《小波分析基础》

合集下载

小波分析入门

小波分析入门

小波分析的基本知识屠2001.8.2A.基本知识A1.小波(WAVELET)分类1.原始小波:(1).高斯gaus, (2).莫来特morlet, (3).墨西哥帽mexihat2.无限正则小波浪:(4).梅耶meyr (5).离散梅耶dmey3.正交和紧支集小波:(6).达比切斯dbN(Daubechies), (7).对称symN(symlets), (8).coifN4.双正交和紧支集小波: (9).双正交biorNr (10). 逆双正交rbioNr.Nd5.复小波: (11).复高斯cgauN (12)复莫来特 cmor Fb-Fc (13)复香农shan Fb-Fc(14).复频率B样条 fbspM Fb-Fc注1:db1小波也称哈尔Harr小波,也是原始小波注2.symlet小波是Daubechies小波的改进,由不对称改成近似对称注3.紧支集即函数在有限区域内不为零A2.小波函数和尺度(SCALE)函数1.小波函数(psi)--由高通滤波器确定,产生小波分解的细节 D(detail,)2.尺度函数(phi)--由低通正交镜象滤波器确定, 产生小波分解的逼近 A(approximation)A3.小波分解:S(SIGNAL)=A1+D1=(A2+D2)+D1=(A3+D3)+D2+D1=(A4+D4)+D3+D2+D1=...A4.小波包(WP=Wavelet Packet)分解:S=A1+D1=(AA2+DA2)+(AD2+DD2)=(AAA3+DAA3)+(ADA3+DDA3)+(ADA3+DDA3)+...A5.WAVEMENU: 开始图象用户界面GUI工具A6.WAVEDEMO: 小波工具箱演示B小波变换B1.一维连续小波变换:CWT coefs=cwt(S,scales,"wname')coefs=cwt(S,scales,'wname','plot')coefs=cwt(S,scales,'wname','plotmode')scales--正实数,如1:32,[64 32 16:-2:2],...COLORMENU,COLORBARB2.单级一维离散小波变换:DWT,UPCOEF[Ca1,Cd1]=dwt(x,'wname'), Ca1--逼近系数 Cd1--细节系数[Ca1,Cd1]=dwt(x,Lo_D,Hi_D)a1=upcoef('a',Ca1,'wname',1,L); a1--逼近 L--length(x)d1=upcoef('d',Cd1,'wname',1,L); d1--细节 L--length(x)B3.单级一维逆离散小波变换:IDWT, x=idwt(Ca1,Cd1,'wname')B4.多级一维离散小波分解:WAVEDEC,APPCOEF,DETCOEF,WRCOEF[C,L]=wavedec(x,N,'wname'),N--级(LEVEL)数 C--分解(DECOMPOSITION)矢量L--辅助操作(Bookkeeping)矢量B5.APPCOEF:提取一维小波逼近系数,A=appcoef(C,L,'wname',N)B6.DETCOEF:提取一维小波细节系数,A=detcoef(C,L,'wname',N)B7.WRCOEF:X=wrcoef('type',C,L,'wname',N).type=a,逼近;type=d,细节B8.WAVEREC(多级一维离散小波重构) 重构--RECONSTRUCTIONx=waverec(C,L,'wname')x=waverec(C,L,Lo_R,Hi_R)B9.WFILTERS--小波滤波器[Lo_D,Hi_D,Lo_R,Hi_R]=wfilters('wname'),'wname'=db,coif,sym,bior,rbioB10.DYADDOWN:二进(Dyadic)降采样 Y=dyaddown(x,EVENODD)EVENODD--even,y(k)=x(2k), --odd,y(k)=x(2k-1)B11. DYADUP:二进增采样(填零), y=dyadup(x,EVENODD)B12. WKEEP:保留矢量或矩阵的一部分C.小波包变换C1. WPDEC一维离散小波包分解:[T,D]=wpdec(x,N,'wname',E,P), T--树结构Tree structure, D--数据结构E-熵 Entropy E='shannon','threshold','norm','log energy','user'P-附加参数'threshold' 'sure':P=threshold(0<=P)'norm':P=power,1<=P<2)C2. WPREC一维离散小波包重构x=wprec(T,D) T--小波包树(TREE) N—节点(NODE)C3. WPCOEF小波包系数x=wpcoef(S,D,N)D.MALLAT算法(FWT)E.一维试验信号(b1(t): b2(t): )oislop(ramp+color noise):1=<t<=499,(t/500)+b2(t);500=<t<=1000,1+b2(t)2.freqbrk:1=<t<=500,sin(0.03t);501=<t<=1000,sin(0.3t)3. heavysin4.nelec(2000 电力消耗)5.leleccum(4320分(72小时)电力消耗6.linchirp(线性快扫)7.mfreqbrk8.mishmash 9.nearbrk(1~499,511~1500)10.noisbloc 11.noisbump12.noischir 13.noisdopp 噪声多普勒14.noismima 15.noispol: 在[1 1000]间 t^2-t+1+b1(t) 16.noissin:sin(0.03t)+b1(t) 17.qdchirp18.quachip19.scddvbrk:二阶导数不连续,t<0,exp(-4t^2);t>=0,exp(-t^2),t=[-0.5 0.5]20.sinfract 21.sinper8 22.sumlichr23.sumsin:sin(3t)+sin(0.3t)+sin(0.03t)24.trsin:1=<t<=500,((t-1)/500)+sin(0.3t);501=<t<=1000,((1000-t)/500)+sin(0.3t)25.vonkoch:分形,科克雪花26.warma:AR(3),b2(t)=-1.5*b2(t-1)-0.75*b2(t-2)-0.125*b2(t-3)+b1(t)+0.527.wcantor:分形,康托(三分取一)曲线28.whitnois:在[-0.5 0.5]间的均匀白噪声29.wnoislop:1=<t<=499,(3t/500)+b1(t);500=<t<=1000,3+b1(t)30.wntrsin:1=<t<=500,((t-1)/500)+sin(0.3t)+b1(t);501=<t<=1000,((1000-t)/500)+sin(0.3t)+b1(t)31.wstep:1=<t<=500,s=0;501=<t<=1000,s=20.32.cuspamax(1024):x=linspace(0,1.1024);y=exp(-128*((X-0.3).^2))-3*(abs(x-0.7).^0.433.brkintri:顶端折线三角34.wcantsym(2188):对称康托集disp('******)*************MALLAT算法示例***********************************************')x=[1.8 1.0 -1.0 -1.8];[Lo_D,Hi_D]=wfilters('db1','d');tmpo1=conv(x,Lo_D); [1.8 1.0 -1.0 -1.8]*[0.7071 0.7071]tmpo2=conv(x,Hi_D);Ca1=dyaddown(tmpo1);Cd1=dyaddown(tmpo2);disp('低通分解滤波器系数Lo_D 高通分解滤波器系数Hi_D');disp( [(Lo_D)' (Hi_D)'] ),disp('卷积conv(x,Lo_D 卷积conv(x,Hi_D)');disp( [(tmpo1)’ (tmpo2)’] ),disp('一级逼近系数Ca1 一级细节系数Cd1');disp( [(Ca1)’ (Cd1)’] ),% Ca1=1.9799 -1.9799 Cd1= 0.5657 0.5657[Lo_R,Hi_R]=wfilters('db1','r');disp('低通重构滤波器系数Lo_R=');disp(Lo_R),disp('高通重构滤波器系数Hi_R=');disp(Hi_R),tmp1=dyadup(Cd1);tmpo3=conv(tmp1,Hi_R);d1=wkeep(tmpo3,4);tmp2=dyadup(Ca1);tmpo4=conv(tmp2,Lo_R);a1=wkeep(tmpo4,4);disp( '一级逼近a1 