常见曲线的参数方程98194
曲线的参数方程
曲线的参数方程曲线是数学中的一种图形,通常可以由一个或多个方程表示。
在某些情况下,使用参数方程可以更加方便地描述曲线的特征和性质。
参数方程通过引入一个或多个参数,将曲线上的点表示为参数的函数。
本文将介绍曲线的参数方程的概念、应用和一些常见的参数方程示例。
参数方程的概念参数方程通常表示为以下形式:x = f(t) y = g(t)其中,x和y是曲线上的点的坐标,t是参数。
通过给定不同的t值,可以得到曲线上不同的点。
参数方程提供了一种曲线上每个点的坐标的参数化表示方法。
与直角坐标系方程不同,参数方程可以描述一些非常复杂的曲线,如椭圆、双曲线、螺线等。
通过选择合适的参数函数和参数范围,可以细致地刻画曲线的形状和特性。
参数方程的应用参数方程在许多领域具有广泛的应用,尤其是在计算机图形学、物理学和工程学中。
以下是几个参数方程的应用示例:1. 计算机图形学在计算机图形学中,参数方程常用于描述二维和三维图形的轨迹。
例如,在绘制动画和游戏中,可以使用参数方程来表示粒子、动画角色的路径等。
参数方程提供了一种简洁的方式来生成复杂的图形效果。
2. 物理学在物理学中,参数方程用于描述质点在空间中运动的路径。
例如,当质点沿着曲线运动时,可以使用参数方程来确定质点在每个时刻的位置。
参数方程还可以应用于描述粒子在电磁场中的运动、弹道轨迹等。
3. 工程学在工程学中,参数方程常用于描述各种曲线和曲面。
例如,工程师可以使用参数方程来描述曲线的轮廓、曲线的弯曲性质以及曲线上不同点的坐标。
参数方程还可以用于描述曲线的焦点、渐近线等重要属性。
常见的参数方程示例以下是几个常见的参数方程示例:1. 二维直线方程对于二维直线,可以使用如下的参数方程:x = at + b y = ct + d其中a、b、c和d为常数,代表直线的斜率和截距。
2. 圆的参数方程对于圆,可以使用如下的参数方程:x = r * cos(t) y = r * sin(t)其中r为半径,t为参数,可以取0到2π之间的值。
曲线的参数方程 课件
= 2sin
故点M的轨迹是以点(6,0)为圆心、2为半径的圆.
反思利用圆的参数方程求动点的轨迹方程是常见的题型,是圆的
参数方程的主要应用之一.
参数方程与普通方程的互化
= 1 + 4cos,
【例 3】 指出参数方程 = -2 + 4sin (为参数)表示什么曲线.
解:(x-1)2+(y+2)2=16cos2t+16sin2t=16,
(2)在参数方程与普通方程的互化中,必须使x,y的取值范围保持
一致.
= 1 + 2cos,
【做一做 3-1】 将参数方程
(为参数)
= 2sin
化为普通方程为
.
-1 = 2cos,
解析:由
= 2sin,
两式平方相加,得(x-1)2+y2=4.
答案:(x-1)2+y2=4
【做一做3-2】 已知圆的方程为x2+y2-6y=0,将它化为参数方程.
解:由x2+y2-6y=0,
得x2+(y-3)2=9.
令x=3cos θ,y-3=3sin θ,
= 3cos,
所以圆的参数方程为
(为参数).
= 3 + 3sin
1.曲线参数方程的特点
剖析曲线的普通方程直接反映了一条曲线上的点的横、纵坐标
之间的联系,而参数方程是通过参数间接反映坐标变量x,y间的联系.
= (),
通方程,求出另一个变数与参数的关系 y=g(t),那么
= ()
就是所求的曲线的参数方程.
