2.2一元二次方程的解法(2)
《一元二次方程的解法》教案
![《一元二次方程的解法》教案](https://img.taocdn.com/s3/m/93f296e94b73f242326c5f54.png)
2课 题教 学目 标教 学设 想2.2 一元二次方程(1)1、掌握因式分解法解一元二次方程的基本步骤.2、会用因式分解法解一元二次方程.【教学重点】用因式分解法解一元二次方程.【教学难点】例 3 方程中含有无理系数,需将常数项 2 看成( 2 ) ,才能分解因式,是本节教学的难点.教 学 程 序 与 策 略一、复习引入1、将下列各式分解因式:(1)y 2 - 3 y (2)4 x 2 - 9(3)(3x - 4)2 - (4 x - 3)2 (4) x 2 - 2 2 x + 2教师指出:把一个多项式化成几个整式的积的形式叫做因式分解.2、你能利用因式分解解下列方程吗?(例 1)(1)x 2 - 3x = 0(2)25 x 2 = 16请中等学生上来板演,其余学生写在练习本上,教师巡视.之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.(板书课题)二、新课学习1、归纳因式分解法解一元二次方程的步骤:教师首先指出:当方程的一边为 0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书)① 若方程的右边不是零,则先移项,使方程的右边为零;② 将方程的左边分解因式;③ 根据若 M·N=0,则 M=0 或 N=0,将解一元二次方程转化为解两个一元一次方程.2、讲解例 2.(1)解下列一元二次方程:(1)(x - 5)(3x - 2) = 10(2) x - 2 = x ( x - 2) (3)(3x - 4)2 = (4 x - 3)2教师在讲解中不仅要突出整体的思想:把 x-2 及 3x-4 和 4x-3 看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要1 2用“或”,而不能用“且.(2)想一想:将第( ),(2),(3)题的解分别代人原方程的左、右两边,等式成立吗?教 学 程 序 与 策 略(3)归纳用因式分解法解的一元二次方程的基本类型:①先变形成\一般形式,再因式分解:②移项后直接因式分解.在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式.讲解例 3. 解方程 x 2 = 2 2 x - 2在本例中出现无理系数,要注意引导学生将将常数项 2 看成 ( 2 ),另外对于方程中出现两个相等的根,教师要做好板书示范.3、补充例 4 若一个数的平方等于这个数本身,你能求出这个数吗?首先让学生设出未知数,列出方程( x 2 = x ),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去 x ,因为这里的 x 可以是 0.三、巩固练习课本第 31 页课内练习.四、体会和分享能说出你这节课的收获和体验让大家与你分享吗?先由学生自由发言,教师再投影演示:1、能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的积;2、用分解因式法解一元二次方程的一般步骤:(1)将方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积;(3)令每一个因式为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.3、用分解因式法解一元二次方程的理论依据:两个因式的积为 0,那么这两个因式中至少有一个等于0.4、用分解因式法解一元二次方程的注意点:①必须将方程的右边化为零;②方程两边不能同时除以含有未知数的代数式.5、数学思想:整体思想和化归思想.五、课后作业1、书本作业题2、作业本教后反思课题教学目标教学设想2.2一元二次方程的解法(2)(1)理解直接开平方法解一元二次方程的依据是平方根的意义。
2.2一元二次方程的解法(2)_黄有宇
![2.2一元二次方程的解法(2)_黄有宇](https://img.taocdn.com/s3/m/7c0c4f08a6c30c2259019e1c.png)
1、一元二次方程的一般形式:
ax bx c 0 (a 0) 2 ax 二次项, a 二次项系数
2
bx 一次项, b
一次项系数
c
常数项
2、一元二次方程的解法: (1)因式分解法 (2)直接开平方法 (3)配方法
配方法解一元二次方程的基本步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:将解写成X1= ,X2= 的形式。
★一除、二移、三配、四化、五解、六定.
例3、用配方法解下列一元二次方程
(1) 2x2+4x-3=0
(2) 3x2-8x-3=0
(3) 2-
1 3
x2=
5 3
x
(4) 0.1x2+x+0.5=0
用配方法解 2 x 2 x 1 0 时,配方结果正确的是(
D
)
1 2 3 ( A) ( x ) 2 4 1 2 17 (C ) ( x ) 4 16
两边都加上,得x2-2x+1=1/5+1 ∴(x-1)2=6/5 ∴x-1=± 6 5
30 解得:x=1± 5
30 ∴x1=1+ ,x2=15
30 5
完善“配方法”解方程的基本步骤:
1、把二次项系数化为1(方程的两边同时除以二次项
系数a)
2、 (移项)把常数项移到方程的右边; 3、(配方)把方程的左边配成一个完全平方式; 4、(开方)利用开平方法转化为两个一元一次方程; 5、(求解)求出原方程的两个解. 6、(定解)将解写成X1= ,X2= 的形式。
2.2一元二次方程的解法(2)导学案
![2.2一元二次方程的解法(2)导学案](https://img.taocdn.com/s3/m/b1571c15c281e53a5802ff0a.png)
2.2 一元二次方程的解法(2)班级__________________ 姓名__________________〖学习目标〗1.巩固用配方法解一元二次方程的基本步骤;2.会用开平方法解二次项系数的绝对值不为1的一元二次方程。
〖学习重点与难点〗重点:用配方法解二次项系数的绝对值不是1的一元二次方程。
难点:二次项系数为小数或分数时,用配方法解一元二次方程是本节学习的难点。
一、复习引入(把握时间,看看你的复习情况)1.用配方法解下列方程:(1) 162=+x x (2)11342-=x x2.回顾:上个星期学习的配方法解方程有哪些步骤?3.思考:当二次项系数不为1时,我们该怎么办?比如 11052+=x x ,此时二次项系数不为1,你觉得怎么用配方法来解?4.用配方法解二次项系数不为1的一元二次方程,有哪些步骤?跟之前比较,多了哪些步骤?二、例题精讲(先思考,然后和老师一起完成)例3 用配方法解下列一元二次方程:⑴03422=-+x x ⑵03832=--x x⑶x x 353122=-⑷05.01.02=++x x三、巩固练习1.用配方法解方程0122=--x x 时,配方结果正确的是( ) (A )43)21(2=-x (B )43)41(2=-x (C )1617)41(2=-x (D )169)41(2=-x2.用配方法解下列方程:⑴03622=++x x ⑵05722=+-x x四、当堂检测(仔细思考,总结解题的步骤)用配方法解方程: ⑴132)1(=--n n n ⑵02222=--x x⑶02142=++x x ⑷08121432=--x x总结:用配方法解二次项系数不为1的一元二次方程,有哪些步骤?你又掌握了哪些?五、小结这节课,你收获了哪些知识?。
八年级数学下册 2.2 一元二次方程的解法课件(2) (新版)浙教版
![八年级数学下册 2.2 一元二次方程的解法课件(2) (新版)浙教版](https://img.taocdn.com/s3/m/f1ac2704f90f76c660371a75.png)
解:方程(fāngchéng)两边
同除x以22+,2x得-3/2=0 移项,得 x2+2x=3/2 方程两边都加上1,得
x2+2x+1=5/2
即:(x+1)2=5/2
∴x+1= 5或x+1=- 5 ∴x1= -1+ 5 或x2= -1-
解:方程(fāngchéng)两边同
除以x3,2-8得/3x-1=0 移项,得 x2-8/3x=1
②方程两边同时加一次项系数一半的平方,得
x2+bx+
(
b 2
)2
= -c + ( b )2
2
即: (x+
b 2
)2=
b2-4c 4
③当 b2-4c>0 时,就可以通过开平方法求出方程
的根.