一级细节d1 ');DISP( [(a1)’ (d1)’] ),% 一级逼近a1= 1.4000 1.4000 -1.4000 -1.4000% 一级细节d1= 0.4000 -0.4000 0.4000 -0.4000figure(1),a0=a1+d1;subplot(521),bar(x,0.1),title('原始波形x=[1.8 1.0 -1.0 -1.8]'), grid,axis([0 5 -2 2]),subplot(522),bar(a0,0.1),title('分解后重构波形s=a1+d1'),grid,axis([0 5 -2 2])subplot(523),bar(Ca1,0.1),title(' 逼近系数Ca1=[1.98 -1.98]'),grid,axis([0 5 -2 2])subplot(524),bar(Cd1,0.1),title(' 细节系数Cd1=[0.566 0.566]'),grid,axis([0 5 0 1])subplot(525),bar(a1,0.1),title(' 一级逼近a1=[1.4 1.4 -1.4 -1.4]'),grid,axis([0 5 -2 2])subplot(526),bar(d1,0.1),title(' 一级细节d1=[0.4 -0.4 0.4 -0.4]'),grid,axis([0 5 -1 1])subplot(527),bar(Lo_D,0.1),title('低通分解滤波器系数Lo_D'),grid,axis([0 5 0 1])subplot(528),bar(Hi_D,0.1),title('高通分解滤波器系数Hi_D'),grid,axis([0 5 -1 1])subplot(5,2,9),bar(Lo_R,0.1), title('低通重构滤波器系数Lo_R'),grid,axis([0 5 0 1])subplot(5,2,10),bar(Hi_R,0.1),title('高通重构滤波器系数Hi_R'),grid,axis([0 5 -1 1])%******以上为MALLAT算法原理,实际上用简单命令DWT,UPCOEF计算如下************************** x=[1.8 1.0 -1.0 -1.8];length(x);[Ca1,Cd1]=dwt(x,'db1');a1=upcoef('a',Ca1,'db1',1,4);d1=upcoef('d',Cd1,'db1',1,4);x1=a1+d1;a0=idwt(Ca1,Cd1,'db1',4);------------------------------------------------------------------------------------ x=[1.8 -1.8 1.8 -1.8];x=[1.8 1.0 -1.0 -1.8];[Lo_D,Hi_D]=wfilters('db40','d');tmpo1=conv(x,Lo_D);tmpo2=conv(x,Hi_D);Ca1=dyaddown(tmpo1);Cd1=dyaddown(tmpo2);disp('低通分解滤波器系数Lo_D 高通分解滤波器系数Hi_D');disp( [(Lo_D)'(Hi_D)'] )disp('卷积conv(x,Lo_D)');disp(tmpo1),disp('卷积conv(x,Hi_D)');disp(tmpo2),disp('一级逼近系数Ca1=');disp(Ca1),disp('一级细节系数Cd1=');disp(Cd1),[Lo_R,Hi_R]=wfilters('db40','r');disp('低通重构滤波器系数Lo_R=');disp(Lo_R),disp('高通重构滤波器系数Hi_R=');disp(Hi_R),tmp1=dyadup(Cd1);tmpo3=conv(tmp1,Hi_R);d1=wkeep(tmpo3,4);tmp2=dyadup(Ca1);tmpo4=conv(tmp2,Lo_R);a1=wkeep(tmpo4,4);disp('一级逼近a1');disp(a1),disp('一级细节d1');disp(d1),figure(2),a0=a1+d1;subplot(521),bar(x,0.1),title('原始波形x=[1.8 1.0 -1.0 -1.8]'),subplot(521),bar(x,0.1),title('原始波形x=[1.8 -1.8 1.8 -1.8]'),grid,axis([0 5 -2 2]),subplot(522),bar(a0,0.1),title('分解后重构波形s=a1+d1'),grid,axis([0 5 -2 2]) subplot(523),bar(Ca1,0.1),title(' 逼近系数Ca1'),grid,axlimdlg, axis([0 5 -2 2]) subplot(524),bar(Cd1,0.1),title(' 细节系数Cd1'),grid,axlimdlg, axis([0 5 0 1])subplot(525),bar(a1,0.1),title(' 一级逼近a1=[1.296,0.911,-0.6502,-1.5585]'),subplot(525),bar(a1,0.1),title(' 一级逼近a1=[ ]'), axlimdlg,grid, axis([0 5 -2 2])subplot(526),bar(d1,0.1),title(' 一级细节d1=[0.504,0.089,-0.3498,-0.2415'), subplot(526),bar(d1,0.1),title(' 一级细节d1=[ ]'),axlimdlg,grid, axis([0 5 -1 1])subplot(527),bar(Lo_D,0.1),title('低通分解滤波器系数Lo_D'),grid, axis([0 5 0 1]) subplot(528),bar(Hi_D,0.1),title('高通分解滤波器系数Hi_D'),grid, axis([0 5 -1 1]) subplot(5,2,9),bar(Lo_R,0.1), title('低通重构滤波器系数Lo_R'),grid, axis([0 5 0 1]), axlimdlg,subplot(5,2,10),bar(Hi_R,0.1),title('高通重构滤波器系数Hi_R'),grid, axis([0 5 -1 1]) axlimdlg,k=[1.8 1.0 -1.0 -1.8];s=[1.296 0.911 -0.6502 -1.5585];t=[0.504 0.089 -0.3498 -0.2415];ss=abs(fft(s,21));tt=abs(fft(t,21));kk=abs(fft(k,21));subplot(311),plot(kk),grid,axlimdlg,subplot(312),plot(ss),grid,axlimdlg,subplot(313),plot(tt),grid,axlimdlg,k1=[1.8 1.0 -1.0 -1.8];s1=[1.4 1.4 -1.4 -1.4];t1=[0.4 -0.4 0.4 -0.4];k2=[1.8 1.0 -1.0 -1.8];s2=[1.296 0.911 -0.6502 -1.5585];t2=[0.504 0.089 -0.3498 -0.2415];S1=abs(fft(s1,21));T1=abs(fft(t1,21));K1=abs(fft(k1,21));S2=abs(fft(s2,21));T2=abs(fft(t2,21));K2=abs(fft(k2,21));subplot(321),plot(K1),grid,axis([1 11 0 6]),title('Harr')subplot(323),plot(S1),grid,axis([1 11 0 6]),title('Harr')subplot(325),plot(T1),grid,axis([1 11 0 2]),title('Harr')subplot(322),plot(K2),grid,axis([1 11 0 6]),title('db40')subplot(324),plot(S2),grid,axis([1 11 0 6]),title('db40')subplot(326),plot(T2),grid,axis([1 11 0 