伺服阀的动作原理

合集下载

伺服换向阀工作原理

伺服换向阀工作原理

伺服换向阀工作原理伺服换向阀(也称为伺服阀)是一种用于控制液压或气动系统中液体或气体流向的装置。

它采用电磁线圈产生的磁场来控制阀芯的运动,从而实现流体的换向操作。

本文将从伺服换向阀的工作原理、组成结构以及应用领域等方面进行介绍。

伺服换向阀的工作原理主要依靠电磁力和机械力的相互作用。

其基本结构由阀体、阀芯、电磁线圈和弹簧等组成。

当电磁线圈通电时,产生的磁场会使阀芯受到电磁力的作用,从而改变阀芯的位置。

当电磁线圈断电时,弹簧力会使阀芯恢复原位。

通过控制电磁线圈的通断状态,可以实现阀芯的运动,进而控制流体的流向。

伺服换向阀可以实现单向流动或双向流动的控制。

在单向流动的情况下,通过改变阀芯的位置,使流体从一个进口进入阀体,然后从另一个出口流出。

在双向流动的情况下,通过改变阀芯的位置,使流体从一个进口进入阀体,然后可以选择从两个出口中的任意一个流出。

通过控制阀芯的运动,可以实现流体的换向,从而控制液压或气动系统中的流量和流向。

伺服换向阀具有换向灵敏、反应迅速、可靠性高等优点。

其工作原理简单,结构紧凑,体积小巧,重量轻。

它可以通过改变电磁线圈的电流或电压来调节阀芯的运动,实现对流体流向的精确控制。

此外,伺服换向阀还具有耐高压、耐腐蚀、耐磨损等特点,适用于各种恶劣工况下的应用。

伺服换向阀在液压和气动系统中有着广泛的应用。

在液压系统中,它常被用于控制液压缸的运动方向,实现机械的运动控制。

例如,在工程机械中,伺服换向阀可以用于控制挖掘机臂杆的升降和伸缩;在农机械中,伺服换向阀可以用于控制收割机刀片的开合。

在气动系统中,伺服换向阀可以用于控制气动执行器的运动方向,实现自动化生产。

例如,在汽车制造中,伺服换向阀可以用于控制汽车座椅的调节和折叠。

伺服换向阀是一种用于控制液压或气动系统中流体流向的装置。

它通过电磁力和机械力的相互作用,实现阀芯的运动,从而控制流体的换向。

伺服换向阀具有换向灵敏、反应迅速、可靠性高等优点,广泛应用于液压和气动系统中。

伺服阀的工作原理及应用

伺服阀的工作原理及应用

伺服阀的工作原理及应用伺服阀是一种利用电磁力来控制液压流量的装置,广泛应用于机械工程、航空航天、汽车工业以及其他液压系统中。

它通过调节流体流量来控制执行器的位置和速度,从而实现对系统的精确控制。

本文将介绍伺服阀的工作原理及其在各个领域的应用。

首先,让我们来了解伺服阀的工作原理。

伺服阀由阀芯、阀座、电磁铁以及定向阀组成。

当电磁铁通电时,产生的电磁力会使阀芯与阀座分离,从而打开流体通道。

通过改变电磁铁的通电状态,可以控制阀芯的位置,从而调节流体的流量。

伺服阀的工作原理与一个负反馈控制系统类似。

当执行器达到设定的位置或速度时,反馈信号将被传送回来,通过比较反馈信号与设定值,控制系统将相应地调整电磁铁的通电状态,使阀芯位置逐渐接近设定值。

这种闭环控制系统可以实现高度精确的位置和速度控制。

接下来,我们来看一下伺服阀的应用领域。

伺服阀被广泛应用于需要精确控制位置和速度的系统中。

在机械工程中,伺服阀被用于控制工业机械、机器人以及其他自动化设备。

例如,在自动化生产线上,伺服阀被用于控制机械臂的位置和运动速度,从而实现高效的生产。

在航空航天领域,伺服阀被用于控制飞机的液压系统。

它们能够精确地控制飞行器的操作和动力系统,包括起落架、襟翼和刹车系统。

由于伺服阀能够快速响应和高度精确的控制,它们在飞机的操纵系统中起到了至关重要的作用。

在汽车工业中,伺服阀被广泛应用于汽车刹车系统和液压悬挂系统。

伺服阀能够根据司机的踏板操作精确地控制刹车力度,从而提供安全和可靠的刹车体验。

在液压悬挂系统中,伺服阀能够实现对车身的主动控制,提供更平稳的行驶和更舒适的乘坐体验。

此外,伺服阀还被应用于医疗设备、舞台设备和工程机械等领域。

在医疗设备中,伺服阀被用于控制手术机器人的精确运动,提供高度精确的手术操作和治疗。

在舞台设备中,伺服阀被用于控制灯光和音响设备,实现精确的舞台效果。

在工程机械中,伺服阀被用于控制挖掘机、起重机和压力机等设备,提供高效、安全的工作。

液压伺服阀工作原理

液压伺服阀工作原理

液压伺服阀工作原理
液压伺服阀是一种通过控制液压流体的流量和压力来控制执行机构运动的装置。

它由液压驱动阀芯、阀座和控制系统三部分组成。

液压伺服阀的工作原理可以分为如下几个步骤:
1. 阀芯位置检测:伺服阀内置有阀芯位置检测装置,通过检测阀芯位置,将反馈信号传递给控制系统。

2. 控制信号处理:控制系统接收到阀芯位置信号后,经过处理生成控制信号,用于调节阀芯的位移。

3. 驱动阀芯位移:控制信号作用于伺服驱动器,驱动器通过液压力将阀芯移动到相应位置。

当阀芯位移到达设定位置后,驱动器停止工作。

4. 调节液压流量和压力:阀芯位移后,液压流体会根据阀芯位置的不同,通过不同的通道流入或流出。

通过调节这些通道的流量和压力大小,来实现对执行机构的精确控制。

5. 控制反馈:执行机构的运动将产生反馈信号,传递给控制系统。

控制系统通过比较反馈信号和设定信号,不断调节控制信号,使执行机构的位置能够精确控制在设定值范围内。

液压伺服阀由于其精确的控制能力和可靠性,广泛应用于液压
工程和自动控制系统中。

它可以实现对执行机构的位置、速度和力的精确控制,满足不同工况下的自动化需求。

伺服阀标准

伺服阀标准

伺服阀标准
一、工作原理
伺服阀的工作原理是利用电磁力控制阀芯位置从而控制流量的大小。

当阀芯位移时,开口大小随之变化,从而实现流量控制。

伺服阀的工作压力一般不超过31.5MPa,额定流量为40L/min。

二、使用要求
1. 清洁度要求高:伺服阀内部有较多的油流通路和阀芯等精密部件,若内部有杂物或污染物进入,会直接影响伺服阀的控制精度。

