+3﹣a n b2.考点:单项式乘多项式.分析:根据单项式成多项式,用单项式乘多向数的每一项,把所得的积相加,可得答案.解答:解:原式=a n b2(3b n﹣1﹣2ab n+1﹣1)=3a n b n+1﹣2a n+1b n+3﹣a n b2,点评:本题考查了单项式成多项式,用单项式乘多向数的每一项,把所得的积相加.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3.考点:代数式求值;单项式乘多项式.专题:整体思想.分析:把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.解答:解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.点评:本题考查了代数式求值,整体思想的利用是解题的关键.21.(2014•上海)计算:a(a+1)=a2+a.考点:单项式乘多项式.专计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a2+a.故答案为:a2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.22.(1998•内江)计算:4x•(2x2﹣3x+1)=8x3﹣12x2+4x.考点:单项式乘多项式.分析:根据单项式与多项式相乘,应用单项式与多项式的每一项都分别相乘,再把所得的积相加,计算即可.解答:解:4x•(2x2﹣3x+1),=4x•2x2﹣4x•3x+4x•1,=8x3﹣12x2+4x.点评:本题主要考查单项式乘以多项式的法则,熟练掌握运算法则是解题的关键,属于基础题.23.(2009•贺州)计算:(﹣2a)•(a3﹣1)=﹣a4+2a.考点:单项式乘多项式.析:项,再把所得的积相加计算即可.解答:解:(﹣2a)•(a3﹣1),=(﹣2a)•(a3)+(﹣1)•(﹣2a),=﹣a4+2a.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).考点:单项式乘多项式.专题:计算题.分析:利用单项式乘以多项式中的每一项后把所得的积相加即可得到结果.解答:解:(﹣2x3y)•(3xy2﹣4xy+1)=﹣2x3y•3xy2+(﹣2x3y)•4xy+(﹣2x3y)=﹣6x4y3+8x4y2﹣2x3y.点评:本题考查了单项式乘以多项式的知识,属于基础题,比较简单.25.(2a2)•(3ab2﹣5ab3)分析:单项式乘以多项式时用单项式和多项式中的每一项相乘,然后再相加即可.解答:解:(2a2)•(3ab2﹣5ab3)=(2a2)•3ab2﹣(2a2)•5ab3 =6a3b2﹣10a3b3.点评:本题考查了单项式乘以多项式的知识,解题的关键是牢记法则并熟记有关幂的性质.26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?考点:单项式乘多项式.分析:根据“长方体的表面积=(长×宽+长×高+宽×高)×2”进行解答即可;解答:解:长方体的表面积=2×[(3x﹣4)×2x+(3x﹣4)•x+2x×x]=22x2﹣24x.点评:本题考查了单项式乘以多项式,解题的关键是牢记法则.27.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.分析:原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.解答:解:∵ab2=﹣1,∴原式=﹣a3b6+a2b4+ab2 =﹣(ab2)3+(ab2)2+ab 2 =1+1﹣1=1.点评:此题考查了因式分解的应用,利用了整体代入的思想,是一道基本题型.28.①xy•(x﹣y+1)②﹣3a(4a2﹣a+b)考点:单项式乘多项式.分析:利用单项式乘以多项式的运算法则进行运算即可.解答:解:①原式=xy•x﹣vy•y+xy=x2y﹣xy2+xy﹣12;②原式=②﹣3a•4a2+3a×a﹣3a×b点评:本题考查了单项式乘以多项式,解题的关键是牢记法则.29.化简:(1)a(3+a)﹣3(a+2);(2)2a2b(﹣3ab2);(3)(x﹣)•(﹣12y).考点:单项式乘多项式.分析:(1)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,再根据合并同类项,可得答案;(2)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,可得答案;(3)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,可得答案;解答:解(1)原式=3a+a2﹣3a﹣6=a2﹣6;(2)原式=a3b2﹣6a3b3;(3)原式=﹣4xy+9xy2.点评:本题考查了单项式成多项式,单项式成多项式用单项式乘多向数的每一项,把所得的积相加.30.阅读下列文字,并解决问题.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.考点:单项式乘多项式.分析:根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.解答:解:(2a3b2﹣3a2b+4a)•(﹣2b),=﹣4a3b3+6a2b2﹣8ab,=﹣4×(ab)3+6(ab)2﹣8ab,=﹣4×33+6×32﹣8×3,=﹣108+54﹣24,=﹣78.点评:本题考查了单项式乘多项式,整体代入是解题关键.。