2]),title('db40')disp('**********MALLAT算法可用简单命令DWT,UPCOEF重算如下*******************')x=[1.8 1.0 -1.0 -1.8];length(x); =4[Ca1,Cd1]=dwt(x,'db1');a1=upcoef('a',Ca1,'db1',1,4);d1=upcoef('d',Cd1,'db1',1,4);disp('一级逼近系数Ca1=');disp(Ca1), disp('一级细节系数Cd1=');disp(Cd1),disp('一级逼近a1=');disp(a1), disp('一级细节d1=');disp(d1),x1=a1+d1;a0=idwt(Ca1,Cd1,'db1',4);figure(1),subplot(321),bar(x,0.1),title('x=a1+d1=[1.8 1.0 -1.0 -1.8]'),grid,axis([0 5 -2 2]),subplot(322),bar(a0,0.1),title('a0=idwt=x'),grid,axis([0 5 -2 2])subplot(323),bar(Ca1,0.1),title(' 逼近系数Ca1=[1.98 -1.98]'),grid,axis([0 5 -2 2])subplot(324),bar(Cd1,0.1),title(' 细节系数Cd1=[0.566 0.566]'),grid,axis([0 5 0 1]) subplot(325),bar(a1,0.1),title(' 一级逼近a1=[1.4 1.4 -1.4 -1.4]'),grid,axis([0 5 -1.5 1.5])subplot(326),bar(d1,0.1),title(' 一级细节d1=[0.4 -0.4 0.4 -0.4]'),grid,axis([0 5 -1 1])pausedisp(' *******************************************************************'), disp(' * *'), disp(' * *'), disp(' * 低通滤波器减低通滤波器等于带通滤波器 *'), disp(' * *'), disp(' *******************************************************************'), pause,f=-10:0.01:10;t=-50:1/20:50;y1=cos(2*pi*100*f);y2=cos(2*pi*100*t);y1(1:50)=zeros(1,50);y1(1952:2001)=zeros(1,50);y2(1:250)=zeros(1,250);y2(1752:2001)=zeros(1,250);yy=y1-y2;u=cos(2*pi*7*t);v=sinc(t);r=u.*v;U=fft(u);V=fft(v);R=fft(r);x1=real(ifft(y1));x2=real(ifft(y2));xx=real(ifft(yy));figure(2),subplot(331),plot(f,y1),axis([-12,12,0,1.1]),...title('低通(尺度) Y1(f),Fc=9.5Hz.'),subplot(332),plot(f,y2),axis([-12,12,0,1.1]),...title('低通(尺度) Y2(f),Fc=7.5Hz.'),subplot(333),plot(f,yy),axis([-12,12,0,1.1]),...title('带通(小波) YY(f),BW=2Hz.'),subplot(334),plot(t,ifftshift(x1)),axis([-5 5 -0.1 1.0]),...title('X1(t)=IFFT(Y1)'),xlabel('t(s)'),...subplot(335),plot(t,ifftshift(x2)),axis([-5 5 -0.3 0.8]),...title('X2(t)=IFFT(Y2)'),xlabel('t(s)'),subplot(336),plot(t,ifftshift(xx)),axis([-5 5 -0.1 0.16]),...title('X3(t)=IFFT(YY)'),xlabel('t(s)'),pausedisp(' ******************************************************************'), disp(' * *'), disp(' * 调制引起频移,低通变成带通 *'), disp(' * *'), disp(' ******************************************************************'), pause, figure(3),subplot(331),plot(t,u),axis([-2 2 -1.1 1.1]),title('u=cos(2pi*7t),t=-50~50'),subplot(332),plot(t,v),axis([-4 4 -0.3 1.1]),title('v=sinc(t),t=-50~50')subplot(333),plot(t,r),axis([-4 4 -0.9 1.1]),title('r=uv,t=-50~50')subplot(334),plot(f,abs(U)),axis([-5 5 0 900]),title('FFT(u),F=3Hz'),xlabel('Hz') subplot(335),plot(f,fftshift(abs(V))),axis([-5 5 0 23]),...title('V=FFT(v)),低通:Fc=0.5Hz'),xlabel('Hz')subplot(336),plot(f,abs(R)),axis([-5 5 0 11]),title('FFT(r),带通:BW=1Hz'),...xlabel('Hz'),pause,********************************************************************************* t1=-10:0.02:10;f1=0:0.05:50;ta=-20:0.02:20;tb=0:0.02:40;f1=0:1/40:50;x1=cos(2*pi*50*t1);x2=cos(2*pi*50*[0:0.02:20]);x3=cos(2*pi*50*[20:0.02:40]);xa=[zeros(1,500) x1 zeros(1,500)];xb=[x2 zeros(1,1000)];xc=[zeros(1,1000) x3]; fxa=fft(xa);fxb=fft(xb);fxc=fft(xc);subplot(531),plot(ta,xa),axis([-20 20 0 1.1]),title(''),subplot(532),plot(tb,xb),axis([0 40 0 1.1]),title(''),subplot(533),plot(tb,xc),axis([0 40 0 1.1]),title(''),subplot(534),plot(f1,abs(fxa)),grid,axlimdlg,title(''),subplot(535),plot(f1,abs(fxb)),grid,axlimdlg,title(''),subplot(536),plot(f1,abs(fxc)),grid,axlimdlg,title(''),subplot(537),plot(f1,angle(fxa)),grid,axlimdlg,title(''),subplot(538),plot(f1,angle(fxb)),grid,axlimdlg,title(''),subplot(539),plot(f1,angle(fxc)),grid,axlimdlg,title(''),subplot(5,3,10),plot(f1,unwrap(angle(fxa))),grid,axlimdlg,title(''),subplot(5,3,11),plot(f1,unwrap(angle(fxb))),grid,axlimdlg,title(''),subplot(5,3,12),plot(f1,unwrap(angle(fxc))),grid,axlimdlg,title(''),disp('**************************END***********************************'),。