2. 使用环境温度范围:伺服阀一般在-10℃至+70℃的温度范围内正常工作,如果环境温度超出这个范围,会对阀的工作性能和使用寿命产生影响。

3. 驱动电压:伺服阀的电磁铁是直接由电压或者电流来控制的,因此驱动电压的波动对伺服阀的工作稳定性有一定的影响。

三、试验方法
1. 测试阀的控制精度:测量阀的输出量与输入量之比,通过控制输出量的变化来检验阀的性能。

精密型伺服阀的控制精度可以达到0.05%。

2. 测试阀的压力损失:在一定的流量条件下,测量阀芯所需的压力。

测试阀芯行程时的压力,可以检测出伺服阀芯隙大小是否符合要求。

综上所述,伺服阀的国家标准技术要求包括工作原理、使用要求和试验方法等方面,制定标准旨在保证伺服阀的工作性能和使用寿
命,以满足各种工业生产领域的需求。

液压伺服阀工作原理

液压伺服阀工作原理

液压伺服阀工作原理
液压伺服阀是一种常用的液压控制元件,其工作原理基于流体压力的调控和流量的控制。

液压伺服阀一般由阀体、阀芯、弹簧、电磁铁等部件组成。

液压伺服阀的工作原理如下:
1. 稳态工作原理:当液压伺服阀处于静止状态时,阀芯通过弹簧受力保持在初始位置。

此时,液压油从液压源通过入口进入阀体,然后经过通道分配至工作执行部件(例如液动缸)。

由于阀芯处于静止状态,液压油流通过阀芯时,阀芯上的孔口会在阀芯与阀体之间形成不同的通道连接情况,从而调节液压油的流量。

当液动缸达到预定的位置时,压力反馈装置感应到液压油压力的变化,并通过反馈信息传给电磁铁。

2. 动态工作原理:当液动缸需要调节位置时,电磁铁会收到反馈信息,并通过调节电磁铁的通电时间和通电强度来控制阀芯的运动。

电磁铁通电后,产生的磁场作用下,将阀芯向开口方向推动或拉动。

随着阀芯的运动,液压油通道的连接情况发生改变,从而调节液压油的流量和压力。

当液动缸达到预定的位置后,电磁铁停止通电,阀芯由弹簧力将其复位到初始位置,从而实现位置的调节和控制。

通过不断调节电磁铁的通电情况,液压伺服阀可以实现对液动缸位置的精确控制。

液压伺服阀的工作原理使其在工程机械、船舶、模具制造等液压系统中起到重要的作用。

伺服阀工作原理范文

伺服阀工作原理范文

伺服阀工作原理范文伺服阀是一种比例控制阀,在工业自动化领域广泛应用。

它通过电气信号控制液压或气压传动阀芯,实现介质的流量或压力的实时调节。

以下是伺服阀的工作原理的详细介绍。

伺服阀的结构由阀体、阀芯、位置传感器、执行器等部件组成。

阀体用于容纳介质并定位阀芯,阀芯的运动通过执行器实现。

位置传感器用于检测阀芯的位置,并将信号反馈给控制系统,从而实现闭环控制。

伺服阀的工作原理可以分为以下四个主要步骤:1.传感器检测:位置传感器测量阀芯的位置,并将信号传输给控制系统。

通过对阀芯位置的准确检测,控制系统可以得知阀芯的目标位置和实际位置之间的差异。

2.控制系统计算:控制系统接收传感器信号并根据设定的目标值计算控制信号。

通过根据差异来计算控制信号,控制系统可以实现阀芯位置的闭环控制,使其快速、准确地达到目标位置。

3.控制信号输出:控制系统根据计算结果产生相应的控制信号,然后将其输出给执行器。

执行器接收到控制信号后,通过电磁力或气动力将阀芯定位到目标位置。

4.阀芯位置调节:执行器根据控制信号的作用对阀芯进行移动,从而调节流量或压力。

当阀芯接近目标位置时,执行器会减小或消除控制信号,以实现阀芯的稳定控制。

伺服阀具有以下几个特点:1.高精度:由于采用闭环控制,伺服阀的控制精度很高,可以达到亚毫米量级。

2.高可靠性:伺服阀的关键部件采用优质材料和精湛制造工艺,具有较高的耐压和耐磨性,从而能够在恶劣工作环境下长时间稳定运行。

3.快速响应:控制系统通过实时计算控制信号,能够实现对阀芯位置的快速调节,从而快速响应工业过程中的变化需求。

4.大范围调节:伺服阀可以根据不同的工况要求,在很大的流量或压力范围内进行精确调节。

5.多种控制方式:伺服阀可以通过模拟电信号、数字信号、PLC控制等多种方式进行控制,使其在工业自动化系统中易于集成和应用。

总之,伺服阀通过控制信号的调节,实现对阀芯位置的控制,从而调节介质的流量或压力。

它具有高精度、高可靠性、快速响应、大范围调节和多种控制方式的优势,被广泛应用于工业自动化控制系统中。

伺服阀文档

伺服阀文档

伺服阀1. 引言伺服阀是一种常见的机械控制装置,用于控制流体系统中的流量和压力。

它可以实现精确的流体控制,从而满足各种工业设备和系统的需求。

本文将介绍伺服阀的工作原理、分类、应用和维护保养。

2. 工作原理伺服阀通过调节流体的通道大小来控制流量和压力。

它通常由阀芯、阀座和阀体组成。

当驱动器施加压力对阀芯进行控制时,阀芯会改变阀座和阀体之间的流体通道的大小,从而调节流量和压力。

伺服阀通常采用电动、液压或气动驱动器来控制阀芯的移动。

电动驱动器可以通过电动机控制阀芯的位置,液压驱动器可以通过液压缸驱动阀芯的移动,而气动驱动器则使用压缩空气来控制阀芯的位置。

3. 分类3.1 按驱动方式分类•电动伺服阀:通过电机驱动阀芯的移动,可以实现精确的流量和压力控制。

•液压伺服阀:通过液压缸的驱动来控制阀芯的移动,适用于高压、高流量的应用。

•气动伺服阀:使用压缩空气作为动力源,驱动阀芯的移动,广泛应用于气动系统中。

3.2 按控制模式分类•恒定流量伺服阀:可以调节流体的通道大小,使其流量保持恒定。

•恒压伺服阀:可以调节流体的通道大小,使其压力保持恒定。

•比例控制伺服阀:根据输入信号的大小,通过调节流体的通道大小,实现流量和压力的比例控制。

3.3 按工作原理分类•阀式伺服阀:通过阀芯和阀座的开关控制来实现流量和压力的调节。

•调压器式伺服阀:通过调压器来调节流体的压力,从而实现流量和压力的控制。

4. 应用伺服阀在各个工业领域中都有广泛的应用,包括但不限于以下几个方面:1.液压系统:伺服阀可以用于控制液压系统中的液压马达和液压缸的流量和压力,以实现精确的运动控制。