第二页,共9页。
做一做
解下列(xiàliè)一元二次方程: 1.x2- 6x=- 8 2.x2=10x - 30 3.- x2+5x+6=0
ba x+
c a
=0
2.移项,得 x2+
b a
x=
-
c a
3.方程两边都加上(
b 2a
)2 ,得
x2+
ba x+( 2ba)2=
b2-4ac 4a2
4.用开平方法(fāngfǎ),解得答案。
第六页,共9页。
练一练
1.用配方法(fāngfǎ)解下列方程: 2x2+6x+3=0 2x2-7x+5=0
第七页,共9页。
第三页,共9页。
试一试
解方程 5x2=10x+1
2.2 一元二次方程的解法(2)
![2.2 一元二次方程的解法(2)](https://img.taocdn.com/s3/m/8d3300de26fff705cc170a25.png)
首页
上一页
下一页
末页
你能解决这 个问题吗? 3倍有可能相等吗?如果相 一个数的平方与这个数的
x 2 3x.
小亮是这样解的 :
小明是这样解的 :
等,这个数是几?你是怎样求出来的? 小明,小亮都设这个数为x,根据题意得
解 : 方程x 2 3x两 边都同时约去 x, 得. x 3.
(一次项系数为0)(容易x+5
2
25 2 x - 5
x-
2 用配方法解二次项系数是 1 的一元二次方程在时,添 4x+___=(______) 上的常数项与一次项系数之间存在的关系: 2 2 2
常数项是一次项系数的一半的平方 x +6x+___=(______) x-
6x+___=(_______)
2
首页 上一页 下一页 末页
探索发现二:
解方程: x 6 x 1 0
2
只要形成
x m
2
n(n 0)
x 6 x 9 10 0, ( x 3) 10, x 3 10
2 2
x1 3 10, x2 3 10
我们把一元二次方程通 过配方法转换成:
2
形 为
x -2x=8
首页
上一页
下一页
末页
练一练:添上一个适当的数,使下
1 x+1 2 2 x +2x+___=(______) 4 x+2 2 9 x+3
列的多项式成为一个完全平方式:
1 4 x-1 2 x -x - 2
2x+___=(______)
湘教版九年级数学上册课件:2.2 一元二次方程的解法 (共35张PPT)
![湘教版九年级数学上册课件:2.2 一元二次方程的解法 (共35张PPT)](https://img.taocdn.com/s3/m/62e6dba39e314332396893e8.png)
反过来,如果d和h是方程 x2 + bx + c = 0 的两 个根,则方程的左边可以分解成
x2 + bx + c = (x - d )(x – h)= 0.
我们已经学习了用配方法、公式法和因式分解法 解一元二次方程,在具体的问题中,我们要根据方 程的特点,选择合适的方法来求解.
如何选择合适的方法来解一元二次方程呢?
x b b2 4ac ( b2 - 4ac ≥0) 2a
我们通常把这个式子叫作一元二次方程的求根公式.
由求根公式可知, 一元二次方程的根由方程的系
数a,b,c 决定, 这也反映出了一元二次方程的根与 系数a,b,c之间的一个关系.
运用一元二次方程的求根公式直接求每一个一元二 次方程的根,这种解一元二次方程的方法叫作公式法.
第2章 一元二次方程
2.2 一元二次方程的解法
2.2 一元二次方程的解法 —配方法
教学重、难 点
教 学 重 点 : 运 用 开 平 方 法 解 形 如 ( x+m ) 2=n(n≥0)
的方程;领会降次—转化的数学思想.
教学难点:通过根据平方根的意义解形如 x2=n 的方 程,将知识迁移到根据平方根的意义解形如(x+m)2 = n(n≥0)的方程.
用配方法解一元二次方程的一般步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
例 市区内有一块边长为15米的正方形绿地,经城市规 划,需扩大绿化面积,预计规划后的正方形绿地面积将 达到289平方米,这块绿地的边长增加了多少米?
解:这里 a 1 b 7 c 18
22.2.2 一元二次方程的解法公式法(2)
![22.2.2 一元二次方程的解法公式法(2)](https://img.taocdn.com/s3/m/881adca7dd3383c4bb4cd284.png)
5.已知关于x的方程 ax 4 x 1 0 (1)当a取什么值时,方程有两个不相等的实数根; (2)当a取什么值时,方程有两个相等的实数根; (3)当a取什么值时,方程没有实数根.
6.已知关于x的一元二次方程
mx 3m 1 x 2m 1 0 ( )
2
其根的判别式的值为1,求m的值及方程的根.
2
9.若关于x的方程 实数根,求k的取值范围为
10、已知关于x的一元二次方程(k-1)x2-
有
有实数根,求k的取值范围
k
1 x+ =0 4
8、已知关于x的方程ax 2a 1 x a 1 0, ( ) ( )
2
根据下列条件分别求出a的值。
(1)方程有一个根是0;
(2)方程有两个相等的实数根;
b b 2 4ac x 2a (1) 9 1 3 2 2 4
x1 1 1 x2 2
(2)将方程化为一般形式 2x 6x 3 0
2
a2
2
b6
2
c3
b 4ac 6 4 2 3 12 0
结 果 约 分
b b 4ac 6 2 3 x 2a 2 2 3 3 3 3 x1 x2 2 2
用公式法解一元二次方程的一般步骤:
b c 1、把方程化成一般形式,并写出 a、、 的值。
2、求出
b 4ac 的值
2
2
特别注意:当 b2 4ac 0 时无解
b b 4ac 3、代入求根公式 : x 2a
x 4、写出方程的解: x1、 2
用公式法解下列方程: 5 2 1.x1 ; x2 1. () x 3x 5 0 12
2。2一元二次方程的解法(共3)
![2。2一元二次方程的解法(共3)](https://img.taocdn.com/s3/m/d2bb23105f0e7cd1842536b4.png)
2.2 一元二次方程的解法(1)【例1】用开平方法解下列方程:(1) 3x 2-4=0; (2) (2x -1)2-9=0. 【变式训练】1. 用开平方法解下列方程: (1) x 2-2=0;(2) 4(6x -1)2=36.【例2】用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为………………( )A. 44)2(22mn m x -=+B.44)2(22n mm x -=+C.24)2(22n mm x -=+ D.24)2(22mn m x -=+【变式训练】2. 用配方法解方程:x 2+2x -2=0.【例3】用配方法证明对于任何实数x ,二次三项式x 2-22x +5-2的值恒大于零. 【变式训练】3. 求二次三项式x 2+5x +7的最小值. 练习:1.一元二次方程(x -1)2=2的解是……………………………………( )A. x 1=-1-2,x 2=-1+2B. x 1=1-2,x 2=1+2C. x 1=3,x 2=-1D. x 1=1,x 2=-32. 下列一元二次方程中,能直接用开平方法解的是……………………………( ) A. (2x +3)2=2008 B. (x -1)2=1+x C. x 2=x D. x 2+1=03. 如果x 2+bx+c =(x -32)2,则b ,c 的值是…………………………………………( )A. b =34,c =94 B. b =32-,c =94 C. b =34-,c =94 D. b =34-,c =94-4. 已知关于x 的一元二次方程(x +m )2=n 有实数根,则…………………………( ) A. n >0 B. n ≥0 C. n ≠0 D. n 为任何实数5. 如果关于x 的方程x 2+kx =2配方后得到(x -1)2=3,那么k 的值为 . 6. 若2(x 2+3)的值与3(1-x 2)的值互为相反数,则x 的值为 . 7. 选择适当的方法解下列一元二次方程:(1) x 2+2x =0; (2) x 2+4x -1=0; (3) (x -3)2=(5x +2)2.8. 若(x 2+y 2-5)2=4,则x 2+y 2= .9. 如果关于x 的二次三项式x 2+mx+m 是一个完全平方式,求m 的值.10. 已知代数式x 2+y 2+22x -4y +42,这个代数式是否存在最大值或最小值?请说明理由.11.用长为23cm 的铁丝围成一个面积为S(c m 2)的矩形. (1)设矩形的长为xcm ,写出用x 的代数式表示S 的等式; (2)求当x 为多少时,S 最大,其最大值是多少?12.填上适当的数,使下列等式成立,然后与O 比较大小:(1)∵x 2-2x +3=(x -______)2+______, ∴x 2--2x +3______0; (2)∵2x 2+8x +8=2(x +______)2,∴2x 2+8x +8______0.13.一块长方形草地,长比宽多5m ,面积是104m 2,设草地宽为xm ,依题意列得方程为 __________________,解得它的长为______m ,宽为______m .2.2 一元二次方程的解法(2)【例1】用配方法解方程:2x 2-x -1=0. 【变式训练】1. 用配方法解方程:2x 2+5x -3=0.【例2】阅读下面的材料,然后再解答后面的问题: 例:解方程:x 2-|x |-2=0.解:(1) 当x ≥0时,原方程化为x 2-x -2=0,解得x 1=2,x 2=-1(不合题意,舍去); (2) 当x <0时,原方程化为x 2+x -2=0,解得x 1=-2,x 2=1(不合题意,舍去); ∴原方程的解是x 1=2,x 2=-2.请参照原方程的解法,解方程:x 2-|x -1|-1=0. 【变式训练】2.阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ……①,那么原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4. 当y =1时,x 2-1=1,∴x 2=2,∴x =2±;当y =4时,x 2-1=4,∴x 2=5,∴x =5±,故原方程的解为x 1=2,x 2=2-,x 3=5,x 4=5-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用_________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x 4-x 2-6=0. 