第六章小波分析基础ppt课件

第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,

《小波分析》PPT课件

《小波分析》PPT课件

二进离散点
2k,2kj
(20)
上的取值,因此,小波系数 k , j 实际上是 信号f(x)的离散小波变换。其实,这也是 小波变换迷人的风采之一:
连续变换和离散变换形式统一; 连续变换和离散变换都适合全体信号;
§2. 小波分析和时-频分析
(Time-Frequency Analysis )
2.1 窗口Fourier变换和Gabor变换
§1.小波和小波变换
(Wavelet and Wavelet Transform)
几点约定:
我们的讨论范围只是函数空间 L2(R);
小写x是时间信号,大写是其Fourier变换;
尺度函数总是写成 x(时间域)和 (频率
域);
小波函数总是写成 x (时间域)和 ( 频率
域)。
1.1 小波(Wavelet)
的,那么公式(2)说明 00,
于是
Rxdx 0
这说明函数 x 有波动的特点,公式(1) 又说明函数 x 有衰减的特点,因此, 称函数 x 为“小波”。
1.2 小波变换(Wavelet Transform)
对于任意的函数或者信号 fxL2R,其
小波变换为
Wf a,bR fxa,bxdx
1 fx xbdx (4)
aR
a
性质
这样定义的小波变换具有下列性质:
Plancherel恒等式:
C Rfxgxd xR 2W fa,bW ga,bda2ad
小波变换的逆变换公式:
(5)
fx1 C
R2Wfa,ba,bxdaa2 db
(6)
性质
吸收公式:当吸收条件
0 2d0 2d (7)
成立时,有吸收的Plancherel恒等式