单项式乘多项式试题精选附答案(供参考)

单项式乘多项式试题精选附答案(供参考)

单项式乘多项式试题精选附答案(供参考)单项式乘多项式试题精选附答案(供参考)一、选择题1.将(x+2)(x-3)展开后的结果是:A. x^2 - x - 6B. x^2 - 6C. x^2 - 5D. x^2 + x - 62.将2x(3x^2 + 4x - 5)展开后的结果是:A. 6x^3 + 8x^2 - 10xB. 6x^3 + 8x^2 - 5xC. 6x^3 + 10x^2 - 5xD. 6x^3 + 10x^2 - 10x3.将3(4x^2 - 2x + 5)展开后的结果是:A. 12x^2 - 6x + 15B. 12x^2 - 6x - 15C. 12x^2 + 6x - 15D. 12x^2 + 6x + 15二、填空题1.将(a + 2b - c)(a - 2b + c)展开后的结果是________。

答案:a^2 - 4b^2 + c^22.将2(3x^2 - 4xy + 5y^2)展开后的结果是________。

答案:6x^2 - 8xy + 10y^23.将5(2x^2 - 3xy + 4y^2)展开后的结果是________。

答案:10x^2 - 15xy + 20y^2三、解答题1.将(x - 2)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是x^2 - 4x + 4。

展开后的单项式是x^2、-4x和4。

2.将(3a - 2b)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是9a^2 - 12ab + 4b^2。

展开后的单项式是9a^2、-12ab和4b^2。

3.将2(x + 3)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是2x^2 + 12x + 18。