2.机床:伺服阀可用于控制机床中的液压刀架和切割工具的运动,实现高精度的切割操作。

3.汽车工业:伺服阀常用于汽车的转向系统中,以实现对转向轮的精确控制。

4.能源领域:伺服阀可以用于控制石油、天然气和水电等能源的输送和分配,确保能源系统的安全和稳定运行。

5. 维护保养为了保证伺服阀的正常工作和延长使用寿命,以下是一些常见的维护保养措施:•定期检查:定期检查伺服阀的工作状态,包括阀芯和阀座的磨损情况,以及阀体和密封件是否有漏油等现象。

伺服阀的原理

伺服阀的原理

伺服阀的原理
伺服阀是一种用于控制液压系统中液压流量和压力的重要元件,其原理是通过
电磁力控制阀芯的位置,从而调节液压系统中的流量和压力。

伺服阀广泛应用于机械制造、航空航天、汽车工业等领域,其性能直接影响到整个液压系统的工作效率和稳定性。

伺服阀的工作原理主要包括阀芯位置控制、电磁力控制和反馈调节三个方面。

首先,阀芯位置控制。

伺服阀的阀芯是通过电磁力来控制其位置的,当电磁线
圈通电时,产生的磁场会使阀芯受到吸引力或排斥力,从而改变阀芯的位置,进而调节液压系统中的流量和压力。

其次,电磁力控制。

伺服阀的电磁线圈是通过外部控制器来控制的,控制器会
根据系统的需要发送相应的电流信号给电磁线圈,从而控制阀芯的位置。

这种方式能够实现对液压系统中流量和压力的精确控制,提高了系统的稳定性和响应速度。

最后,反馈调节。

伺服阀通常还配备有反馈传感器,用于实时监测阀芯的位置,并将实际位置信息反馈给控制器。

控制器通过比较实际位置和期望位置的差异,可以及时调整电磁线圈的电流信号,从而实现对液压系统的精确控制。

总的来说,伺服阀通过电磁力控制阀芯的位置,实现对液压系统中流量和压力
的精确调节。

其工作原理简单清晰,性能稳定可靠,因此在液压系统中得到了广泛的应用。

除了工作原理,伺服阀的性能参数、结构特点、安装调试等方面的内容也是我
们需要了解的。

只有全面了解伺服阀的原理和特性,才能更好地应用和维护液压系统,确保系统的正常运行和高效工作。

伺服阀工作原理

伺服阀工作原理

伺服阀工作原理
伺服阀是一种流体控制装置,它通过操作阀芯来控制介质的流量和压力。

伺服阀由阀体、阀芯、传动机构和电磁驱动系统等组成。

伺服阀的工作原理如下:
1. 传动机构和电磁驱动系统接收控制信号。

传动机构将电磁驱动系统产生的信号转化为机械力,用于移动阀芯。

2. 阀芯在传动机构的作用下移动。

根据控制信号的要求,阀芯会调整自身位置和开度。

3. 阀芯的位置和开度会影响流体的流量和压力。

当阀芯移动到某个位置时,阀体内的介质流动通道会相应打开或关闭,从而控制介质的流量和压力。

4. 传感器和反馈装置可以检测阀芯的位置和开度。

这些信号可以回传给控制系统,以便实时监测和调整控制信号,使阀芯达到预定位置和开度。

5. 控制系统可以根据外部条件和要求改变控制信号,从而实现对阀芯位置和开度的动态调节。

通过以上工作原理,伺服阀能够根据控制信号的要求准确地控制介质的流量和压力,满足不同工况下的流体控制需求。

它在许多自动化系统和工业流程中得到广泛应用。

液压伺服阀工作原理

液压伺服阀工作原理

液压伺服阀工作原理
液压伺服阀是一种用于控制液压系统中液压执行元件运动的重要元件。

其工作原理是基于液压控制的自动调节功能,能够根据外部信号的变化,调节液压系统中的压力和流量,从而控制执行元件的运动。

液压伺服阀的工作原理可以简单描述为以下几个步骤:
1. 外部信号输入:液压伺服阀接收来自外部的信号输入,例如电信号或机械信号。

这个信号一般是由控制系统或操作者提供的,用于指示所需的阀门位置或运动速度。

2. 信号与控制元件配合:液压伺服阀将接收到的信号与内部的控制元件配合使用。

这些控制元件通常包括电磁阀、节流阀和比例控制阀等,它们通过相互配合的开启或关闭,以及相对大小的流量控制,来实现对液压系统的调节。

3. 液压系统压力和流量调节:根据输入信号的变化,伺服阀内的控制元件将相应地调节液压系统的压力和流量。

例如,当输入信号要求提高液压系统的流量时,控制元件会增大通道的截面积,从而增加液压流体的通过量;当输入信号要求降低压力时,控制元件会减小通道的截面积,从而阻碍液压流体的通过。