《小波分析》课件

《小波分析》课件

小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述

小波基础知识 PPT课件

小波基础知识 PPT课件

设T : X
军事电子对抗与武器的智能化;计算机分 类与识别;音乐与语言的人工合成;医学 成像与诊断;地震勘探数据处理;大型机 械的故障诊断等方面;例如,在数学方面, 它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。 在信号分析方面的滤波、去噪声、压缩、 传递等。在图象处理方面的图象压缩、分 类、识别与诊断,去污等。在医学成像方 面的减少B超、CT、核磁共振成像的时间, 提高分辨率等。
2
2
3
V,ej
2
v2
2
j 1
3 2
v1
1 2
v2
3 2
v1
1 2
v2
3 2
[
v1
2
v2
2]
3 2
V
定义、定理及证明
1. (巴拿赫)Banach空间与Hibert(西耳伯特) 空间
由于F(0) = 0,故 =0
2. 线性算子与同构
我们只考虑可分的Hilbert空间。
1986年著名数学家Y.Meyer偶然构造出一个真正的 小波基,并与S.Mallat合作建立了构造小波基的 同样方法及其多尺度分析之后,小波分析才开始 蓬勃发展起来,其中比利时女数学家 I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作 用。它与Fourier变换、窗口Fourier变换(Gabor 变换)相比,这是一个时间和频率的局域变换, 因而能有效的从信号中提取信息,通过伸缩和平 移等运算功能对函数或信号进行多尺度细化分析 (Multiscale Analysis),解决了Fourier变换 不能解决的许多困难问题,从而小波变化被誉为 “数学显微镜”,它是调和分析发展史上里程碑 式的进展。

《小波分析》PPT课件

《小波分析》PPT课件
(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x

《小波分析方法》课件

《小波分析方法》课件

论文和研究报告
介绍一些发表在期刊和会议上 的相关论文和研究报告
小波分析工具和库
提供一些开放源代码的小波分 析工具和库的信息
Matlab工具箱
介绍基于Matlab的小波分析工具箱,讲 解如何使用该工具箱进行小波分析
小结和展望
1 小波分析方法的优点和局限性
总结小波分析方法相较于其他方法的优点并讨论其局限性
2 未来的研究和应用方向
展望小波分析方法在未来可能的研究方向和应用领域
参考资料
相关领域的经典书籍 和教材
推荐一些与小波分析相关的经 典书籍和教材
信号去噪和压缩
学习如何使用小波分析方法对信号进行去噪和压缩 处理
图像处理
探索小波分析在图像处理中的广泛应用
音频处理
了解如何利用小波分析进行音频特征提取和音频效 果处理
视频处理
发现小波分析在视频编解码和视频特征提取中的应用
小波分析算法实现
1
Python和其他编程语言
2
探讨使用Python和其他编程语言实现小 波分析的库和方法
《小波分析方法》PPT课 件
本课程将介绍小波分析方法的基本概念和应用场景,帮助您掌握信号分析的 强大工具。让我们一起开启这个精彩的学习之旅吧!
课程介绍
内容和目标
了解本课程将涵盖的内容和学习目标
小波分析方法
掌握小波分析方法的基本概念和它在实际应用 中的价值
信号分析基础
1 信号的分类
了解不同类型的信号及其 特点
2 傅里叶分析方法
介绍傅里叶分析方法的原 理和局限性
3 小波分析方法
探讨小波分析方法相较于 傅里叶分析的优点和适用 性
小波分析的数学基础
滤波器组和小波变换

小波分析数学基础

小波分析数学基础
-----时变信号:频域特性随时间变化。 因此,对时变信号分析,通常需要提取某一个时间段(或 瞬间)的频域信息,或某一频率段所对应的时间信息。 -----分析方法应介于傅里叶分析和δ 函数之间,并具有一 定的时间和频率分辨率的基函数来分析。
研究信号在局部时间范围的频域特征: 1946 年 Gabor 变换→短时傅里叶变换 : short time fourier
小波变换不仅继承和发展了 STFT 的局部化思想,而且克服了窗 口大小不随频率变化,缺乏正交基的缺点,是一种比较理想的进 行信号处理的数学工具。 总之:
基于小波变换的小波分析技术是泛函分析、调和分析、数值 分析等半个多世纪以来发展的最完美结晶,是正在发展中的新的 数学分支。在工程应用领域,特别是在信号处理、图像处理、模 式识别、语音识别、量子物理、地震勘测、流体力学、电磁场、 CT 成像、机器视觉、机械故障诊断与监控、分形、数值计算等领 域,在工具及方法上的重大突破。
[例 0-6]有理数空间中柯西序列 1,1.4,1.41,1.414,1.4142,……
不是收敛序列,因为它的数列的极限 2 不在有理数空间。若将无 理数空间扩展进来, 使之成为实数空间,从而 2 成为柯西序列的极 限,柯西序列也就成为收敛序列。因此,我们说任何一个实数的柯 西序列必有实数极限,实数的这种特性称为完备性。
所以有些人也称为是研究函数的函数。
泛函的定义
简单的说, 泛函就是定义域是一个函数集,而值域是实数 集或者实数集的一个子集,推广开来, 泛函就是从任意的向量 空间到标量 的映射。也就是说,它是从 函数空间 到数域的 映射。
0.1.0 常用符号及含义 R -实数的集合,即实轴 Z-整数的集合 C -复数的集合, Z+-正整数集 Rn -n 维欧氏空间(所有实向量的集合) Cn -n 维复向量空间