练习1. 将二次三项式3x 2+8x -3配方,结果为………………………………………( )A. 3(x +38)2+355 B. 3(x +34)2-3 C. 3(x +34)2325-D. (3x +4)2-192. 如果ax 2+4x +c =(2x +m )2,则a ,c ,m 的值分别为………………………( ) A. a =4,c =12,m =14B. a =4,c =1,m =1C. a =4,c =12,m =1 D. a =1,c =4,m =13. 已知(x +y )(x +y -2)-8=0,则x+y 的值是…………………………( ) A. –4或2 B. –2或0 C. 2或-3 D. 4或-24. 已知三角形的两边长分别是2,3,第三边的长是方程x 2-5x +4=0的根,那么这个三角形的周长为……………………………………………………………………( )A. 1或4B. 6或9C. 6D. 95.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( )A .x(x +1)=1035;B .x(x -1)=1035×2;C .x(x -1)=1035;D .2x(x +1)=1035 6.一块长方形草地,长比宽多5m ,面积是104m 2,设草地宽为xm ,依题意列得方程为 __________________,解得它的长为______m ,宽为______m . 7. 用配方法解下列一元二次方程: (1) x 2-x -1=0;(2) 3x 2-5x +1=0.8. 在正数范围内定义一种新运算“★”,其规则为:a ★b =ab+a+b . 根据这个规则,请你求方程x ★(x +1)=11的解.9. 用换元法解方程11+-+x x xx +3=0时,设xx 1+=y ,则原方程可化为…………( )A. y 2-y +3=0B. y 2+3y -1=0C. 3y 2+y -1=0D. 3y 2-y +1=0 10. 若方程2x 2-8x +7=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是 .11.将进货单价为40元的商品按50元出售时,能卖出500个,已知这样商品每个涨价1元,其销售量就减少10个,则为了赚得8000元利润,售价应是为多少?12.已知x 1,x 2 是关于x 的方程(x -2)(x -m )=(p -2)(p -m )的两个实数根. (1)求x 1,x 2 的值;(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.2.2 一元二次方程的解法(3)【例1】用公式法解下列方程:(1) x 2-3x +2=0; (2) 2x 2-6=2x . 【变式训练】1. 用公式法解下列方程:(1) x 2-2x -3=0; (2) 4x 224-x =-2. 【例2】给下列方程选择适当的方法:(1)32312=⎪⎭⎫ ⎝⎛-y 可选用 法;(2) 5x 22-x =0可选用 法; (3) x 2-2x =9999可选用 法; (4)(5x -1)2=3(5x -1) 可选用 法; (5)5x 2-11x +5=0可选用 法. 【变式训练】2. 用适当的方法解下列方程: (1) 2x 2+12x =0; (2) 4(x +3)2=(x -2)2; (3) x 2+4x =21.【例3】若关于x 的一元二次方程x 2+2x -k =0没有实数根,求k 的取值范围. 【变式训练】3. 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是……………( )A. 210x +=B.2210x x ++=C. 2230x x ++=D. 2230x x +-=练习1.方程x(x 2+1)=0的实数根的个数是 ( ) A .1 B .2 C .3 D. 02.在方程ax 2+bx +c =0(a≠0)中,当b 2-4ac =0时,方程的解是( ) A .±b 2a B .±b a C .-b 2aD .b2a3. 一种药品经两次降价,由每盒50元调至40.5元,则每次降价的百分率是 ( ) A. 5% B .10% C .15% D .20% 4.已知(x 2+y 2+1)2=4,则x 2+y 2=______.5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值是( )A. 1m <B. 1m >-C.1m >D.1m <- 6. 如果方程x 2+bx+c =0的两根互为相反数,那么…………………………………( ) A. b =0 B. c =0 C. b =0,c <0 D. b =0,c >07. 一元二次方程2210x x --=的根的情况为………………………………( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根8. 选择适当的方法解下列方程:(1) (2)(3)20x x ++=; (2) x 2+3=3(x +1); (3) (x -1)2-5=0.9. 若x =0是方程0823)2(22=-+++-m m x x m 的解,则m = . 10. 先阅读,再填空解答:方程x 2-3x -4=0的根是:x 1=-1,x 2=4,则x 1+x 2=3,x 1x 2=-4; 方程3x 2+10x +8=0的根是:x 1=-2,x 2=34-,则x 1+x 2=310-,x 1x 2=38.(1) 方程2x 2+x -3=0的根是:x 1= ,x 2= ,则x 1+x 2= ,x 1x 2= ;(2) 若x 1,x 2是关于x 的一元二次方程ax 2+bx+c =0 (a ≠0,且a ,b ,c 为常数)的两个实数根,那么x 1+x 2,x 1x 2与系数a ,b ,c 的关系是:x 1+x 2= ,x 1x 2= ;(3) 如果12x x ,是方程x 2+x -3=0的两个根,根据(2)所得结论,求x 12+x 22的值.11. 甲、乙两同学分别解同一道一元二次方程,甲把一次项系数看错了,解得方程的两根为-2和3,乙把常数项看错了,解得两根为31-,则原方程是…………()1+和3A. x2+2x-6=0B. x2-2x+6=0C. x2+2x+6=0D. x2-2x-6=0 12.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-l=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①解得y1=1,y2=4当y=1时,x2-1=1.∴x2=2.∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5。
第02讲 一元二次方程的解法(配方法和因式分解法)(人教版)(原卷版)-【暑假自学课】2024年新九
![第02讲 一元二次方程的解法(配方法和因式分解法)(人教版)(原卷版)-【暑假自学课】2024年新九](https://img.taocdn.com/s3/m/7c80e73d7f21af45b307e87101f69e314232fa4c.png)
第02讲一元二次方程的解法(配方法和因式分解法)【人教版】·模块一配方法解一元二次方程·模块二因式分解法解一元二次方程·模块三课后作业模块一配方法解一元二次方程配方法解一元二次方程:①化简——把方程化为一般形式,并把二次项系数化为1;①移项——把常数项移项到等号的右边;①配方——两边同时加上一次项系数的一半的平方,把左边配成x2+2bx+b2的形式,并写成完全平方的形式;①开方,即降次;①解一次方程。
【【【1 【【【【【【【【【①①1.1①方程4x2−mx+1=0的左边是一个完全平方式,则m等于()A.−4B.−4或4C.−2或−2D.4①①1.2①把方程x2−12x−3=0化成配方式(x−ℎ)2=k的形式,则下列符合题意的是()A.(x−6)2=33B.(x−6)2=39C.(x−12)2=147D.(x−12)2=141①①1.3①将代数式x2−10x+5配方后,发现它的最小值为()A.−20B.−10C.−5D.0①①①1.1①用配方法解方程x2−8x=3时,方程的两边同时加上一个实数_____________,使得方程左边配成一个完全平方式.①①①1.2①已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是()A.x2-8x+(-4)2=31B.x2-8x+(-4)2=1C.x2+8x+42=1D.x2-4x+4=-11①①①1.3①填上适当的数使下面各等式成立:①x2−5x+____=(x−____)2;①x2+4x+____=(x+____)2;①x 2+23x +_____=(x +____)2; ①x 2−ba x +____=(x −____)2. 【【【2 【【【【【【【【【【【①①2.1①用配方法解下列方程,其中应在两边都加上16的是( )A .x 2﹣4x+2=0B .2x 2﹣8x+3=0C .x 2﹣8x=2D .x 2+4x=2①①2.2①某数学兴趣小组四人以接龙的方式用配方法解一元二次方程,每人负责完成一个步骤.如图所示,老师看后,发现有一位同学所负责的步骤是错误的,则这位同学是( )A .甲B .乙C .丙D .丁①①2.3①用配方法将方程3x 2−4x −2=0写成形如a (x +m )2+n =0的形式,则m ,n 的值分别是() A .m =23,n =103 B .m =−23,n =−103C .m =2,n =6D .m =2,n =−2①①①2.1①用配方法解下列方程时,配方有错误的是( )A .x 2−4x −117=0化为(x −2)2=121B .x 2−6x +7=0化为(x −3)2=16C .2t 2−9t +7=0化为(t −94)2=2516 D .5x 2−4x −1=0化为(x −25)2=925①①①2.2①把方程x 2−4x −5=0化成(x +a )2=b 的形式,则a 、b 的值分别是( )A .2,9B .2,7C .−2,9D .−2,7①①①2.3①将方程x 2−mx +8=0用配方法化为(x −3)2=n ,则m +n 的值是_______.①①①2.4①用配方法解下列方程(1)3x 2−4x −2=0;(2)6x 2−2x −1=0;(3)2x 2+1=3x ;(4)(x −3)(2x +1)=−5.因式分解法解一元二次方程: 模块二 因式分解法解一元二次方程①移项,将所有得项都移到左边,右边化为0;①把方程得左边分解成两个因式得积,可用得方法有提公因式、平方差公式与完全平方公式;①令每一个因式分别为零,得到一元一次方程;①解一次方程。