这样,液压系统的工作压力和流量就能够随着输入信号的变化而自动调节。

4. 执行元件运动控制:经过液压伺服阀调节后的液压系统,会将调节后的液压流体送到液压执行元件上,例如液压缸或液压
马达。

通过控制液压执行元件内的活塞或转子运动,最终实现对工作负荷的准确控制。

总结起来,液压伺服阀通过接收外部信号,配合内部控制元件的开启或关闭与流量控制,实现对液压系统压力和流量的调节,进而控制液压执行元件的运动。

这种工作原理使得液压伺服阀在各种工业应用中具有广泛的应用前景。

伺服阀工作原理

伺服阀工作原理

伺服阀工作原理
伺服阀是一种通过电信号来控制液压流量和压力的设备。

它由电磁力作用于阀芯来实现开启和关闭的控制。

伺服阀的工作原理如下:
1. 电磁线圈:伺服阀内部有一个电磁线圈,通过电流流过线圈来产生磁场。

2. 阀芯:阀芯是伺服阀内部移动的零件,它通过电磁力对其施加作用来实现开启和关闭的控制。

3. 压力油路:伺服阀内部有一个压力油路,用于控制液压流量和压力。

4. 反馈信号:伺服阀通常具有反馈功能,通过传感器测量阀芯位置或压力来提供反馈信号,使控制更加准确。

伺服阀的工作过程如下:
1. 静止状态:当电磁线圈未通电时,阀芯处于关闭状态,阻止了油液的流动。

2. 电磁力作用:当电磁线圈通电时,会在线圈周围产生磁场,并对阀芯施加电磁力。

3. 阀芯移动:受到电磁力的作用,阀芯开始向开启的方向移动。

4. 油液流动:当阀芯移动到一定位置时,液压油开始流动,允许液压系统的流量和压力被控制。

5. 反馈和控制:通过传感器测量阀芯位置或压力来提供反馈信号,并根据这些信号进行控制调整。

需要注意的是,伺服阀的工作原理可能会因具体类型和设计而有所差异,上述仅为一般性描述。

moog伺服阀工作原理

moog伺服阀工作原理

moog伺服阀工作原理
Moog伺服阀是一种控制设备,可通过精确控制液压流量和压力来实现机器或系统的运动控制。

伺服阀的工作原理是基于一种称为离心结构的流体动力学原理。

当液体进入伺服阀时,它会通过一个相对旋转的阀芯和阀座(或称为阀门)进行控制。

阀芯上的控制口和阀座上的孔隙共同决定了通过伺服阀的液体流量和压力。

在正常工作情况下,液体将通过阀芯的控制口和阀座上的孔隙流过,并且在通过这些通道时会产生一定的阻力。

通过调整控制口和孔隙的大小,可以改变流体通过伺服阀的速度和压力。

当液压系统需要进行动作控制时,控制信号将输入到伺服阀的阀芯上。

这个控制信号可以是电信号,也可以是压力信号,取决于伺服阀的类型。

当控制信号施加在阀芯上时,它会使阀芯相对阀座旋转或移动,从而改变阀芯和阀座之间的相对位置。

这个相对位置的变化将会改变控制口和孔隙的开度,从而改变液体通过伺服阀的流量和压力。

通过精确调整控制信号的大小和频率,可以实现精确的运动控制。

例如,如果液压系统需要进行一个快速且精确的移动,那么可以增大控制信号的大小和频率,以便迅速打开控制口和孔隙,从而增加液体流量和压力,从而加速机器或系统的运动。

反之,如果需要进行一个缓慢和精细的移动,那么可以减小控制信号的大小和频率,以便减小液体流量和压力,从而降低机器或系统的运动速度。

总之,Moog伺服阀通过调整控制口和孔隙的大小来控制液体的流量和压力,从而实现精确的运动控制。

全文没有重复的标题。

伺服阀工作原理及运行维护

伺服阀工作原理及运行维护

伺服阀工作原理及运行维护
伺服阀是一种利用液压力控制流体流动的装置,主要包括阀体、阀芯、弹簧、电磁线圈和位置传感器等部分。

伺服阀工作原理是通过电磁力来控
制阀芯的位置,从而调节液压系统中的流量和压力,实现对液压执行元件
的精确控制。

伺服阀的工作原理如下:
1.电气信号输入:通过控制器发出的电气信号进入伺服阀的电磁线圈,产生磁场效应。

2.磁场效应:电磁线圈内的电流产生磁场,使得阀芯受到磁力的作用,向电磁线圈的方向运动。

3.阀芯位移:阀芯的位移使得阀芯上的孔口与阀体上的孔口相对对应
或断开,控制液压流动的通道开关。

4.液压流动控制:根据阀芯的位移来控制液压流量和压力的变化。

伺服阀的运行维护主要包括以下几个方面:
1.定期检查:定期对伺服阀进行外观和内部的检查,检查阀芯和阀座
是否磨损,是否存在泄漏等情况。

2.清洁维护:保持伺服阀的清洁,防止杂质和沉积物的堆积,定期更
换液压油和滤芯,确保液压系统的正常运行。

3.调试和校准:在机械安装和维修后,需要对伺服阀进行调试和校准,确保伺服阀的准确性和可靠性。

4.液压油品质管理:定期检测和维护液压油的品质,保持液压油的清洁度和黏度,更换老化的液压油,避免油品质量对伺服阀造成不良影响。

5.磨损件更换:根据伺服阀的使用情况,及时更换磨损的零部件,如阀芯和阀座等,防止泄漏和故障的发生。

总之,伺服阀是液压系统中重要的控制元件,其工作原理是通过电磁力来控制阀芯的位置,从而实现对流量和压力的精确调节。

在运行维护方面,需要定期检查、清洁维护、调试校准、管理液压油品质和更换磨损件等,以保证伺服阀的正常运行及其对液压系统的正常控制。

伺服阀工作原理范文

伺服阀工作原理范文

伺服阀工作原理范文伺服阀是一种自动调节流量、压力或位置的控制元件,主要应用于工业自动化系统中。

伺服阀的工作原理是基于阀芯的位置反馈控制,通过电气信号驱动阀芯,在系统中实现流量或压力的精确控制。