展开后的单项式是2x^2、12x和18。

四、综合题将(x - 3)(x + 4)展开后的结果是什么?展开后的单项式是哪些?在展开中应用了什么运算法则?解答:展开后的结果是x^2 + x - 12。

单项式乘多项式测试题与答案

单项式乘多项式测试题与答案

绝密★启用前单项式乘多项式测试时间:25分钟一、选择题1.计算(-3x)·(2x2-5x-1)的结果是( )A.-6x3-15x2-3xB.-6x3+15x2+3xC.-6x3+15x2D.-6x3+15x2-12.化简x(2x-1)-x2(2-x)的结果是( )A.-x3-xB.x3-xC.-x2-1D.x3-13.下列计算正确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(6xy2-4x2y)·3xy=6xy2-12x3y2C.(-x)·(2x+x2-1)=-x3-2x2+1D.(-3x2y)·(-2xy+3yz+1)=6x3y2-9x2y2z-3x2y4.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为( )A.-2B.0C.2D.35.已知xy2=-2,则-xy(x2y5-xy3-y)的值为( )A.2B.6C.10D.14二、填空题6.计算:3x2(7x2-4x+2)-5x(2x-1)= .7.计算:a(a+1)= .8.计算:(-2a)·(14a3-1)= .9.计算:(12b2-4a2)·(-4ab)= .10.计算:12m2n3[-2mn2+(2m2n)2]= .11.已知一圆柱体的底面半径为x,高为2x+4,则它的体积为(结果保留π).12.一个长方体的长为2m,宽为3n,高为4mn-1,则这个长方体的体积是.13.若-2x2y(-x m y+3xy3)=2x5y2-6x3y n,则m= ,n= .三、解答题14.计算:(1)(-43ab)2(92a2b-12ab+34b2);(2)a2(a+1)-a(a2-2a-1).15.先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.16.解方程:x(3x-4)+2x(x+7)=5x(x-7)+90. 参考答案一、选择题1.答案 B (-3x)·(2x2-5x-1)=-3x·2x2+3x·5x+3x=-6x3+15x2+3x.故选B.2.答案 B 原式=2x2-x-2x2+x3=x3-x,故选B.3.答案D(-4x)·(2x2+3x-1)=-8x3-12x2+4x,A错误;(6xy2-4x2y)·3xy=18x2y3-12x3y2,B错误;(-x)·(2x+x2-1)=-x3-2x2+x,C错误;(-3x2y)·(-2xy+3yz+1)=6x3y2-9x2y2z-3x2y,D正确.故选D.4.答案 C (y2-ky+2y)(-y)=-y3+ky2-2y2,∵展开式中不含y2项,∴k-2=0,解得k=2.故选C.5.答案 C ∵xy2=-2,∴-xy(x2y5-xy3-y)=-x3y6+x2y4+xy2=-(xy2)3+(xy2)2+xy2=-(-2)3+(-2)2+(-2)=8+4-2=10,故选C.二、填空题6.答案21x4-12x3-4x2+5x解析3x2(7x2-4x+2)-5x(2x-1)=21x4-12x3+6x2-10x2+5x=21x4-12x3-4x2+5x.7.答案a2+a解析a(a+1)=a·a+a·1=a2+a.8.答案-12a4+2a解析(-2a)·(14a3-1)=(-2a)·14a3+(-2a)·(-1)=-12a4+2a.9.答案-2ab3+16a3b解析原式=-2ab3+16a3b.10.答案-m3n5+2m6n5解析12m2n3[-2mn2+(2m2n)2]=12m2n3(-2mn2+4m4n2)=-m3n5+2m6n5.11.答案2πx3+4πx2解析圆柱体的体积为πx2·(2x+4)=2πx3+4πx2.12.答案24m2n2-6mn解析∵长方体的长为2m,宽为3n,高为4mn-1,∴这个长方体的体积是2m·3n·(4mn-1)=6mn(4mn-1)=24m2n2-6mn.13.答案3;4解析∵-2x2y(-x m y+3xy3)=2x m+2y2-6x3y4=2x5y2-6x3y n,∴m+2=5,n=4,∴m=3,n=4.三、解答题14.解析(1)原式=169a2b2·92a2b+169a2b2·(-12ab)+169a2b2·34b2=8a4b3-643a3b3+43a2b4.(2)原式=a3+a2-a3+2a2+a=3a2+a.15.解析3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a,当a=-2时,原式=-20×(-2)2+9×(-2)=-98.16.解析x(3x-4)+2x(x+7)=5x(x-7)+90,3x2-4x+2x2+14x=5x2-35x+90,10x=-35x+90,45x=90,x=2.题答许不内以线横。