(3)消参的常用方法
①代入法.先由一个方程求出参数的表达式(用直角坐标变量表
常见曲线的参数方程
双曲线参数方程
04
双曲线标准形式及性质
标准形式
$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$ ($a, b > 0$)
性质
双曲线有两个焦点,位于x轴上,距离原点的距离为$c$,其中$c^2 = a^2 + b^2$。双曲线上的任意一点到两 焦点的距离之差为定值$2a$。
椭圆性质
椭圆有两个焦点,任意一点到两焦点 的距离之和等于长轴的长度;椭圆关 于中心对称,也关于两焦点所在的直 线对称。
椭圆参数方程推导
参数方程形式
$x = acostheta, y = bsintheta$,其中$theta$为参数,表 示与$x$轴的夹角。
推导过程
由椭圆的标准形式,设$x = acostheta$,代入椭圆方程可得 $y = pm bsqrt{1 - frac{x^2}{a^2}} = pm bsqrt{1 cos^2theta} = pm bsintheta$。由于椭圆关于$x$轴对称, 故取正号,得到椭圆的参数方程。
常见曲线的参数方程
汇报人:XX
contents
目录
• 曲线基本概念与分类 • 直线与圆参数方程 • 椭圆参数方程 • 双曲线参数方程 • 抛物线参数方程 • 空间曲线参数方程简介
曲线基本概念与分
01
类
曲线定义及性质
曲线定义
曲线是动点运动时,其位置随时 间连续变化所形成的轨迹。
曲线性质
曲线具有连续性、光滑性、可微 性等性质,这些性质决定了曲线 的形态和特性。
参数方程定义
参数方程是一种通过引入参数来表示 变量间关系的方程形式。在参数方程 中,曲线的坐标被表示为参数的函数 。
曲线的参数方程 课件
【解】 如图,设 OQ 是经过原点的任意一条弦,
OQ 的中点是 M(x,y),设弦 OQ 和 x 轴的夹角为 θ,取 θ 作
为参数,已知圆的圆心是 O′,O′(a,0)⊥OO′,那么|OM|=acos θ,
所以xy==||OMMM′′||==||OOMM||csoins
名师点评
(1)消去参数的常用方法. ①如果参数方程是整式方程,常用的消元法有代入消元法、 加减消元法. ②如果参数方程是分式方程,在运用代入消元或加减消元之 前要做必要的变形.
③另外,熟悉一些常见的恒等式至关重要,如 sin2α+cos2α =1,(ex+e-x)2-(ex-e-x)2=4,11+-kk222+1+2kk22=1 等.
θ=acos2θ, θ=acos θsin
θ,
(θ 为参数)
这就是所求轨迹的参数方程.
名师点评
引入参数 θ 后,根据圆的中点弦的性质结合变量 x,y 的几何 意义,用半径 a 及参数 θ 表示坐标 x,y 即可得出曲线的参数方程.
要点二 圆的参数方程的应用 1.圆的参数方程
(1)圆心在原点,半径为 r 的圆的参数方程为
标是(x,y),那么 θ=ωt(ω 为角速度).设|OM|=r,那么由三角
函数定义,有 cos ωt=xr,sin ωt=yr,即圆心在原点 O,半径为 r
的圆的参数方程为xy==rrcsions
ωt, ωt
(t 为参数),其中参数 t 的物理
意义是__质___点__作__匀__速__圆__周__运__动__的__时__刻_____.
特别提醒
参数 t 是联系 x,y 的桥梁,它可以有物理意义或几何意义, 也可以是没有明显实际意义的变数.
问题探究 1:参数方程与普通方程有什么区别和联系? 提示:
常见曲线的参数方程PPT课件
2a
x
.
6
y
o
Mt a
A
C
x
x AC OMsint y OCOMcost
a(t sint)
a(1cost)
这就是旋轮线的参数方程。
7
2. 旋轮线也叫摆线(单摆)
将旋轮线的一拱一分为二,并倒置成挡板
8
.
9
10
两个旋轮线形状的挡板, 使摆动周期与摆幅完全无关。 在17世纪,旋轮线即以此性质出名,所以旋轮线又称摆线。
a
o
a
xHale Waihona Puke 16y.a
o
来看动点的慢动作
a
x
17
y
a
o 来看动点的慢动作
a
x
2a
.