伺服阀具有以下几个基本组成部分:阀体、阀芯、电磁线圈和位置反馈部分。

阀芯是伺服阀的主要控制部件,通过电磁力的作用实现阀芯的运动,从而调节阀体中的流量或压力。

位置反馈部分主要用来探测阀芯的实际位置,并反馈给电气控制系统,以实现闭环控制。

伺服阀可以分为两种类型:流量伺服阀和压力伺服阀。

流量伺服阀是通过改变阀芯孔口的开口面积,从而调节通过阀体的流量。

压力伺服阀则是通过调节阀芯在阀体中的位置,改变流体通过阀体的阻力,从而调节阀体上游或下游的压力。

伺服阀的工作原理可以简单归纳为以下几个步骤:1.电气信号输入:电气控制系统通过电磁线圈向伺服阀提供相应的电流信号,控制阀芯的运动。

2.阀芯运动:电磁力的作用下,阀芯开始运动。

具体的运动方向和范围取决于电气信号的大小和极性。

3.位置反馈:位置反馈部分探测阀芯的实际位置,并将反馈信号传输给电气控制系统。

4.电气控制:电气控制系统通过比较设定值和反馈值之间的差异,计算出阀芯的位置误差,并调整电磁线圈的电流强度,使阀芯逐渐接近设定位置。

5.流量或压力调节:阀芯的位置变化导致阀体孔口的开口面积发生改变,从而调整流体通过阀体的流量或调节上游或下游的压力。

总之,伺服阀是一种基于阀芯位置反馈控制的自动调节元件,具有精确控制流量、压力或位置的能力。

其工作原理是通过电气信号驱动阀芯运动,并通过闭环控制系统实现精确的调节。

伺服阀在工业自动化领域有着广泛的应用前景。

伺服阀的基本原理

伺服阀的基本原理

伺服阀的基本原理伺服阀是一种能够控制液压和气压系统中流体流动的装置。

它通过改变阀芯和阀座之间的相对位置,以控制液压或气压的压力、流量和方向。

伺服阀的基本原理是靠电磁力或机械迁移力控制阀芯的运动,从而实现对流体流动的精确控制。

伺服阀的基本组成部分包括阀体、阀芯、电磁线圈或机械驱动装置。

阀体是将所有部件组装在一起的外壳,通常由金属材料制成,具有良好的密封性能。

阀芯是一个移动的部件,通过与阀座配合来控制流体的流动。

阀芯通常由金属材料制成,表面光滑以确保良好的密封性能。

伺服阀的原理可以分为电磁控制和机械控制两种。

1. 电磁控制原理:电磁控制伺服阀的原理是利用电磁激励力来控制阀芯的位置。

伺服阀的电磁线圈通常由一个或多个线圈组成,当线圈通电时,产生的磁场会对阀芯施加一个力,使其向开启或关闭的方向运动。

电磁控制伺服阀具有响应速度快、精度高的优点,广泛应用于工业自动化领域。

2. 机械控制原理:机械控制伺服阀的原理是利用机械力来控制阀芯的位置。

机械驱动装置可以通过螺旋杆、液压缸或气缸等方式实现。

当机械驱动装置运动时,会通过连杆或拨动杆将力传递给阀芯,推动阀芯的位置发生相应的变化。

机械控制伺服阀具有结构简单、稳定可靠的优点,常用于较大流量和高压力条件下的控制系统。

伺服阀的工作原理可以通过以下几个步骤来描述:1. 初始状态:伺服阀处于初始状态时,阀芯与阀座紧密结合,阀口完全关闭,流体无法通过。

2. 控制信号:当控制系统发送信号给伺服阀时,控制信号会激活电磁线圈或机械驱动装置。

电磁控制伺服阀的电磁线圈通电后,产生的磁场对阀芯施加力,使阀芯向开启或关闭的方向运动。

机械控制伺服阀的机械驱动装置也会通过力的传递使阀芯发生位移。

3. 阀芯移动:根据控制信号的不同,阀芯会向开启或关闭的方向移动。

当阀芯离开阀座时,形成了一个通道,流体开始通过伺服阀。

4. 流体流动控制:阀芯的位置变化会导致流体流动的变化。

当阀芯位于开启位置时,流体会通过伺服阀,流量增大;当阀芯位于关闭位置时,流体无法通过伺服阀,流量减小。

电液伺服阀工作原理

电液伺服阀工作原理

电液伺服阀工作原理
电液伺服阀工作原理是利用控制电磁阀的信号来调节液压阀的阀芯位置,从而控制液压系统的流量和压力。

电液伺服阀由电磁阀和液压阀两部分组成。

电磁阀通过控制电压信号来控制液压阀的阀芯移动,从而改变液流的通断和流量的大小。

当电磁阀通电时,产生的磁场作用于液压阀的阀芯,使阀芯向某一方向运动。

阀芯的移动改变了液压阀内部通道的连通状态,从而调节液压系统的流量和压力。

具体而言,电磁阀的控制信号经过放大、滤波等处理后,作用于电磁线圈,产生电磁力。

电磁力作用于液压阀的阀芯上,使阀芯克服液压力的作用而运动。

液压阀的阀芯移动时,改变了主阀的开口大小,从而改变了流经液压阀的液体流量。

当液压阀阀芯停止移动时,阀芯和阀体之间形成一条密封通道,使液压系统的压力保持在一定范围内。

通过改变电磁阀的控制信号,可以实现对液压系统流量和压力的精确控制。

从而达到控制执行元件(如液压缸、液压马达等)运动速度、力量和位置的目的。

总之,电液伺服阀通过控制电磁阀的信号来调节液压阀的阀芯位置,进而控制液压系统的流量和压力,从而实现对执行元件运动的精确控制。

伺服比例阀工作原理

伺服比例阀工作原理

伺服比例阀工作原理
伺服比例阀是一种通过控制阀芯位置来控制流量和压力的装置。

它由一个电磁比例阀和一个伺服阀组成。

工作原理如下:
1. 电磁比例阀:伺服比例阀的控制信号来自一个电磁比例阀,该阀根据输入的电流信号来控制阀芯的位置。

阀芯位置的改变会改变液压流量和压力。

2. 伺服阀:伺服阀是一个气动机械装置,通过控制插入阀芯的气压来调节阀芯位置。

当电磁比例阀接收到控制信号后,它会产生气压信号,将气压传递给伺服阀。