2122 一元二次方程的解法(二)公式法(解析版)
![2122 一元二次方程的解法(二)公式法(解析版)](https://img.taocdn.com/s3/m/3702fb96168884868662d60e.png)
21.2.2一元二次方程的解法(二)公式法夯实双基,稳中求进公式法解一元二次方程知识点管理 归类探究 1 1.一元二次方程的求根公式一元二次方程()200ax bx c a ++=≠,当240b ac =->时,242b b ac x a-±-=.2.一元二次方程根的判别式一元二次方程根的判别式:24b ac =-.①当240b ac =->时,原方程有两个不等的实数根242b b acx a-±-=;②当240b ac =-=时,原方程有两个相等的实数根; ③240b ac =-<当时,原方程没有实数根. 3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程()200ax bx c a ++=≠的步骤:①变形:把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求△:求出24b ac -的值;④定根:240b ac -≥若,则利用公式242b b acx a-±-=求出原方程的解;若240b ac -<,则原方程无实根.题型一:一元二次方程的求根公式【例题1】(2021·全国九年级)关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是( )A B C D 【答案】D【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x .故选D.变式训练【变式1-1】(2020·福建省福州延安中学九年级月考)x =是下列哪个一元二次方程的根( )A .23210x x +-=B .22410x x +-=C .2x 2x 30--+=D .23210x x --= 【答案】D【分析】根据一元二次方程的求根公式解答即可.【详解】解:对于一元二次方程()200ax bx c a ++=≠,方程的根为:2b x a-=.因为x =3a =,2b =-,1c =-,所以对应的一元二次方程是:23210x x --=.故选:D .【变式1-2】(2019·全国八年级课时练习)解下列方程,最适合用公式法求解的是( ) A .2(26)10x =+- B .2(14)x =+ C .2121x = D .2350x x =--【答案】D【分析】解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法,根据每种方法的特点逐个判断即可.【详解】解:A 、用因式分解法好,故本选项错误; B 、用直接开平方法好,故本选项错误;C 、变形后用直接开平方法好,故本选项错误;D 、用公式法好,故本选项正确.故选D .【变式1-3】(2019·全国九年级课时练习)用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A .x 1、2B .x 1、2C .x 1、2D .x 1、2【答案】D【详解】∵3x 2+4=12x , ∵3x 2-12x+4=0, ∵a=3,b=-12,c=4,∵x =,故选D.题型二:公式法解一元二次方程【例题2】(2021·黑龙江齐齐哈尔市·九年级二模)解方程:()86x x +=-.【答案】14x =-24x =-【分析】将方程化为一般式,再利用公式法进行求解即可. 【详解】解:原方程可化为:2860x x ++=, ∵1,8,6a b c ===, ∵2841640∆=-⨯⨯=,∵4x ==-,∵14x =-24x =-【点睛】本题考查一元二次方程的解法,熟练掌握公式法解一元二次方程是解题的关键. 变式训练【变式2-1】(2021·黑龙江齐齐哈尔市·九年级其他模拟)解方程:2x 2=3x -1 【答案】x 1=1,x 2=12【分析】将二次方程整理为二次方程的一般式,根据二次方程根的判别式可知该方程有两个不相等的实数根,代入求根公式计算即可.【详解】解:原式整理为:2x 2-3x +1=0 ∵∵=b 2-4ac =10>, ∵方程有两个不相等的实数根,∵x =, 故1314x +=或2314x -=得x 1=1;x 2=12. 【点睛】本题主要考查一元二次方程的解法,可以根据根的判别式判断根的情况,熟知公式法解一元二次方程的方法是解题关键.【变式2-2】(2021·黑龙江齐齐哈尔市·九年级三模)解方程:()2121x x +=- 【答案】方程没有实数根【分析】首先去括号合并同类项,化为一般式,根据0<可知,方程没有实数根. 【详解】解:去括号化简得:2+20x ,224041280b ac =-=-⨯⨯=-<,∵方程没有实数根.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 【变式2-3】(2020·永善县墨翰中学九年级月考)解方程.2820x x --= 【详解】(1)∵1a =,8b =-,2c =- ∵2(8)4(2)720∆=--⨯-=> ∵方程有两个不相等的实数根.∵4x ===±∵14x =+24x =-判别式与方程的根的关系题型三:判别式求根的个数【例题3】(2021·江苏苏州市·苏州草桥中学九年级一模)定义运算:21m n mn mn =-+☆.例如:232323217=⨯-⨯+=☆,则方程40x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根【答案】B【分析】根据新定义运算法则以及即可求出答案. 【详解】解:由题意可知:4∵x =4x 2-4x +1=0, ∵∵=16-4×4×1=0, ∵有两个相等的实数根, 故选:B .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型. 变式训练【变式3-1】(2021·河南二模)关于x 的一元二次方程()2220x p x p -++=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .无实数根【答案】C2 1.一元二次方程根的判别式(1)∵>0∵方程有两个不相等的实数根; (2)∵=0∵方程有两个相等的实数根; (3)∵<0∵方程没有实数根.2. 根据一元二次方程方程根的情况可以确定△的取值范围.3. 通过配方法对△进行变形可以得到含参方程的解的情况特别说明:(1)一元二次方程根的情况与判别式∵的关系是可以双向互相推导的.(2)考查一元二次方程根的情况的时候,注意讨论参数的取值,要注意题目中是否是关于未知数的一元二次方程,因此一定不要忘记讨论二次项系数为0时的情况.【分析】先计算根的判别式得到∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,再利用非负数的性质得到∵≥0,然后可判断方程根的情况.【详解】解:∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,∵(p﹣2)2≥0,即∵≥0,∵方程有两个实数根.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与∵=b2﹣4ac有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.x x-=-的根的情况,正确的是()【变式3-2】(2021·河南九年级二模)关于x的方程()53A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.x x-=-,即x2-5x+3=0【详解】解:∵()53∵Δ=(-5)2−4×1×3=25-12=13>0,∵原方程有两个不相等的实数根;故选择:A【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.【变式3-3】(2021·河南焦作市·九年级二模)已知关于x的一元二次方程2-+=,其中b,c在x bx c20数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【答案】A【分析】由数轴可知:0b >,0c <,然后计算根的判别式的值即可得出答案. 【详解】由数轴可知:0b >,0c <; ∵280b c ∆=->; ∵有两个不相等的实数根 故选:A【点睛】本题主要考查的是一元二次方程的根的判别式,熟练掌握一元二次方程的根的判别式的方法、某点在数轴上的位置确定其正负是解题的关键,属于基础知识题. 题型四:根据根的个数求参数的取值范围【例题4】(2021·南京二模)若一元二次方程20x x a -+=有实数根,则a 的取值范围是____________. 【答案】14a ≤【分析】根据判别式大于等于0即可求解. 【详解】解:一元二次方程20x x a -+=有实数根 ∵2(1)40a ∆=--≥,解得14a ≤ 故答案为14a ≤. 【点睛】此题考查了一元二次方程的根与系数的关系,熟练掌握相关基础知识是解题的关键. 变式训练【变式4-1】(2021·山东济南市·八年级期末)若关于x 的一元二次方程220x x k -+=有两个实数根,则k 的取值范围是________. 【答案】1k ≤【分析】根据一元二次方程判别式的性质,列一元一次不等式并求解,即可得到答案. 【详解】∵关于x 的一元二次方程220x x k -+=有两个实数根 ∵()2240k ∆=--≥ ∵1k ≤故答案为:1k ≤.【点睛】本题考查了一元二次方程、一元一次不等式的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.【变式4-2】(2021·济南期末)关于x 的一元二次方程2210-+=ax x 有实数根,则a 的取值范围是( ) A .1a ≤ B .1a < C .1a ≤且0a ≠ D .1a <且0a ≠【答案】C【分析】根据一元二次方程根的判别式可得440a -≥,然后求解即可. 