(完整word版)单项式乘多项式练习题(含),文档

(完整word版)单项式乘多项式练习题(含),文档

单项式乘多项式练习题一.解答题〔共 18 小题〕1.先化简,再求值: 2〔 a 2b+ab 2〕﹣ 2〔 a 2b ﹣ 1〕﹣ ab 2﹣2,其中 a=﹣ 2, b=2.2.计算:〔 1〕 6x 2 2〕〔﹣ 2b 〕?3xy 〔2〕〔 4a ﹣ b 3.〔 3x 2y ﹣2x+1 〕〔﹣ 2xy 〕4.计算:2 222_________ ;〔 1〕〔﹣ 12a b c 〕 ?〔﹣ abc 〕 = ( 2〕〔 3a 2b ﹣4ab 2﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2〕 = _________ .5.计算:﹣ 6a?〔﹣﹣ a+2〕6.﹣ 3x?〔2x 2﹣ x+4〕7.先化简,再求值2 2 8.〔﹣ 2 2〕3a 〔 2a ﹣ 4a+3〕﹣ 2a 〔 3a+4〕,其中 a=﹣ 2 a b 〕〔 b ﹣ a+ 9.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽〔 a+2b 〕米,坝高 米.〔 1〕求防洪堤坝的横断面积;〔 2〕若是防洪堤坝长 100 米,那么这段防洪堤坝的体积是多少立方米?2.10. 2ab 〔 5ab+3a b 〕11.计算:12.计算: 2x 〔 x 2﹣ x+3〕13.〔﹣ 4a 3+12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =_________ .14.计算: xy 2〔 3x 2y ﹣ xy 2+y 〕15.〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕16.计算:〔﹣ 2a 2b 〕3 〔3b 2﹣ 4a+6〕17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣ 3x 2,获取的结果是 x 2﹣ 4x+1 ,那么正确的计算结果是多少?18.对任意有理数 x 、 y 定义运算以下: x △ y=ax+by+cxy ,这里 a 、 b 、c 是给定的数,等式右边是平时数的加法及乘法运算,如当 a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现所定义的新运算满足条件,1△ 2=3,2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求 a 、b 、 c 、 d 的值.参照答案与试题解析一.解答题〔共 18 小题〕1.先化简,再求值: 2〔 a 2b+ab 2〕﹣ 2〔 a 2b ﹣ 1〕﹣ ab 2﹣2,其中 a=﹣ 2, b=2.考点 : 整式的加减 —化简求值;整式的加减;单项式乘多项式.解析: 先依照整式相乘的法那么进行计算,尔后合并同类项,最后将字母的值代入求出原代数式的值.解答: 解:原式 =2a 2b+2ab 2﹣ 2a 2b+2 ﹣ ab 2﹣22 2 2 2=〔 2a b ﹣ 2a b 〕 +〔 2ab ﹣ ab 〕 +〔 2﹣ 2〕2=0+ab2当 a=﹣ 2,b=2 时,原式 =〔﹣ 2〕 ×22=﹣2×4 =﹣ 8.议论: 此题是一道整式的加减化简求值的题,观察了单项式乘以多项式的法那么,合并同类项的法那么和方法.2.计算:( 1〕 6x 2?3xy( 2〕〔 4a ﹣b 2〕〔﹣ 2b 〕考点 : 单项式乘单项式;单项式乘多项式.解析: 〔 1〕依照单项式乘单项式的法那么计算;( 2〕依照单项式乘多项式的法那么计算.解答: 解:〔 1〕 6x 2?3xy=18x 3y ;( 2〕〔 4a ﹣b 2〕〔﹣ 2b 〕 =﹣ 8ab+2b 3.议论: 此题观察了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法那么是解题的要点.3.〔 3x 2y ﹣2x+1 〕〔﹣ 2xy 〕考点 : 单项式乘多项式.解析: 依照单项式乘多项式的法那么,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:〔 3x 2y ﹣ 2x+1 〕〔﹣ 2xy 〕 =﹣ 6x 3y 2+4x 2y ﹣ 2xy .议论: 此题观察单项式乘多项式的法那么,熟练掌握运算法那么是解题的要点,此题必然要注意符号的运算.4.计算:〔 1〕〔﹣ 12a 2b 2c 〕 ?〔﹣abc 2 〕2=﹣a 4b 4c 5;( 2〕〔 3a 2b ﹣4ab 2﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2〕 = ﹣6a 3b 3+8a 2b 4+10a 2b 3+2ab 2.考点 : 单项式乘多项式;单项式乘单项式.