伺服阀会根据气压信号来调整阀芯的位置。

3. 阀芯位置控制:通过改变阀芯位置,伺服比例阀可以调节液压系统中的流量和压力。

当阀芯位于某个位置时,液压油会通过阀芯的通道流过,从而控制流量。

同时,改变阀芯位置也会影响阀的开口面积,从而调节液压系统中的压力。

4. 反馈控制:伺服比例阀会不断地对阀芯位置进行反馈,以保持阀芯在目标位置。

这个反馈控制可以通过一些传感器来实现,例如位置传感器或压力传感器。

这些传感器会监测阀芯的位置和液压系统中的压力,并将这些信息反馈给伺服比例阀,以进行修正控制。

通过以上的工作原理,伺服比例阀可以精确地控制液压系统中的流量和压力,以满足特定的工作要求。

伺服阀的工作原理及应用

伺服阀的工作原理及应用

伺服阀的工作原理及应用1. 什么是伺服阀伺服阀是一种用于控制流体的阀门。

它通过调整阀门开口的大小,以控制流体的流量和压力。

伺服阀通常由阀体、阀门、阀芯、驱动装置和控制系统等组成。

2. 伺服阀的工作原理伺服阀的工作原理基于电磁力和流体力的相互作用。

当通过控制系统的信号传递给驱动装置时,驱动装置产生的电磁力将阀芯移动,从而改变阀门的开口大小。

改变阀门开口大小可以调节流体的流量和压力。

3. 伺服阀的应用伺服阀广泛应用于各种工业领域,特别是需要精确控制流体流量和压力的系统中。

以下是几个常见的应用领域:•液压系统控制:伺服阀可以用于控制液压系统中的流量和压力,实现对液压系统的精确控制。

•风力发电系统:在风力发电系统中,伺服阀可以用于调节液压装置的工作,控制叶片的角度和转速,以实现稳定的发电效果。

•汽车制动系统:伺服阀可以用于汽车制动系统中的液压控制,通过调节制动力的大小,实现刹车的精确控制。

•机械加工设备:伺服阀可以用于机械加工设备中的液压控制,实现对加工过程的精确控制。

•工厂自动化设备:伺服阀可以用于工厂自动化设备中的流体控制,例如机器人的运动控制、装配线的调节等。

4. 伺服阀的特点伺服阀具有以下特点:•高精度控制:伺服阀可以实现对流体流量和压力的精确调节,其控制精度通常在0.1%以内。

•快速响应:伺服阀能够迅速响应控制信号的变化,并实时调整阀门开口大小,以实现快速而准确的流体控制。

•耐高压:伺服阀通常能够承受较高的工作压力,适用于高压液体控制系统。

•可靠性高:伺服阀由于使用先进的控制技术和材料,具有较长的使用寿命和较高的可靠性。

5. 伺服阀的选择和维护选择合适的伺服阀需要考虑以下因素:•流量和压力范围:根据实际需求选择适合的流量和压力范围的伺服阀。

•控制精度:根据所需的控制精度选择合适的伺服阀。

•工作环境:考虑伺服阀工作环境的温度、液体性质等因素,选择耐高温、耐腐蚀等特殊要求的伺服阀。

维护伺服阀同样重要,以下是一些常见的维护措施:•定期检查阀门和阀芯的磨损情况,及时更换磨损的部件。

伺服阀、比例阀原理

伺服阀、比例阀原理

伺服阀的工作原理下面介绍两种主要的伺服阀工作原理。

3.3.1力反馈式电液伺服阀力反馈式电液伺服阀的结构和原理如图28所示,无信号电流输入时,衔铁和挡板处于中间位置。

这时喷嘴4二腔的压力pa =pb,滑阀7二端压力相等,滑阀处于零位。

输入电流后,电磁力矩使衔铁2连同挡板偏转θ角。

设θ为顺时针偏转,则由于挡板的偏移使pa >pb,滑阀向右移动。

滑阀的移动,通过反馈弹簧片又带动挡板和衔铁反方向旋转(逆时针),二喷嘴压力差又减小。

在衔铁的原始平衡位置(无信号时的位置)附近,力矩马达的电磁力矩、滑阀二端压差通过弹簧片作用于衔铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡,衔铁就不再运动。

同时作用于滑阀上的油压力与反馈弹簧变形力相互平衡,滑阀在离开零位一段距离的位置上定位。

这种依靠力矩平衡来决定滑阀位置的方式称为力反馈式。

如果忽略喷嘴作用于挡板上的力,则马达电磁力矩与滑阀二端不平衡压力所产生的力矩平衡,弹簧片也只是受到电磁力矩的作用。

因此其变形,也就是滑阀离开零位的距离和电磁力矩成正比。

同时由于力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是通过滑阀的流量与输入电流成正比,并且电流的极性决定液流的方向,这样便满足了对电液伺服阀的功能要求。

图28 力反馈式伺服阀的工作原理1—永久磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁由于采用了力反馈,力矩马达基本上在零位附近工作,只要求其输出电磁力矩与输入电流成正比(不象位置反馈中要求力矩马达衔铁位移和输入电流成正比),因此线性度易于达到。

另外滑阀的位移量在电磁力矩一定的情况下,决定于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了方便。

采用了衔铁式力矩马达和喷嘴挡板使伺服阀结构极为紧凑,并且动特性好。

但这种伺服阀工艺要求高,造价高,对于油的过滤精度的要求也较高。

所以这种伺服阀适用于要求结构紧凑,动特性好的场合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电液伺服阀的工作原理∙电液伺服阀由力矩马达和液压放大器组成。