《小波分析介绍》PPT课件

《小波分析介绍》PPT课件
二、小波变换
定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h

第十一讲 小波分析基础

第十一讲 小波分析基础
c j ,k (W f )( k 1 , ) 2j 2j
式中 c j ,k 为离散小波变换的结果,称为小波系数。
4.1 多分辨分析
若空间 L2 ( R) 中有一列子函数空间 V j 1. 2. 3. 4. 5.

jZ
满足如下条件:
单调性: V j 1 V j V j 1 , j Z ; 逼近性: V j 0, V L2 (R) ;
S ( , ) f (t ) g (t )e jt dt
R
g (t ) 是一个具有紧支集的函数,可以看出是一个窗函数
f (t )
是待分析信号函数
e jt 起着频限的作用
g (t )
起着时限的作用
1.3 短时傅里叶的特点
S (, ) :大致上反映了信号f ( x) 在时刻 、频率为 的
频 率
时间
3.2 连续小波变换
ˆ ( ) ,当 ˆ ( ) 满足允 设 ( x) L2 (R) ,即满足 R ( x ) dx ,其傅里叶变换为
2
许条件(完全重构或恒等分辨条件)
ˆ ( ) C d R
称 ( x) 为一个小波或母小波,若采用以下定义式:
试求相应的正交小波函数
7 课后预习

小波评价指标 各种母小波特点及适用性 正交小波构造方法(了解) 小波变换的应用



8 课堂练习

求下列分段函数的哈尔变换,并进行复原
v(t)
2
1 0.25 0.5 0.75 t
-1
-2
1 f ( x) C



da (W f )(b, a) b,a ( x) a 2 db

小波分析基础:从理论到应用

小波分析基础:从理论到应用

这一章主要介绍了小波分析的基本概念、历史背景和发展现状,为读者提供 了必要的基础知识。通过这一章的学习,读者可以对小波分析有一个初步的了解 和认识。
这一章深入介绍了小波变换的基本理论,包括连续小波变换、离散小波变换、 多尺度分析等。通过这一章的学习,读者可以掌握小波变换的基本原理和方法。
这一章主要介绍了小波基的构造方法和性质,包括尺度函数和小波函数的构 造、正交性、对称性等。通过这一章的学习,读者可以了解如何构造具有优良性 质的小波基。
精彩摘录
当我们谈到小波分析,许多人可能首先想到的是一串深奥难懂的数学公式和 理论。然而,《小波分析基础:从理论到应用》这本书却以一种全新的方式,将 小波分析的魅力展现得淋漓尽致。在这篇文章中,我们将为大家分享这本书中的 一些精彩摘录,让大家感受到小波分析的独特魅力。
“小波分析是一种强大的数学工具,它能够揭示信号和数据的本质特征。通 过小波变换,我们可以将信号分解成不同频率和时频部分的组合,从而更好地理 解信号的特性和变化。”
在深入学习过程中,我对小波框架和正交小波产生了浓厚的兴趣。框架理论 是小波分析中的一个重要部分,它为我们提供了一种全新的视角来看待信号或数 据的处理。而正交小波因其独特的性质,在小波分析中占据着举足轻重的地位。 通过本书,我对这两部分内容有了更为深入的了解。
书中的多分辨率分析也是一大亮点。这一章节通过一个简单的例子入手,逐 步引导读者进入多分辨率分析的殿堂。双尺度方程的时域和频域描述,以及小波 滤波器等内容,都让我对多分辨率分析有了更为深刻的认识。而小波子空间和L2 空间的正交分解,更是让我感受到了数学与信号处理之间的紧密。
这段摘录展望了小波分析的未来应用前景。随着科技的不断发展和人类对自 然界认识的深入,小波分析将在更多领域发挥其独特的优势,为人类社会的进步 做出贡献。