【详解】解:∵关于x 的一元二次方程2210-+=ax x 有实数根, ∵24440b ac a ∆=-=-≥,且0a ≠, 解得:1a ≤且0a ≠; 故选C .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 【变式4-3】(2020·四川巴中市·中考真题)关于x 的一元二次方程x 2+(2a ﹣3)x +a 2+1=0有两个实数根,则a 的最大整数解是( ) A .1 B .1- C .2- D .0【答案】D【分析】根据一元二次方程根的情况,用一元二次方程的判别式代入对应系数得到不等式计算即可. 【详解】解:∵关于x 的一元二次方程22(23)10x a x a +-++=有两个实数根,∵()22(23)410a a ∆=--+≥,解得512a ≤, 则a 的最大整数值是0.故选:D .【点睛】本题主要考查一元二次方程根的判别式,解题的关键是能够熟练地掌握和运用一元二次方程根的判别式.题型五:根的判别式综合应用【例题5】(2020·全国九年级课时练习)已知关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0. (1)试讨论该方程的根的情况并说明理由;(2)无论m 为何值,该方程都有一个固定的实数根,试求出这个根.【答案】(1)关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0有实数根;(2)无论m 为何值,该方程都有一个固定的实数根,这个根为3【分析】(1)求出判别式的值即可判断.(2)由无论m 为何值,该方程都有一个固定的实数根,又m (x 2-4x+3)-2x+6=0,推出x 2-4x+3=0,且-2x+6=0即可解决问题.【详解】解:(1)对于关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0,∵∵=[﹣(4m+2)]2﹣4m (3m+6)=16m 2+16m+4﹣12m 2﹣24m =4m 2﹣8m+4=4(m ﹣1)2≥0, ∵关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0有实数根. (2)∵无论m 为何值,该方程都有一个固定的实数根, 又∵m (x 2﹣4x+3)﹣2x+6=0, ∵x 2﹣4x+3=0,且﹣2x+6=0 解得x =3,∵无论m 为何值,该方程都有一个固定的实数根,这个根为3【点睛】本题考查根的判别式,一元二次方程的定义等知识,解题的关键是熟练掌握基本知识. 变式训练【变式5-1】(2020·全国九年级课时练习)已知关于x 的一元二次方程2(1)20x k x k +-+-=. (1)求证:方程总有两个实数根;(2)任意写出一个k 值代入方程,并求出此时方程的解. 【答案】(1)详见解析;(2)120,1x x ==-【分析】(1)先求出∵的值,再根据∵的意义即可得到结论; (2)任意取一个k 值代入,然后根据一元二次方程的解法解答即可. 【详解】解:(1)2(1)4(k 2)k ∆=---269k k =-+ ()230k =-≥∵0∆≥,∵方程总有两个实数根. (2)当2k =∵20x x +=解得120,1x x ==-【点睛】本题主要考查了一元二次方程根的判别式,正确理解公式是解答本题的关键. 【变式5-2】(2016·甘肃白银市·中考真题)已知关于x 的方程x 2+mx+m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)12;(2)证明见解析. 【详解】试题分析:一元二次方程ax 2+bx+c=0(a≠0)的根的判别式∵=b 2﹣4ac :当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根. (1)直接把x=1代入方程x 2+mx+m ﹣2=0求出m 的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可. 解:(1)根据题意,将x=1代入方程x 2+mx+m ﹣2=0, 得:1+m+m ﹣2=0, 解得:m=12; (2)∵∵=m 2﹣4×1×(m ﹣2)=m 2﹣4m+8=(m ﹣2)2+4>0,∵不论m 取何实数,该方程都有两个不相等的实数根.【变式5-3】(2015·四川南充市·中考真题)已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数. (1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由) 【答案】(1)见解析;(2)P=0、2、-2. 【详解】解:(1)原方程可化为x 2﹣5x+4﹣p 2=0, ∵∵=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∵不论p 为任何实数,方程总有两个不相等的实数根;(2)原方程可化为x 2﹣5x+4﹣p 2=0,∵ ∵方程有整数解,为整数即可,∵p 可取0,2,﹣2时,方程有整数解.【点睛】本题考查了一元二次方程的根的情况,判别式∵的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.【真题1】(2011·广东深圳市·中考真题)如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.【答案】1【详解】本题需先根据已知条件列出关于m 的等式,即可求出m 的值.解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根∵∵=b 2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为1【真题2】(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k < C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“∵>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩, 解得:14k >-且0k ≠; 故选:C .【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.链接中考【真题3】(2021·辽宁营口市·中考真题)已知关于x 的一元二次方程2210x x m +-+=有两个实数根,则实数m 的取值范围是_________.【答案】2m ≤【分析】利用一元二次方程根的判别式即可求解.【详解】解:∵一元二次方程2210x x m +-+=有两个实数根,∵()4410m ∆=--+≥,解得2m ≤,故答案为:2m ≤.【点睛】本题考查一元二次方程根的情况,掌握一元二次方程根的判别式是解题的关键.【真题3】(2021·四川雅安市·中考真题)若直角三角形的两边长分别是方程27120x x -+=的两根,则该直角三角形的面积是( )A .6B .12C .12或2D .6或2 【答案】D【分析】根据题意,先将方程27120x x -+=的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程27120x x -+=得13x =,24x =当3和4分别为直角三角形的直角边时,面积为134=62⨯⨯;当4为斜边,3=13=22;则该直角三角形的面积是6或2, 故选:D . 【点睛】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.【真题5】(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥ 【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x -+++=有实数根,∵()()22121410k k ∆=+-⨯⨯≥-,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.【拓展1】(2021·东莞外国语学校九年级一模)已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求∵ABC 的周长.【答案】(1)证明见解析;(2)∵ABC 的周长为5.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a 为底边和a 为腰两种情况,当a 为底边时,b=c ,可得方程的判别式∵=0,可求出k 值,解方程可求出b 、c 的值;当a 为一腰时,则方程有一根为1,代入可求出k 值,解方程可求出b 、c 的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式∵=[-(k+2)]²-4×2k=k²-4k+4=(k -2)²≥0,∵无论k 取任何实数值,方程总有实数根.满分冲刺(2)当a=1为底边时,则b=c,∵∵=(k-2)²=0,解得:k=2,∵方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∵∵ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∵1-(k+2)+2k=0,解得:k=1,∵方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∵1、1、2不能构成三角形,综上所述:∵ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式∵的关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.。
浙教版数学八下课件2.2一元二次方程解法
![浙教版数学八下课件2.2一元二次方程解法](https://img.taocdn.com/s3/m/93a984fc5fbfc77da269b186.png)
(3) x2 1(a 0) a
例3、解方程:16(x-3)2=25 分析:用换元法,(x-3)看成一个整体。 练习1、解方程9(2x+3)2=(x-3)2
2、方程ax2=c有实根的条件是————
配方法 先把方程的常数项移到方程的右边,再把左边 配成一个完全平方式,如果右边是非负数,就 可以进一步通过直接开平方法来求出它的解.