18
参数方程
y
r = a (1+cosθ) r
o
P
x
2a
.
19
y
5.星形线(圆内旋轮线)
一圆沿另一圆
内缘无滑动地
滚动,动圆圆
周上任一点
所画出的曲线。
–a
o
a 4
ax
20
y
.
–a
o
来看动点的慢动作
ax
21
y
–a
o
问答
问题提问与解答
HERE COMES THE QUESTION AND ANSWER SESSION 45
添加
添加
添加 标题
标题
标题
添加
标题
此处结束语
点击此处添加段落文本 . 您的内容打在这里,或通过 复制您的文本后在此框中选择粘贴并选择只保留文字
46
2.4一些常见曲线的参数方程
t1
,1
1 2
t1
),
B(1
3 2
t
2
,1
1 2
t
2
)
将直线的参数方程代入圆的方程 x2 y2 4
并整理得 t 2 ( 3 1)t 2 0
因为t1,t2是方程的解,从而t1t2=-2, 所以
| PA| | PB|
(
3 2
t1)2
(
1 2
t1
)2
(
3 2
t 2 )2
如下图轮子在滚动过程中会形成如下图形设b为圆心圆周上的定点为m开始时位于o处圆在直线上滚动时点m绕圆心滚动作圆周运动转过角后圆与直线相切于点a线段oa的长等于弧ma的长即oar这就是圆周上定点m在圆b沿直线滚动过程中满足的几何条件我们把该曲线的叫平摆线简称摆线又称旋轮线根据题意建立如图直角坐标系设圆的半径为r设开始时定点m在原点圆滚动了从点m分别作abx轴的垂线垂足为cd设点m的坐标为xy取为参数依题意得cbabacdmmcoadaoaodcossin10一
1.曲线 x 1 t 2, y 4t 3 与X轴交点的直角坐标为()
Α(1,4) Β( 25 ,0) C(1,3) D( 25 ,0)
16
16
2.直线 x 2 3t上对应两点间的距离为()
y -1 t
Α.1 Β. 10 C10 D2 2
x 3 t sin200
使用齿轮传递动力,由于渐开线齿形的齿 轮磨损少,传动平稳,制造安装较为方 便,因此大多数齿轮采用这种齿形.设计 这种齿轮,需要借助圆的渐开线方程.
1.当
时,θ 求π2出, 32渐π 开线
直线、圆、椭圆、双曲线的参数方程 - 2014-12-5
解得
2 10 2 10 , t2 2 2
由参数的几何意义: | AB || t1 t 2 | 10 | MA |g | MB || t1t 2 | 2
2.求直线方程: 例7:经过点M(2,1)做直线l,交椭圆
x2 y 2 1 16 4
于点A,B两点。如果M恰好为AB中点,求直线方程。
ab 2
2 2 例 5 、 例3:已知圆O : x ( y 2) 1上一点P与双曲线
x y 1上一点Q,求P、Q两点距离的最小值
2 2
解:设双曲线上点的坐 标为Q(sec , tan ) 先求圆心到双曲线上点 的最小距离 OQ sec (tan 2)
2 2 2 2 2 2
tan 1 tan 4 tan 4 2(tan 1) 3 5 当 tan 1, 即 或 时, OQ min 3 4 4 PQ min 3 1
解:设双曲线上点的坐 标为Q(sec , tan ) 先求圆心到双曲线上点 的最小距离 OQ sec (tan 2)
M为线段AB中点: t1 t 2 0 即有:
1 y 1 1 ( x 2) k tan 2 2 x 2y 4 0
2
教学过 程分析
例2、已知直线 l1 过定点 A(4,2 3) ,且倾
2 斜角为 3
(1)在直线上求一点 P ,使点 P 到点 A 的 距离为4.
0 0 0
0
0
0
0
若不顾及 t 的物理意义,允许 t 取负值,则 上式是直线的一种参数方程形式,t 为参数.