小波分析入门_本人总结_

小波分析入门_本人总结_

给我们一个信号时,我们从时域中观察这个信号时,我们得到的信息是信号的持续的时间,随着时间的变化,信号的幅度起起伏伏。

如果我们更进一步,就是起伏速度较快的部分对应着信号中高频部分。

变换缓慢的部分对应着代表信号中的频率低频部分。

我们也可以估算信号中直流分量的大小。

当然这都是我们直观的理解。

这种单纯的从时域中的信号的波形得到的信息是不全面的。

有的时候我们想要知道我们的信号中含有那些频率成分,相应频率的强度,相位。

这就是从从频域的角度来看待我们的信号。

这就需要一个数学变换的工具,将我们的信号变换到频域。

这个强大的数学工具就是傅里叶变换,变换后我们希望我们还可以回到时域中,也就是我们的变换是可可逆的,事实上,傅里叶变换就有这个信息不损失的性质。

如今傅里叶变换已经成为一个体系。

一切来自于数学中的分解思想,在这里我们选择一组正交基。

对我们信号函数的分解就像是对空间中某一一向量分解到三个坐标系一样,只不过函数的坐标是傅里叶系数而已。

这样,我们经过傅里叶变换就可以知道我们的信号中含有的频率成分。

但是这里有一个隐含的假设,或者说是傅里叶变换的致命弱点,那就是他潜在的假设了我们的信号是平稳信号。

何为平稳信号?所谓的平稳信号就是信号的各种频率成分在信号的全部持续时间中都存在。

举个例子,假如我们对一个持续时间在[0,100s]的平稳信号做傅里叶变换,得出信号中有59HZ,那么就说明,对该平稳信号,59HZ从0开始,在这100s中的任何一个时刻都存在。

可是,当我们的信号不是平稳信号时,例如59HZ产生50s 处,强度和上一个信号的完全相同,其他频率也完全相同,如果我们对这一个信号做傅里叶变换,由于傅里叶变换的积分域是从负无穷到正无穷,所以不幸的是,我们得到了和上一信号完全一样的结果,我们无法再从频域回到时域了。

也就是FT并没有告诉我们非平稳信号的各种频率分别出现在那个时间段上。

事实上,在现实生活中,非平稳信号和平稳信号交织在一起的。

《基于MATLAB的小波分析应用》课件第1章

《基于MATLAB的小波分析应用》课件第1章

第1章 小波分析基础
因此,如何求解Wn是下一步需要解决的问题。求解的
基本思想是:找到一个函数 (x) ,像函数 (x) 的伸缩和
平移 {2n/2(2n x k) ;k Z} 能够张成空间Vn一样,函数 (x) 的伸缩和平移 {2n / 2 (2n x k ) ;k Z} 也能张成空间Wn。同
第1章 小波分析基础
图1.5 V4中的分量
第1章 小波分析基础
图1.6 W7中的分量
第1章 小波分析基础
1.3 一维连续小波变换
定义2 设 (t) L2 (R) ,其傅里叶变换为,当满足容许
条件(完全重构条件或恒等分辨条件)
ˆ () 2
C
d
R
时,称 (t) 为一个基本小波或母小波。将母函数经伸缩和 平移后得
ˆ *() ˆ (2 j ) 2
j
由上式可以看出,稳定条件实际上是对上式分母的约束 条件,它的作用是保证对偶小波的傅里叶变换存在。
Wf (a, b)
第1章 小波分析基础
1.4 离散小波变换
在实际运用中,尤其是在计算机上实现时,连续小波
变换必须加以离散化。因此,有必要讨论连续小波 a,b (t)
时要求 (x) 和 (x) 能够建立直接的联系。
第1章 小波分析基础
定理1 设Wn是由形如 kZ ak(2n x k)( ak R)的函数所组成
的线性空间,其中ak含有限个非0项,则Wn构成Vn在Vn+1中 的正交补,并且Vn1 Vn Wn 。
定理2 能量有限空间L2(R)可以分解为如下形式之和: L2 (R) V0 W0 W1
V j {0}, V j L2 (R)
jZ
jZ
(4) 平移不变性:f (x)V0 f (x k)V0 ,k Z ;

小波分析入门PPT课件

小波分析入门PPT课件
随着机器学习的发展,小波分析有望在特征提取、数据压缩等领域与机器学习相结合, 提高机器学习的性能和效率。
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化

小波分析(信号分析基础)

小波分析(信号分析基础)