(1)当每辆车的月租金定3600元时,能租出多少辆?
100-(3600-3000)÷50=88(辆)
(2)当每辆车的月租金定为多少元时,租赁公司的月收益
(租金收入扣除维护费)可达到306600元?
设月租金定为x元,得:
(x 150)(100 x 3000) 306600 (3)3x2=4
x1+x2=3;x1·x2=0 x1+x2=0;x1·x2=-4/3
例3 已知方程x2-(k+1)x+3k=0的一个根是2,求 它的另一个根和k的值.
解:设方程的另一个根为x1 把x=2代入方程,得 4-2(k+1)+3k=0, 解这个方程,得 k=-2,
9.某种药品原价为36元/盒,经过连续两次降价后售价
为25元/盒。设平均每次降价的百分率为x,根据题意所
列方程正确的是() C
A.36(1-x)2=36-25 B.36(1-2x)=25
C.36(1-x)2=25
D.36(1-x2)=25
12.如果关于x的一元二次方程kx2-x+1=0有两个不相 等的实数根,那么k的取值范围是() D
怎样解形如与ax 2 0
ax2 c 0
的一元二次方程呢?
2.2一元二次方程的解法(2)课件2004年浙教版八年级下
![2.2一元二次方程的解法(2)课件2004年浙教版八年级下](https://img.taocdn.com/s3/m/7ca923df80eb6294dd886cc2.png)
(1)2 x 18 0
2
(2)(3 x 1) 4
2
倍 速 课 时 学 练
(3)2( x 1) 8
2
一般地,对于形如
(a≥0)的 x a
2
方程,根据平方根的意义,可解得
x a, x a
1 2
倍 速 课 时 学 练
这种解一元二次方程的方法叫做开平 (square root extraction)法
1 (1)5(t 1) 0 5
2
(2)(2 x 3) 5
2
倍 速 课 时 学 练
1、方程 x 2 0.25 的根是
;
2、方程 2 x
2
18 的根是
2
;
;
3、 方程(2 x 1) 9 的根是
倍 速 课 时 学 练
课内练习P30 T3
x 10 x 25 9 变形为 ( x 5) 9
2
(2) x 6 5 x
2
倍 速 课 时 学 练
课内练习P30 T4
倍 速 课 时 学 练
2
2
x 6x 7 0
2
倍 速 课 时 学 练
变 形 为
这种方 程怎样 解?
的形式.(a为非负常数)
2
a
把一元二次方程的左边配成一 个完全平方式,然后用开平方法 求解,这种解一元二次方程的方 法叫做配方法.
倍Hale Waihona Puke 速 课 时 学 练例题2(1) y 6 y 4 0
21.2.2_一元二次方程的解法_公式法(2)
![21.2.2_一元二次方程的解法_公式法(2)](https://img.taocdn.com/s3/m/5cb7e73c3968011ca3009190.png)
要点、考点
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根. (4)当Δ≥0时,方程有两个实数根 2.根据根的情况,也可以逆推出Δ的情况,这方面 的知识主要用来求字母取值范围等问题.
Байду номын сангаас
4m 4m 4m 8
2 2
m 2且m 1
课时训练
1.一元二次方程x2+2x+4=0的根的情况 是 ( D ) A.有一个实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根 2.方程x2-3x+1=0的根的情况是( A ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 没有实数根 D.只有一个实数根 3.下列一元二次方程中,有实数根的是 ( C ) A.x2-x+1=0 C.x2+x-1=0 B.x2-2x+3=0 D.x2+4=0
4.关于x的方程k2x2+(2k-1)x+1=0有实数根,则下列结论 正确的是 ( D ) A.当k=1/2时,方程两根互为相反数 B.当k=0时,方程的根是x=-1 C.当k=±1时,方程两根互为倒数 D.当k≤1/4时,方程有实数根 5. 若关于 x 的一元二次方程 mx2-2x+1=0 有实数根,则 m 的取值范围是 ( D) A.m<1 B. m<1且m≠0 C.m≤1 D. m≤1且m≠0
当m-1≠0时,
方程有两个相等的实数根; 方程有两个不相等的实数根;
(3) m为何值时,关于x的一元二次方程 m2x2+(2m+1)x+1=0有两个不等实根? 解:△=(2m+1)2-4m2
2.2一元二次不等式的解法(2)
![2.2一元二次不等式的解法(2)](https://img.taocdn.com/s3/m/6fe3a5ecf90f76c661371a50.png)
2.2一元二次不等式的解法 (2)成功的要领(学习要求):1.通过阅读,使学生理解区间的概念,并能用区间来表示不等式的解集.2.通过变式教学,学会用一元二次不等式解决几种类型的数学问题,体会数学知识之间的内在联系,形成逻辑思维能力;3.初步学会用不等式解决一些简单的实际问题,培养学生的分析能力和解决实际问题的能力.4.培养学生的逆向思维能力和创造能力.成功的准备(课前预习):(一)、用区间来表示不等式的解集1. 用区间来表示不等式的解集设a ,b 都为实数,并且a<b,我们规定:(1) 集合{x b x a ≤≤}叫做闭区间,表示为 ;(2) 集合{x b x a <<}叫做开区间,表示为 ;(3) 集合{x b x a <≤}或{x b x a ≤<}叫做半开半闭区间,分别表示为 ;(4) 把实数集R 表示为 ;把集合{x a x ≥}表示为 ;把集合{x a x >}表示为 ;把集合{x b x ≤}表示为 ;把集合{x b x <}表示为 ;在上述所有的区间中,a ,b 叫做区间的 ;2. 区间在数轴上的表示X x [a ,b] (,b )X x[a ,b ) (a ,b]X x[a ,+∞) (a ,+∞)X x(-∞,b] (-∞,b )(二)、一元二次不等式()20(0)0ax bx c a ++><>的解集:设一元二次方程20ax bx c ++=的两根为2121x x x x ≤且、,ac b 42-=∆,成功的探索(电子笔记):例1.解不等式组:3x 2-7x-10≤0, ①2x 2-5x+2>0 ②例2.(1)写出一个一元二次不等式,使它的解集为(-1,3).(2)若不等式ax 2+bx+3>0的解为-21<x<3,求实数a,b 的值.例3.当k 为何值时,关于x 的一元二次不等式x 2+(k-1)x+4>0的解集为(-∞,+∞)?例4.国家为了加强对烟酒生产的宏观管理,除了应用税收外,还征收附加税。
2.2一元二次方程的解法(二)
![2.2一元二次方程的解法(二)](https://img.taocdn.com/s3/m/3954869cdd88d0d233d46acd.png)
2、一元二次方程的求根公式:
例 1.用公式法解下列方程: (1)2 x2+x-6=0; (2) x 2 x 4 0 ;
2
二、探索新知
(3)5x2-4x-12=0;
(4)4x2+4x+10=1-8x.