力矩马达工作原理磁铁把导磁体磁化成N、S极,形成磁场。

衔铁和挡板固连由弹簧支撑位于导磁体的中间。

挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。

弹簧管弯曲产生反力矩,使衔铁转过θ角。

电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。

前置放大级工作原理压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。

当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。

功率放大级工作原理当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。

滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。

滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。

当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。

电液伺服阀的分类∙ 1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。

2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。

3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。

4 按电机械转换装置可分为动铁式和动圈式。

5 按输出量形式可分为流量伺服阀和压力控制伺服阀。

电液伺服阀运转不良引起的故障∙ 1 油动机拒动在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。

尽管在机组启动前已进行油循环且油质化验也合格,但由于系统中的各个死角的位置不可能完全循环冲洗,所以一些颗粒可能在伺服阀动作过程中卡涩伺服阀。

2 汽门突然失控在机组运行过程中,有时在控制指令不变的情况下,汽门突然全开或全关,造成上述现象的主要原因是电液伺服阀堵塞。

主要是油中的赃物堵塞伺服阀的喷嘴挡板处,造成伺服阀突然向一个方向动作,导致油动机向一个方向运动到极限位置,使汽门失去控制。

3 气门摆动汽门摆动是较常见的故障现象,在排除控制信号故障的前提下,伺服阀工作不稳定是主要原因。

伺服阀的内漏大,分辨率大和零区不稳定,均可能引起电调系统的摆动。

伺服阀的分辨率增大,使伺服阀不能很快响应控制系统的指令,容易引起系统的超调,导致系统在一定范围内不停调整,造成汽门摆动。

伺服阀阀口磨损,不但引起伺服阀泄漏量增大,而且会引起伺服阀零区不稳定,使伺服阀长期处于调整状态,严重时会引起汽门摆动。

4 油动机迟缓率大造成此现象的原因很多,伺服阀的流量增益低,压力增益低以及伺服阀滤芯堵塞引起伺服阀分辨率过大等,都可能增大油动机迟缓率。

解决办法是严格控制抗燃油油质,定期检验伺服阀。

5油动机关不到位在控制信号和机械部分没有问题的前提下,造成油动机关不到位的主要原因为伺服阀的零偏不对。

电液伺服阀的特点及应用∙电液伺服阀具有动态响应快,控制精度高,使用寿命长等优点,已广泛应用于航空,航天,舰船,冶金,化工等领域的电液伺服控制系统中.电液伺服阀的发展历程∙液压控制技术的历史最早可追溯到公元前240 年,当时一位古埃及人发明了人类历史上第一个液压伺服系统――水钟. 然而在随后漫长的历史阶段, 液压控制技术一直裹足不前, 直到18 世纪末19 世纪初,才有一些重大进展.在二战前夕,随着工业发展的需要,液压控制技术出现了突飞猛进地发展,许多早期的控制阀原理及专利均是这一时代的产物.如: Askania 调节器公司及Askania-Werke 发明及申请了射流管阀原理的专利.同样, Foxboro 发明了喷嘴挡板阀原理的专利.而德国Siemens 公司发明了一种具有永磁马达及接收机械及电信号两种输入的双输入阀,并开创性地使用在航空领域.在二战末期,伺服阀是用螺线管直接驱动阀芯运动的单级开环控制阀.然随着控制理论的成熟及军事应用的需要, 伺服阀的研制和发展取得了巨大成就. 1946 年, 英国Tinsiey 获得了两级阀的专利;Raytheon 和Bell 航空发明了带反馈的两级阀;MIT 用力矩马达替代了螺线管使马达消耗的功率更小而线性度更好.1950 年,W.C.Moog 第一个发明了单喷嘴两级伺服阀.1953 年至1955 年间,T.H.Carson 发明了机械反馈式两级伺服阀;W.C.Moog 发明了双喷嘴两级伺服阀; Wolpin 发明了干式力矩马达, 消除了原来浸在油液内的力矩马达由油液污染带来的可靠性问题.1957 年R.Atchley 利用Askania 射流管原理研制了两级射流管伺服阀.并于1959 年研制了三级电反馈伺服阀.1959 年2 月国外某液压与气动杂志对当时的伺服阀情况作了12 页的报道, 显示了当时伺服阀蓬勃发展的状况.那时生产各种类型的伺服阀的制造商有20 多家.各生产厂家为了争夺伺服阀生产的霸权地位展开了激烈地竞争. 回顾历史, 可以看到最终取胜的几个厂家, 大多数生产具有反馈及力矩马达的两级伺服阀.我们可以看到, 1960 年的伺服阀已具有现代伺服阀的许多特点.如:第二级对第一级反馈形成闭环控制;采用干式力矩马达;前置级对功率级的压力恢复通常可达到50%;第一级的机械对称结构减小了温度,压力变化对零位的影响. 同时, 由早期的直动型开环控制阀发展变化而来的直动型两级闭环控制伺服阀也已出现.当时的伺服阀主要用于军事领域,随着太空时代的到来,伺服阀又被广泛用于航天领域,并研制出高可靠性的多余度伺服阀等尖端产品.与此同时,随着伺服阀工业运用场合的不断扩大,某些生产厂家研制出了专门使用于工业场合的工业伺服阀. Moog 公司就在1963 年推出了第一款专为工业场合使用的73 如系列伺服阀产品.随后,越来越多的专为工业用途研制的伺服阀出现了.它们具有如下的特征:较大的体积以方便制造;阀体采用铝材(需要时亦可采用钢材);独立的第一级以方便调整及维修;主要使用在14MPa 以下的低压场合;尽量形成系列化,标准化产品.然而Moog 公司在德国的分公司却将其伺服阀的应用场合主要集中在高压场合, 一般工作压力在21MPa,有的甚至到35MPa,这就使阀的设计专重于高压下的使用可靠性.而随着伺服阀在工业场合的广泛运用, 各公司均推出了各自的适合工业场合用的比例阀. 其特点为低成本, 控制精度虽比不上伺服阀, 但通过先进的控制技术和先进的电子装置以弥补其不足, 使其性能和功效逼近伺服阀.1973 年,Moog 公司按工业使用的需要,把某些伺服阀转换成工业场合的比例阀标准接口.Bosch 研制出了其标志性的射流管先导级及电反馈的平板型伺服阀.1974 年,Moog 公司推出了低成本,大流量的三级电反馈伺服阀.Vickers 公司研制了压力补偿的KG 型比例阀.Rexroth,Bosch 及其他公司研制了用两个线圈分别控制阀芯两方向运动的比例阀等等电液伺服阀的发展趋势当前,新型电液伺服阀技术的发展趋势主要体现在新型结构的设计,新型材料的采用及电子化,数字化技术与液压技术的结合等几方面.1/新型结构的设计在20 世纪90 年代,国外研制直动型电液伺服阀获得了较大的成就.现形成系列产品的有Moog 公司的D633,D634 系列的直动阀,伊顿威格士(EatonVickers)公司的LFDC5V 型,德国Bosch 公司的NC10 型,日本三菱及KYB 株式会社合作开发的MK 型阀及Moog 公司与俄罗期沃斯霍得工厂合作研制的直动阀等.该类型的伺服阀去掉了一般伺服阀的前置级, 利用一个较大功率的力矩马达直接拖动阀芯, 并由一个高精度的阀芯位移传感器作为反馈.