解析: 〔 1〕先依照积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法那么计算;〔 2〕依照单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法那么计算即可.解答:2 22 2,解:〔 1〕〔﹣ 12a b c 〕 ?〔﹣ abc 〕=〔﹣ 12a 2b 2c 〕 ?,=﹣;故答案为:﹣a 4b 4c 5;2 2 2〕,〔 2〕〔 3a b ﹣4ab ﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2222 2 2 =3a b?〔﹣ 2ab 〕﹣ 4ab ?〔﹣ 2ab 〕﹣ 5ab?〔﹣ 2ab 〕﹣ 1?〔﹣ 2ab 〕,故答案为:﹣ 3 3 2 4 2 3 2.6a b +8a b +10a b +2ab 议论: 此题观察了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意运算符号的办理.5.计算:﹣ 6a?〔﹣﹣ a+2〕考点 : 单项式乘多项式.解析: 依照单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣ 6a?〔﹣﹣ a+2〕=3a 3+2a 2﹣ 12a .议论: 此题主要观察单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意运算符号.6.﹣ 3x?〔2x 2﹣ x+4〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:﹣ 3x?〔 2x 2﹣ x+4〕,2=﹣ 3x?2x ﹣ 3x?〔﹣ x 〕﹣ 3x?4,议论: 此题主要观察单项式与多项式相乘的运算法那么,熟练掌握运算法那么是解题的要点,计算时要注意运算符号.7.先化简,再求值3a 〔 2a 2﹣ 4a+3〕﹣ 2a 2〔 3a+4〕,其中 a=﹣ 2考点 : 单项式乘多项式.解析: 第一依照单项式与多项式相乘的法那么去掉括号,尔后合并同类项,最后代入的数值计算即可.解答: 解: 3a 〔 2a 2﹣ 4a+3〕﹣ 2a 2〔 3a+4〕32322=6a ﹣ 12a +9a ﹣6a ﹣ 8a =﹣20a +9a ,当 a=﹣ 2 时,原式 =﹣20×4﹣9×2=﹣ 98.议论: 此题观察了整式的化简.整式的加减运算实质上就是去括号、合并同类项,这是各地中考的常考点.8.计算:〔﹣ a 2b 〕〔 b 2﹣ a+ 〕考点 : 单项式乘多项式.专题 : 计算题.解析: 此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法那么计算即可.解答:解:〔﹣ a 2b 〕〔 b 2﹣ a+ 〕,=〔﹣a 2b 〕 ? b 2+〔﹣ a 2b 〕〔﹣ a 〕 +〔﹣ a 2b 〕? ,=﹣ a 2 b 3+ a 3b ﹣ a 2 b .议论: 此题观察单项式乘以多项式的运算,熟练掌握运算法那么是解题的要点.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽〔 a+2b 〕米,坝高 米.( 1〕求防洪堤坝的横断面积;( 2〕若是防洪堤坝长 100 米,那么这段防洪堤坝的体积是多少立方米?考点 : 单项式乘多项式.专题 : 应用题.解析: 〔 1〕依照梯形的面积公式,尔后利用单项式乘多项式的法那么计算;〔 2〕防洪堤坝的体积 =梯形面积 ×坝长.解答:解:〔 1〕防洪堤坝的横断面积 S= [a+〔 a+2b 〕 ]× a= a 〔2a+2b 〕= a 2+ ab .故防洪堤坝的横断面积为〔2a + ab 〕平方米;〔 2〕堤坝的体积 V=Sh= 〔2 2.a + ab 〕×100=50a +50ab 故这段防洪堤坝的体积是〔 50a 2+50ab 〕立方米.议论: 此题主要观察了梯形的面积公式及堤坝的体积=梯形面积 ×长度,熟练掌握单项式乘多项式的运算法那么是解 题的要点.10. 2ab 〔 5ab+3a 2b 〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解: 2ab 〔 5ab+3a 2b 〕 =10a 2b 2+6a 3b 2;2232故答案为: 10a b +6a b .议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.11.计算:.考点 : 单项式乘多项式.解析: 先依照积的乘方的性质计算乘方,再依照单项式与多项式相乘的法那么计算即可.解答:22 2解:〔﹣ xy 〕 〔 3xy ﹣4xy +1〕= x 3y 5﹣ x 3y 6+ x 2y 4.议论: 此题观察了积的乘方的性质,单项式与多项式相乘的法那么,熟练掌握运算法那么是解题的要点,计算时要注意运算序次及符号的办理.12.计算: 2x 〔 x 2﹣ x+3〕考点 : 单项式乘多项式.专题 : 计算题.