练习 1.用公式法解方程: (1) x2-6x+1=0;
(2)2x2-x=6;
(3)4x2-3x-1=x-2;
2
1 0. 8
2.用适当的方法解下列方程: (1) ( y 2)2 3 ; (2) (2 x 3)2 3(4 x 3) ;
课后作业Байду номын сангаас(满分:100 分) (3) x 3x 2 0 ;
2
(4) ( x 1)( x 2) 5 .
3.已知 y1=2x +7x-1,y2=6x+2,当 x 取何值时 y1=y2?
九上数学学案
内容
4.2 一元二次方 程的解法(二)
课型
新授课
主备人 执教人
1、会用公式法解一元二次方程。 教学目标 2、了解一元二次方程根的判别式。 3、灵活运用一元二次方程的各种解法解方程. 重点和难点 教具准备 教学过程 会用公式法解一元二次方程 灵活运用一元二次方程的各种解法解方程. 学案. 师生活动 1、我们已经学习了一元二次方程的哪些解法?
(5) (x+1) (x-1)= 2 2 x ; (6)x(x+8)=16;
(7) (x+2) (x-5)=1;
(8) (2x+1)2=2(2x+1).
3
九上数学学案
1.用公式法解下列方程: (1) x 2 x 2 0 ; (2) 3x 4 x 7 0 ;
2 2
(3) 2 y 2 8 y 1 0 ; (4) 2 x 3 x
第课时用配方法解二次项系数为的一元二次方程
![第课时用配方法解二次项系数为的一元二次方程](https://img.taocdn.com/s3/m/38bf788131b765ce040814a3.png)
1.经过回顾完全平方公式,理解配方法的意义,能把一 解:二次项系数为1的一元二次方程的配方可以在方程两边同时加上一次项系数的一半的平方,配方时要保证等式两边相等(即等式成立);
2.在理解配方法概念的基础上,能够用配方法解二次项系数为1的一元二次方程. 配方法:将方程配方、整理后就可以直接根据平方根的意义来求解了.这种解一元二次方程的方法叫总结】 配方的依据和方法 (1)配方的依据:完全平方公式; (2)配方的方法:(1)观察二次项系数是不是1,若是1,则执行 下一步;(2)在二次三项式中加上一次项系数一半的平方,再 减去这个数;(3)将(2)中的式子整理为“(x±m)2±n”的形式.
一元二次方程的解法
目标二 会用配方法解二次项系数为1的一元二次方程
一元二次方程的解法
解:有错误.从第②步开始出错,错误的原因是配方时只在方程的左边加 上了一次项系数一半的平方,而方程的右边没有加.
一元二次方程的解法
2.二次项系数为1的一元二次方程的配方与二次项系数为1 的二次三项式的配方有什么不同?
解:二次项系数为1的一元二次方程的配方可以在方程两边同时加上一次项系数 的一半的平方,配方时要保证等式两边相等(即等式成立);而二次项系数为1的 二次三项式的配方只能先加上一次项系数的一半的平方,再减去一次项系数的 一半的平方,配方时不能改变代数式的值的大小.
一元二次方程的解法
目标突破
目标一 会把一个二次三项式配成一个完全平方式与一个常数的和、差的形式
例1 教材补充例题 根据配方的方法填空: (1)x2+8x+____16____=(x+_____4___)2; (2)x2-6x+7=(x2-6x+9)+7-____9____=(x-____3____)2+ ____(-__2_) _.
第02课 一元二次方程的解法(二)配方法(教师版)
![第02课 一元二次方程的解法(二)配方法(教师版)](https://img.taocdn.com/s3/m/025c68dbbd64783e08122bf5.png)
故选:A.
【点睛】
本题考查了一元二次方程的解法---配方法,熟练掌握配方的步骤是解题的关键;配方法的一般步骤:(1)把
常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加上一次项系数的绝对值一半的平
方.
3.用配方法解一元二次方程 2x2 - 4x - 2 = 1 的过程中,变形正确的是( )
7.将一元二次方程 x2 8x 5 0 化成 (x a)2 b (a,b 为常数)的形式,则 a,b 的值分别是( )
A. 4 ,21
B. 4 ,11
C.4,21
D. 8 ,69
【答案】A
【分析】
根据配方法步骤解题即可.
【详解】
解: x2 8x 5 0
移项得 x2 8x 5 ,
配方得 x2 8x 42 5 16 ,
D. 3x2 -4x
2
0
化为
x
2 3
2
10 9
【答案】C
【分析】
根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加
上一次项系数一半的平方分别进行配方,即可求出答案.
【详解】
A、由原方程,得 x2 2x 99 0 ,
等式的两边同时加上一次项系数 2 的一半的平方 1,得 x 12 100 ;
【解析】
解:﹣8x2 + 12x-5 =﹣8(x2﹣ 3 x)﹣5 2
=﹣8[x2﹣ 3 x+( 3 )2]﹣5+8×( 3 )2
24
4
=﹣8(x﹣ 3 )2﹣ 1 ,
4
2
∵(x﹣ 3 )2≥0, 4
∴﹣8(x﹣ 3 )2≤0, 4
《一元二次方程的解法》公式法优秀获奖教案
![《一元二次方程的解法》公式法优秀获奖教案](https://img.taocdn.com/s3/m/b8bb577d0029bd64793e2c4d.png)
按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
2.2 一元二次方程的解法2.2.2 公式法教学目标1、理解求根公式法与配方法的联系.2、会用求根公式法解一元二次方程.3、注意培养学生良好的运算习惯.重点难点重点:会运用求根公式法解一元二次方程.难点:由配方法导出一元二次方程的求根公式.教学过程(一)创设情境由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2+bx+c=0(a ≠0)使用这些步骤,然后求出解x的公式?这样做了以后,我们可以运用这个公式来求每一个具体的一元二次方程的解,取得一通百通的效果.(二)探究新知按课本P.16的方式引导学生,用配方法导出一元二次方程ax2+bx+c=0(a≠0),当b2-40c≥0时的求根公式为:a acbbx24 2-±-= (b2-4ac≥0).并让学生知道,运用一元二次方程的求根公式直接求每一个一元二次方程的解,这种解一元二次方程的方法叫公式法.(三)讲解例题1、展示课本P.16~P.17例10(1),(2),按课本方式引导学生用公式法解一元二次方程,并提醒学生注意a,b,c的符号.2、引导学生完成P.17例10(3)的填空,并提醒学生在确定a,b,c的值时,先要将一元二次方程式化为一般形式.3、引导学生归纳用公式法解一元二次方程的基本步骤:首先要把原方程化为一般形式,从而正确地确定a,b,c的值;其次要计算b2-4ac的值,当b2-4ac≥0时,再用求根公式求解. (四)应用新知课本P.18练习,第(1)~(4)题.(五)课堂小结1、熟记一元二次方程的求根公式,并注意公式成立的条件:a≠0,b2-4a c≥0.2、熟悉用公式法解一元二次方程的基本步骤.3、公式法是解一元二次方程的通法,有普遍的适用性,即可以解任何一元二次方程.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
2.2(2)一元二次方程的解法
![2.2(2)一元二次方程的解法](https://img.taocdn.com/s3/m/f1558f03eff9aef8941e0662.png)
5 ∴ x 1= 3
或x2= -1/3
用配方法解一元二次方程的基本步骤: 用配方法解一元二次方程的基本步骤: ax2+bx+c=0
1.方程两边同时除以 得 x2+ b x+ c =0 方程两边同时除以a,得 方程两边同时除以 a a 2.移项,得 移项, 移项 x 2+ b x= - c a a
b2-4ac b 2 b 3.方程两边都加上 2a ) ,得 x2+ a x+( b )2= 4a2 方程两边都加上( 方程两边都加上 2a 4.用开平方法,解得答案。 用开平方法,解得答案。 用开平方法