该阀的最大特点是无前置级,提高了伺服阀的抗污染能力.同时由于去掉了许多难加工零件,降低了加工成本,可广泛使用于工业伺服控制的场合.国内有些单位如中国运载火箭技术研究院第十八研究所, 北京机床研究所, 浙江工业大学等单位也研制出了相关产品的样机. 特别是北京航空航天大学研制出转阀式直动型电液伺服阀. 该伺服阀通过将普通伺服阀的滑阀滑动结构转变为滑阀的转动, 并在阀芯与阀套上相应开了几个与轴向有一定倾角的斜槽.阀芯阀套相互转动时,斜槽相互开通或相互封闭,从而控制输出压力或流量.由于在工作时阀芯阀套是相互转动的,降低了阀工作时的摩擦阻力,同时污染物不容易在转动的滑阀内堆积,提高了抗污染性能.此外,Park 公司开发了"音圈驱动(Voice Coil Drive)"技术(VCD),以及以此技术为基础开发的DFplus 控制阀.所谓音圈驱动技术, 顾名思义, 即是类似于扬声器的一种驱动装置, 其基本结构就是套在固定的圆柱形永久磁铁上的移动线圈,当信号电流输入线圈时,在电磁效应的作用下,线圈中产生与信号电流相对应的轴向作用力,并驱动与线圈直接相连的阀芯运动,驱动力很大.线圈上内置了位移反馈传感器,因此,采用VCD 驱动的DFplus 阀本质上是以闭环方式进行控制的,线性度相当好.此外,由于VCD 驱动器的运动零件只是移动线圈,惯量极小,相对运动的零件之间也没有任何支承,DFplus 阀的全部支承就是阀芯和阀体间的配合面,大大减小了摩擦这一非线性因素对控制品质的影响.综合上述的技术特点,配合内置的数字控制模块,使DFplus 阀的控制性能佳,尤其在频率响应方面更是优越,可达400Hz.从发展趋势来看,新型直动型电液伺服阀在某些行业有替代传统伺服阀特别是喷嘴挡板式伺服阀的趋向, 但它的最大问题在于体积大, 重量重, 只适用于对场地要求较低的工业伺服控制场合. 如能减轻其重量, 减小其体积,在航空,航天等军工行业亦具有极大的发展潜力.另外,近年来伺服阀新型的驱动方式除了力矩马达直接驱动外,还出现了采用步进电机,伺服电机,新型电磁铁等驱动结构以及光-液直接转换结构的伺服阀.这些新技术的应用不仅提高了伺服阀的性能, 而且为伺服阀发展开拓了思路, 为电液伺服阀技术注入了新的活力.2/新型材料的采用当前在电液伺服阀研制领域的新型材料运用,主要是以压电元件,超磁致伸缩材料及形状记忆合金等为基础的转换器研制开发.它们各具有其自己的优良特性.2.1 压电元件压电元件的特点是"压电效应":在一定的电场作用下会产生外形尺寸的变化,在一定范围内,形变与电场强度成正比.压电元件的主要材料为压电陶瓷(PZT),电致伸缩材料(PMN)等.比较典型的压电陶瓷材料有日本TOKIN 公司的叠堆型压电伸缩陶瓷等.PZT 直动式伺服阀的原理是: 在阀芯两端通过钢球分别与两块多层压电元件相连. 通过压电效应, 使压电材料产生伸缩驱动阀芯移动.实现电-机械转换.PMN 喷嘴挡板式伺服阀则在喷嘴处设置一与压电叠堆固定连接的挡板,由压电叠堆的伸,缩实现挡板与喷嘴间的间隙增减,使阀芯两端产生压差推动阀芯移动.目前压电式电-机械转换器的研制比较成熟并已得到较广泛的应用.它具有频率响应快的特点,伺服阀频宽甚至能达到上千赫兹,但亦有滞环大,易漂移等缺点,制约了压电元件在电液伺服阀上的进一步应用.2.2 超磁致伸缩材料液压与电气论坛超磁致伸缩材料(GMM)与传统的磁致伸缩材料相比,在磁场的作用下能产生大得多的长度或体积变化. 利用GMM 转换器研制的直动型伺服阀是把GMM 转换器与阀芯相连,通过控制驱动线圈的电流,驱动GMM 的伸缩,带动阀芯产生位移从而控制伺服阀输出流量.该阀与传统伺服阀相比不仅有频率响应高的特点,而且具有精度高,结构紧凑的优点.目前,在GMM 的研制及应用方面,美国,瑞典和日本等国处于领先水平.国内浙江大学利用GMM 技术对气动喷嘴挡板阀和内燃机燃料喷射系统的高速强力电磁阀, 进行了结构设计和特性研究.从目前情况来看GMM 材料与压电材料和传统磁致伸缩材料相比,具有应变大,能量密度高,响应速度快,输出力大等特点.世界各国对GMM 电-机械转换器及相关的技术研究相当重视,GMM 技术水平快速发展,已由实验室研制阶段逐步进入市场开发阶段.今后还需解决GMM 的热变形,磁晶各向异性,材料腐蚀性及制造工艺, 参数匹配等方面的问题,以利于在高科技领域得到广泛运用.2.3 形状记忆合金形状记忆合金(SMA)的特点是具有形状记忆效应.将其在高温下定型后,冷却到低温状态,对其施加外力.一般金属在超过其弹性变形后会发生永久变形,而SMA 却在将其加热到某一温度之上后, 会恢复其原来高温下的形状. 利用其特性研制的伺服阀是在阀芯两端加一组由形状记忆合金绕制的SMA 执行器, 通过加热和冷却的方法来驱动SMA 执行器, 使阀芯两端的形状记忆合金伸长或收缩, 驱动阀芯作用移动, 同时加入位置反馈来提高伺服阀的控制性能.从该阀的情况来看,SMA 虽变形量大,但其响应速度较慢,且变形不连续, 也限制了其应用范围.与传统伺服阀相比,采用新型材料的电-机械转换器研制的伺服阀,普遍具有高频响, 高精度,结构紧凑的优点.虽然目前还各自呈在某些关键技术需要解决,但新型功能材料的应用和发展,给电液伺服阀的技术发展发展提供了新的途径.3/电子化,数字化技术的运用液压与电气论坛目前电子化, 数字化技术在电液伺服阀技术上的运用主要有两种方式: 其一,在电液伺服阀模拟控制元器件上加入D/A 转换装置来实现其数字控制.随着微电子技术的发展,可把控制元器件安装在阀体内部,通过计算机程序来控制阀的性能,实现数字化补偿等功能.但存在模拟电路容易产生零漂,温漂,需加D/A 转换接口等问题.其二, 为直动式数字控制阀. 通过用步进电机驱动阀芯, 将输入信号转化成电机的步进信号来控制伺服阀的流量输出.该阀具有结构紧凑,速度及位置开环可控及可直接数字控制等优点,被广泛使用.但在实时性控制要求较高的场合,如按常规的步进方法,无法兼顾量化精度及响应速度的要求.浙江工业大学采用了连续跟踪控制的办法,消除了两者之间的矛盾,获得了良好的动态特性. 此外还有通过直流力矩电机直接驱动阀芯来实现数字控制等多种控制方式或伺服阀结构改变等方法来形成众多的数字化伺服阀产品.随着各项技术水平的发展,通过采用新型的传感器和计算机技术研制出机械,电子, 传感器及计算机自我管理(故障诊断,故障排除)为一体的智能化新型伺服阀.该类伺服阀可按照系统的需要来确定控制目标:速度,位置,加速度,力或压力.同一台伺服阀可以根据控制要求设置成流量控制伺服阀, 压力控制伺服阀或流量/ 压力复合控制伺服阀. 并且伺服阀的控制参数,如流量增益,流量增益特性,零点等都可以根据控制性能最优化原则进行设置.伺服阀自身的诊断信息,关键控制参数(包括工作环境参数和伺服阀内部参数)可以及时反馈给主控制器;可以远距离对伺服阀进行监控,诊断和遥控.在主机调试期间,可以通过总线端口下载或直接由上位机设置伺服阀的控制参数, 使伺服阀与控制系统达到最佳匹配,优化控制性能.而伺服阀控制参数的下载和更新,甚至在主机运转时也能进行.而在伺服阀与控制系统相匹配的技术应用发展中, 嵌入式技术对于伺服阀已经成为现实. 按照嵌入式系统应定义为:"嵌入到对像体系中的专用计算机系统"."嵌入性","专用性"与"计算机系统"是嵌入式系统的三个基本要素.它是在传统的伺服阀中嵌入专用的微处理芯片和相应的控制系统, 针对客户的具体应用要求而构建成具有最优控制参数的伺服阀并由阀自身的控制系统完成相应的控制任务(如各控制轴同步控制),再嵌入到整个的大控制系统中去.从目前的技术发展和控制系统对伺服阀的要求看, 伺服阀的自诊断和自检测功能应该有更大的发展. 结束语当前的液压伺服控制技术已经能将自动控制技术, 液压技术与微电子有机的结合起来, 形成新一代的伺服阀产品.而随着电子设备,控制策略,软件及材料等方面的发展与进步, 电液控制技术及伺服阀产品将在机,电,液一体化获得长足的进步.图2是伺服阀的工作原理图。

相关文档
最新文档