教学过 程分析
如何将直线的点斜式方程化为直 线的参数方程?
常见曲线的参数方程课件
=1+cos
.
. . . .
令 cos2 = 0, θ k
例3.求曲线 r sinθ 及 r 2 cos θ 分别所围成的图形的公 共 部分的面积 θ θ , 联立后得交点坐标 y
由 sin > 0, θ
y
P r
x
o
2a
.
y
5.星形线(圆内旋轮线)
一圆沿另一圆 内缘无滑动地 滚动,动圆圆
周上任一点
所画出的曲线。 –a
a 4
o
a x
y
.
–a
o
a x
来看动点的慢动作
y
–a
o
a x
来看动点的慢动作
.
y
直角坐标方程为:
x y a
2 3
2 3
2 3
P
.
.
–a
o
a x
极坐标方程为
x a cos3 3 y a si n
当 t 由 ,
动点由 (0,0) (0,0) 依逆时针方向画出叶形 线.
1. 曲线关于 y= x 对称 2. 曲线有渐进线 x+y+a = 0 3. 令 y = t x, 得参数式
3at x 3 t 1 2 3 at y t3 1
(- t , t -1)
a
x
.
x
来看动点的慢动作
参数方程 x = a (t – sint) y = a (1– cost)
y
t 的几何意义如图示
当 t 从 0 2,x从 0 2a 即曲线走了一拱
高二数学曲线的参数方程
x f (t)
y
g
.........................(2) (t)
并且对于t的每一个允许值,由方程组(2) 所确定的点M(x,y)都在这条曲线上,那么方 程(2)就叫做这条曲线的参数方程,联系变 数x,y的变数t叫做参变数,简称参数,相对 于参数方程而言,直接给出点的坐标间关系
的方程叫做普通方程。
探究:
如图,一架救援飞机在离灾区地面500m 的高处以100m/s的速度作水平直线飞行, 为使投放的救援物资准确落于灾区指定 的地面(不计空气阻力),飞行员应如 何确定投放时机呢?
y A
o
M(x,y)
x
一、方程组有3个变量,其中的x,y表示点的 坐标,变量t叫做参变量,而且x,y分别是t的 函数。
9
4
所以y2 4(1 cos2 ) 4sin2 即y 2sin
由参数的任意性,可取y 2sin,
所以椭圆 x2 y2 1的参数方程是 94
x
y
3 cos 2 sin
(为参数)
(2)把y 2t代入椭圆方程,得 x2 4t 2 1 94
于是x2 9(1 t 2 ), x 3 1 t 2
二、由物理知识可知,物体的位置由时间t唯 一决定,从数学角度看,这就是点M的坐标 x,y由t唯一确定,这样当t在允许值范围内连 续变化时,x,y的值也随之连续地变化,于是 就可以连续地描绘出点的轨迹。
三、平抛物体运动轨迹上的点与满足方程组 的有序实数对(x,y)之间有一一对应关系。
一般地,在平面直角坐标系中,如果曲线上 任意一点的坐标x,y都是某个变数t的函数
练习1:
以初速度v0发射炮弹,炮弹的发射角为,不
计空气阻力,试写出炮弹曲线的参数方程。
曲线的参数方程范文
曲线的参数方程范文
1.直线的参数方程
直线的参数方程可以表示为:
x=x1+t*(x2-x1)
y=y1+t*(y2-y1)
其中,(x1,y1)和(x2,y2)是直线上的两个点,t是参数的取值范围。
2.圆的参数方程
圆的参数方程可以表示为:
x = r * cos(t) + a
y = r * sin(t) + b
其中,(a,b)是圆心坐标,r是半径,t是参数的取值范围。
3.椭圆的参数方程
椭圆的参数方程可以表示为:
x = a * cos(t) + b
y = c * sin(t) + d
其中,(b,d)是椭圆中心坐标,a和c分别是椭圆在x轴和y轴上的半轴长度,t是参数的取值范围。
4.抛物线的参数方程
抛物线的参数方程可以表示为:
x=t
y=a*t^2+b*t+c
其中,a、b和c是抛物线的系数,t是参数的取值范围。
5.双曲线的参数方程
双曲线的参数方程可以表示为:
x = a / cosh(t) + b
y = c * sinh(t) + d
其中,a、b、c和d是双曲线的系数,t是参数的取值范围。
以上是常见曲线的一些参数方程,实际上,曲线的参数方程形式有很
多种,可以根据具体的曲线形状和要求选择合适的参数方程。
曲线的参数
方程形式相比于直角坐标方程形式更加灵活,能够表达出更多的曲线特性。
在计算机图形学、物理学、工程学和数学等领域,曲线的参数方程被广泛
应用。
(完整word)2.2常见曲线的参数方程
2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b +=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数) 2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。
设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。
那么点A 的横坐标为x ,点B 的纵坐标为y .由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ====3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。
3、椭圆的参数方程中参数ϕ的意义圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。
①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b+=>>中,令cos ,sin x y a b ϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >> 注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的参数方程中参数t的几何意义是:
t
表示参数t对应的点M
到定点M
的距离.