1.2信号的时-频联合分析
信号的幅度不但随时间变化,而且对现实物理世 界中的大部分信号,其频率也随时间变化。实际 上,在时域中愈是在较短时间内发生幅度突变的 信号,其包含的信息就愈多。但由傅立叶变换看 不出在什么时刻发生了此种类型的突变。
sin(1n), x(n) sin(2n),
sin(3n),
1.3几种常见的时频分析
1.3.2 Wigner (魏格纳)分布
exp j2 f1t 0 t T 4
x
t
exp
j2
f2t
T
4
t
T
2
exp j2 f3t T 2 t T
xt A cos0t
西南交通大学电气工程学院
1.3几种常见的时频分析
1.3.2 Wigner (魏格纳)分布
西南交通大学电气工程学院
确定性信号与非确定性信号
可以用明确数学关系式描述的信号称为确定性信号。 不能用数学关系式描述的信号称为非确定性信号。
信号
确定性信号
非确定性信号
西南交通大学电气工程学院
周期信号
简单周期信号 复杂周期信号
非周期信号 平稳随机信号
准周期信号 瞬态信号
非平稳随机信号
时域描述与频域描述
1.3几种常见的时频分析
1.3.1 短时傅立叶变换
Linear scale
Real part
1 0.5
0 -0.5
Signal in time
|STFT|2, Lh=6, Nf=64, lin. scale, contour, Thld=5%
0.4
Frequency [Hz]
Energy spectral density
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i1
其中
ci f(t),gi(tgl(t) gk(t)gl(t)d t k, l k,lZ (1.3)
实用文档
School of Jet Propulsion, BUAA
对于给定信号f(t),关键是选择合适的基gi(t) ,使得 f(t)在这组基下的表现呈现出我们需要的特性,但是如果某
RETURN
实用文档
School of Jet Propulsion, BUAA
3、傅立叶变换与时频分析[4]
我们知道,任何复杂的周期信号f(t)可以用简单的调和振
荡函数表示成如下形式:
f(t)a 2 0i 1 (akco k0 stbksikn 0t)
(1.4)
这就是著名的傅立叶级数,co ks0t和 sikn 0t都是简单的调和
一个基不满足要求,可通过变换将函数转换到另一个基下表
示,才能得到我们需要的函数表示。常用的变换[2]有:
(1) K-L变换
(2) Walsh变换
(3) 傅立叶变换
(4) 小波变换
如图所示是信号f(t)的傅立叶变换示意图。信号f(t)经
傅立叶变换由时域变换到频域,基底不同得到大变换也不同。
在信号处理中,有两类非常重要的变换即傅立叶变换和
对于L2(R)上的非周期函数f(t) ,有
fˆ() f(t)eitdt
(1.9)
称 fˆ ( ) 为f(t)的傅立叶变换,反变换公式为
f(t) fˆ()eitd
(1.10)
实用文档
School of Jet Propulsion, BUAA
有了傅立叶变换,我们可以很容易地将时域信号f(t)转换到频域 上,fˆ (于 )是信号的频率特性一目了然,并且与傅立叶级数一样, 傅立叶变换将一段信号的主要低频能量都集中在频率信号的前 面几项,这种能量集中性有利于进一步的处理。在过去200年 里,傅立叶分析在科学与工程领域发挥了巨大的作用,但傅立 叶分析也有不足,主要表现在以下两点: 傅立叶分析不能刻画时域信号的局部特性; 傅立叶分析对非平稳信号的处理效果不好。 下面通过两个例子来说明这两点。
振荡函数,直观讲都是正弦波。ak和bk 是函数f(t)的傅立叶系数,
可由以下公式计算:
实用文档
School of Jet Propulsion, BUAA
ak
2 T
T
f
0
(t)coks0td, t k0,1,2
(1.5)
bk
2 T
T
f
0
(t)sink0td, t k0,1,2
(1.6)
于是,周期函数f(t) 就与下面的傅立叶序列产生了一一对
School of Jet Propulsion, BUAA
小波分析基础
2012.03.20
实用文档
School of Jet Propulsion, BUAA
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数
变换等的基础知识。 从信号处理的角度讲,小波(变换)是强有力的时频分析
(处理)工具,是在克服傅立叶变换缺点的基础上发展而来的,所 以从信号处理的角度认识小波,需要傅立叶变换、傅立叶级数、 滤波器等的基础知识。
实用文档
School of Jet Propulsion, BUAA
一个信号从数学的角度来看,它是一个自变量为时间t的 函数f(t)。因为信号是能量有限的,即
2、Coiflets小波 3、Symlets小波
实用文档
School of Jet Propulsion, BUAA
4、Morlet小波
5、Mexican Hat小波
6、Meyer小波
实用文档
SKIP
School of Jet Propulsion, BUAA 不是小波的例
实用文档
School of Jet Propulsion, BUAA
实用文档
School of Jet Propulsion, BUAA
例1、歌声信号 歌声是一种声音震荡的波函数,其傅立叶变换就是将这个波函数转化
成某种乐谱。但遗憾地是,傅立叶变换无法反映信号在哪一时刻有高音,在 哪一时刻有低音,因此结果是所有的音符都挤在了一起,如图所示。
实用文档
School of Jet Propulsion, BUAA 小波变换有效地克服了傅立叶变换的这一缺点,信号变换到小 波域后,小波不仅能检测到高音与低音,而且还能将高音与低 音发生的位置与原始信号相对应,如图所示。
应,即
f( t ) a 0 ,( a 1 ,b 1 ) ( a 2 , ,b 2 ) , (1.7)
从数学上已经证明了,傅立叶级数的前N项和是原函数f(t)
在给定能量下的最佳逼近:
实用文档
School of Jet Propulsion, BUAA
N l im 0 Tf(t) a 2 0k N 1a kck o0 ts b ksikn 0 t 2 d(1 .8x 0 )
f
(t)2dt0
(1.1)
满足条件(1.1)的所有函数的集合就形成L2(R)
图像是二维信号,同样是能量有限的。实际上任何一幅 数字图像都是从真实的场景中经过采样和量化处理后得到的。
从数学上看,图像是定义在L2(R2)上的函数。
实用文档
School of Jet Propulsion, BUAA 如图1所示的图像f(x,y),假设图像的大小是512x512,量化级 是256,即
0 f(x ,y ) 250 5 x ,y 511
y
x
实用文档
School of Jet Propulsion, BUAA
2、L2(R)空间的正交分解和变换[1] 对f(t)L2(R),存在L2(R) 的一组标准正交基gi(t),t R,
i=1,2,…使得
f (t) cigi(t)
(1.2)
小波变换。目前,可简单地将小波理解为满足以下两个条件
的特殊信号:
(1)小波必须时振荡的;
(2)小波的振幅只能在一个很短的一段区间上非零,即是局
部化的。
实用文档
School of Jet Propulsion, BUAA 一些著名的小波[3]:
1、Daubechies小波
实用文档
School of Jet Propulsion, BUAA
相关文档
最新文档