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解: 2x 〔 x 2﹣ x+3 〕=2x ?x 2﹣ 2x?x+2x ?332议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.13.〔﹣ 4a 3+12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =16a 5﹣ 48a 4 b+28a 5b 3 .考点 : 单项式乘多项式.专题 : 计算题.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可. 解答: 解:〔﹣ 4a 3 +12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =16a 5﹣ 48a 4b+28a 5b 3.545 3议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.14.计算: xy 2〔 3x 2y ﹣ xy 2+y 〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.22222解答: 解:原式 =xy 〔 3x y 〕﹣ xy ?xy +xy ?y议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.15.〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕22〕=〔﹣ 2ab 〕?〔 3a 〕﹣〔﹣ 2ab 〕?〔 2ab 〕﹣〔﹣ 2ab 〕 ?〔 4b =﹣ 6a 3b+4a 2b 2+8ab 3.议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.16.计算:〔﹣ 2a 2b 〕3 〔3b 2﹣ 4a+6〕考点 : 单项式乘多项式.解析: 第一利用积的乘方求得〔﹣ 2a 2b 〕 3的值,尔后依照单项式与多项式相乘的运算法那么:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:〔﹣ 2a 2b 〕 3〔 3b 2﹣4a+6〕 =﹣ 8a 6b 3?〔 3b 2﹣4a+6〕 =﹣24a 6b 5+32a 7b 3﹣48a 6b 3.议论: 此题观察了单项式与多项式相乘.此题比较简单,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣ 3x 2,获取的结果是 x 2﹣ 4x+1 ,那么正确的计算结果是多少?考点 : 单项式乘多项式. 专题 : 应用题.解析: 用错误结果减去多项式,得出原式,再乘以﹣3x 2得出正确结果.解答: 解:这个多项式是〔 x 2﹣ 4x+1〕﹣〔﹣ 3x 2〕 =4x 2﹣4x+1 ,〔 3 分〕正确的计算结果是: 〔 4x 2﹣ 4x+1〕 ?〔﹣ 3x 2〕 =﹣12x 4+12x 3﹣3x 2.〔 3 分〕议论: 此题利用奇特的题目观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.18.对任意有理数 x 、 y 定义运算以下: x △ y=ax+by+cxy ,这里 a 、 b 、c 是给定的数,等式右边是平时数的加法及乘法运算,如当 a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现所定义的新运算满足条件, 1△ 2=3,2△ 3=4 ,并且有一个不为零的数d 使得对任意有理数 x △ d=x ,求 a 、b 、 c 、 d 的值.考点 : 单项式乘多项式.专题 : 新定义.解析:由 x △ d=x ,得 ax+bd+cdx=x ,即〔 a+cd ﹣ 1〕x+bd=0 ,得 ① ,由 1△ 2=3,得 a+2b+2c=3 ② ,2△ 3=4 ,得 2a+3b+6c=4 ③ ,解以上方程组成的方程组即可求得a 、b 、c 、d 的值.解答: 解: ∵ x △ d=x , ∴ ax+bd+cdx=x ,∴ 〔 a+cd ﹣ 1〕 x+bd=0 ,∵ 有一个不为零的数 d 使得对任意有理数 x △ d=x ,那么有① ,∵ 1△ 2=3 ,∴ a+2b+2c=3 ② ,∵ 2△ 3=4 ,∴ 2a+3b+6c=4 ③ ,又 ∵ d ≠0, ∴ b=0 ,∴ 有方程组解得.故 a 的值为 5、 b 的值为 0、 c 的值为﹣ 1、d 的值为 4.议论: 此题是新定义题, 观察了定义新运算, 解方程组.解题要点是由一个不为零的数d 使得对任意有理数x △ d=x ,得出方程〔 a+cd ﹣ 1〕x+bd=0 ,获取方程组,求出 b 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档