2.2一元二次方程的解法 一元二次方程的解法(2) 一元二次方程的解法
x 2 + bx + c = 0
复习回顾
一元二次方程开平方法和配方法(a=1)解法的 一元二次方程开平方法和配方法( ) 区别与联系. 区别与联系
开平方法:形如 开平方法:形如x2=b(b≥0);(x-a)2=b(b≥0)。 ( )( - ) ( )。 配方法: 先把方程 移项得x 配方法:①先把方程x2+bx+c=0移项得 2+bx=-c. 移项得 ②方程两边同时加一次项系数一半的平方,得 方程两边同时加一次项系数一半的平方, x2+bx+ ( b )2 = -c + ( b )2 2 2 2-4c b ) 2= b 即: (x+ 2 4 ③当 b2-4c>0 时,就可以通过开平方法求出 方程的方程 (1) 2x2+4x-3=0
解:方程两边同除以2,得 方程两边同除以 ,
(2) 3x2-8x-3=0
解:方程两边同除以2,得 方程两边同除以 ,
2022年初中数学精品《因式分解法解一元二次方程2》word版精品教案
![2022年初中数学精品《因式分解法解一元二次方程2》word版精品教案](https://img.taocdn.com/s3/m/c1db6f2c195f312b3069a5c7.png)
2.2 一元二次方程的解法2.2.3 因式分解法第1课时因式分解法解一元二次方程教学目标1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、会用因式分解法解某些一元二次方程。
3、进一步让学生体会“降次”化归的思想。
重点难点重点:掌握用因式分解法解某些一元二次方程。
难点:用因式分解法将一元二次方程转化为一元一次方程。
教学过程(一)复习引入1、提问:(1) 解一元二次方程的基本思路是什么?(2) 现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?2、用两种方法解方程:9(1-3x)2=25(二)创设情境说明:可用因式分解法或直接开平方法解此方程。
解得x1= ,,x2=-。
1、说一说:因式分解法适用于解什么形式的一元二次方程。
归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、想一想:展示课本1.1节问题二中的方程0.01t2-2t =0,这个方程能用因式分解法解吗?(三)探究新知引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。
把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0解得t l=0,t2=200。
t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。
(四)讲解例题1、展示课本P37例3。
按课本方式引导学生用因式分解法解一元二次方程。
要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。
3、展示课本P39。
让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。
(五)应用新知课本P39练习。
(六)课堂小结1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1
添上一个适当的数,使下列的多项式成为一个完全平方式
x2+2x+__1_=(___x_+__1__)2
x2-2x+__1_=(____x_-__1_)2
x2+4x+__4_=(___x_+__2__)2
x2-4x+__4_=(___x_-__2__)2
x2+6x+__9_=(___x_+__3__)2
.
11
当x取何值时,代数式 x2-14x+49有最小值, 最小值是多少?
.
12
一般地,对于形如 x2 a(a0) 的方程,根据平方
根的定义,可解得 x1 a,x2a
这种解一元二次方程的方法叫做开平方法.
开平方法解一元二次方程的基本步骤:
(1)将方程变形成 x2 a(a0)
(2)x1 a,x2a
.
)2
2
结合书本P31,32页的内容,请回答:
1. 开平方法的步骤是什么? 2. 配方法的步骤是什么? 3. 开平方法与配方法、因式分解法的联系是什么? 4. 什么时候用开平方法和配方法?
.
3
用因式分解法解下列方程:
1、x2-4=0;
2、(x+1)2-25=0.
解:(x+2)(x-2)=0, 解:[(x+1)+5][(x+1)-5]=0,
若二次项系数为负数,则先把二次项系数化为正数。
.
10
如何选用较简 单的方法解一 元二次方程?
2x2=8 等形式 2x2+x=0等形式 x2 +2x-1=0等形式 (一次项系数为0)(容易因式分解) (容易配方)
适合选用直 接开平方法
(X2=4)
适合选用因式分解法
X(2x+1)=0
适合选用配方法
(x2 +2x=1)
一移,二配2,三开4 ,四求,五定
开方配:求根方移解据:项方定::平解把程解方常一两:根数写元边项意出一都移义原次加到,方方上方程程一的的两次解右边项.边开系平数方
一半的平方
.
9
学以致用
用配方法解下列方程:
(1)x2+12x=-9 (2) x243x11
(3) 2x2-5x+3=0 (4)-x2+4x-3=0
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
这两个方程是否还有其它的解法?
.
4
x 9 2
思考:怎样解这种形式的方程?
从平方根的意义上来思考,一个数x的平方等于9, 那么这个数是多少?
解:x 9
x13x,23
一般地,对于形如 x2 a(a0 )的方程,根据平方根的
这里的x可以
是表示未知数 的字母,也可 以是含未知数 的代数式.
13
把一元二次方程的左边配成一个完全平
方式,右边是一个非负常数然后用开平方法求
解,这种解一元二次方程的方法叫做配方法.
配方法解一元二次方程的基本步骤:
1、移项:把常数项移到方程的右边
2、配方:方程两边都加上一次项系数的一半
3、开方:根据平方根意义,方程两边开平方 4、求解:解一元一次方程
开平方法解一元二次方程的基本步骤:
(1)将方程变形成 x2 a(a0)
这里的x可以
是表示未知数 的字母,也可
(2)x1 a,x2a .
以是含未知数 的代数式. 6
学以致用 选择适当的方法解下列方程
(1) x2810 (2) 2x2 50
(3) (x12)4 (4) x210x-16
.
7
你能用开平方法解下列方程吗? x2-10x=-16
x2-6x+__9_=(____x_-_3__)2
x2+10x+_2_5_=(__x__+__5__)2 x2-10x+_2_5_=(__x__-_5___)2
以上式子有什么共同的特点?
1.二次项系数都是( 1 )
2.常数项是一次项系数的( 一半的平方 )
x 2 b (x b ) 2 (
2
x
.
b 2
5、定解:写出原方程的解. .
14
1.将 x2 4 5x2变成 (xm)2 n 的形式 的结果为____________
2.如果x2-6xy+n是一个完全平方式, 那么n是_______.
.
15
解方程:
(1 )x (2 1 )2 5 (x2 1 ) 4 0
(2 )x ( 1 )4(x 1 )260
x a,xa 定义,可解得
1
2
思考:开平方法适合
这种解一元二次方程的方法叫做开平方法. 解什么样的方程
.
5
解下列方程:
(1)3x2-27=0;
(2)(2x-3)2=7
解:(1)移项,得 3x2 27 解:
两边都除以3,得 x2 9 2x 37,或 2x 3-7
x 9
x1-3,x23
73 73 x1 2 ,x2 2
.
16
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
把一元二次方程的左边配成一个完全平方式, 右边为一个非负常数,然后用开平方法求解,这种 解一元二次方程的方法叫做配方法.
.
8
用如 配x2方x5: 法2x 解5 x52x 2一 2 5元6 x6 二6052次2 方x程5 2x x1的 7 2521 或 步或 xx 骤2725 2 : 67 2
(x 5)2 49 原方程的x1解 1或 为 x2: 6