0
当M 0 M 与e同向时,t取正数;
当M 0 M 与e异向时,t取负数; 当点M 与M0重合时,t 0.
因为0 时,sin 0,所以方向向量e总是向上.
问题
x y
1 3t 2 4t
中
t
的能表示距离吗?
直线参数方程的标准形式 直线参数方程的标准形式的特点
问题5.
(1)写出直线x y 1 0的一个参数方程______
(2)直线
x
y
3 t sin 20(0 t为参数)的倾斜角是( t cos 200
B
)
A.200 B.700 C.1100 D.1600
(3)直线{x 2 2t (t为参数)上与点P(2,3) y 3 2t
距离等于 2的点的坐标是 ( C )
倾斜角 ,求这条直线的方程.
直线的普通方程为y y0 tan(x x0)
问:怎样建立直线的参数方程呢?
y
M(x,y)
M0(x0,y0)
e
(cos,sin)
O
所以,x该直线的参数方程为
x y
x0 y0
t t
cos(t为参数) sin
思考:
由M0M te,你能得到直线l的参数方程中 参数t的几何意义吗?
A(-4,5)
B(-3,4)
C(-3,4)或(-1,2) D(-4,5)或(0,1)
(4)直线{x 2 t cos 300 (t为参数)的倾斜角
y 3 t sin 600
等于( D )
A.300 B.600 C . 450 D.1350
(5):已知直线
L
的参数方程是
x 1 3t y 2 4t
问题 4.已知抛物线 x2=4y 上的点 P(非原点)处切线与 x、 y 轴分别交于 Q、R 点,F 为抛物线的焦点。 (Ⅰ) 若PQ PR , 求的值;
(Ⅱ)若抛物线上的点 A满足PF FA .求△APR 面积的
最小值,并写出此时过 P 点的切线方程。
y
.F
P
A。
Q x
R
直线的参数方程
问题:已知一条直线经过点 M0( x0 , y0 ) ,
常见曲线的参数方程
椭圆的参数方程
问题1.如图,在椭圆x2+8y2=8上求一点P,使P到直线
l:x-y+4=0的距离最小.
y
O
x
P
问题2.已知A,B两点是椭圆 4x2 9y2 36 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
抛物线的参数方程 抛物线 y2 2 px 的参数方程为 Nhomakorabea(
t为参数),求
直线与直线 2x-y+1=0 的交点 P 和点(-1,2)的距离.
A,B中点坐标呢?
y
A M0(-1,2)
B
O
x
(1) M1M2 t1 t2
(2) t t1 t2 2
问题7.如图,已知AB、CD是中心为点O的椭圆
的两条相交弦,交点为P,弦AB、CD与椭圆长 轴的夹角分别为∠1、∠2,且∠1=∠2,求证: 求证:|PA|·|PB|=|PC|·|PD|