第5章刚体的定轴转动
大学物理 第5章刚体定轴转动
赵 承 均
转动平面 某质点所在的圆周平面,称为转动平面。
参考线
转心 矢径
转动平面内任一过转轴的直线,如选 x 轴。
某质点所在的轨迹圆的圆心,称为转心。 某质点对其转心的位矢,称为该质点的矢径。
第一篇
力学
重 大 数 理 学 院
显然:转动刚体内所有点有相同的角量,故用角量描述刚体 的转动更方便,只需确定转动平面内任一点的角量即可。 1.角坐标— 描写刚体转动位臵的物理量。 角坐标 转动平面内刚体上任一点 P 到转轴 O 点的连线与 参考线间的夹角 。
赵 承 均
第二类问题:已知J和力矩M:求出运动情况和 b及 F 。
第三类问题:已知运动情况和力矩M,求刚体转动惯量 J 。
第一篇
力学
重 大 数 理 学 院
第一类问题:已知运动情况和 J ,确定运动学和动力学的联 系 例 :长为 l,质量为 m 的细杆,初始时的角速 度为 ωo ,由于细杆与 桌面的摩擦,经过时间 t 后杆静止,求摩擦力 矩 Mf 。
Fi cos i Fi cos i mi ain mi ri 2 法向:
e i
第一篇
力学
重 大 数 理 学 院
由于法向力的作用线穿过转轴,其力矩为零。可在切向 方程两边乘以 ri ,得到:
Fi e ri sin i Fi i r i sin i mi ri 2
4.角加速度— 描写角速度变化快慢和方向的物理量。 ⑴ 平均角加速度 t
即:刚体的角速度变化与发生变化所用的时间之比。
赵 承 均
⑵ 角加速度 ①用平均角加速度代替变化的角加速度; ②令 t 0 取极限;
d d lim 2 t 0 t dt dt
5-刚体的定轴转动
L1 L2
刚体定轴转动的角动量 L=?
z
v
ri mi
O
刚体 定轴
L Li mirivi
m iri(ri) ( miri2)
J M=0的原因,可能
1)F=0(不受外力) 2)外力作用于转轴上 3)外力作用线通过转轴
4)外力作用线与转轴平行
刚体定轴转动的角动量守恒
L1 L2
J11J22
位置,求它由此下摆角时的角速度。
解:如图建立坐标
x
杆受到的重力矩为:
O
M = gxd g m xdm
X
dm
据质心x定 d= m 义 mCx MmgxC
xc
1l 2
cos
M1mgclos
2
dmg
MJJdJ d d J d M dJd
dt d dt d
0 1 2mc go lds 0 Jd
mglsin
端点 o 且与桌面垂直的固定光滑轴转动,另有 一水平运动的质量 m2为的小滑块,从侧面垂直 与杆的另一端 A 相碰撞,设碰撞时间极短,已知 小滑块在碰撞前后的速度分别为 v1 和 v2 ,方 向如图所示,求碰撞后从细杆开始转动到停止 转动过程所需时间,(已知杆绕点 o 的转动惯 量 J= ml2/ 3 )
dLR J2J0m0d2 其中 Jo 12moR2
J J1J2 1 3m LL 21 2m oR 2m o(LR )2
2.对薄平板刚体的正交轴定理
z
Jz miri2
yi
xi
ri
y
m i(x2y2) m ix 2 m iy 2
x
Δmi
Jz JxJy
z
应用
例:已知圆盘
第5章 刚体的定轴转动
角加速度矢量定义为
(2) 显然,若角加速度矢量的方向与角速度矢量的方向相同,见下图 (a),则角速度在增加;反之,若角加速度与角速度的方向相反,见 下图(b),则角速度在减小。从图(a)、(b)中不难验证,角加速 度矢量的方向与直观转动的加速方向也构成右手螺旋关系。既当四个手 指指向直观的加速方向时,大姆指所指向的方向即为角加速度矢量的方 向。
(4) 其中
为各分力的力矩,证毕。 由于作用力和反作用力是成对出现的,所以它们的力矩也成对出
现。由于作用力与反用力的大小相等,方向相反且在同一直线上因而有 相同的力臂,见下图,所以作用力矩和反作用力矩也是大小相等,方向 相反,其和为零。
(5)
作用力矩和反作用力矩 二、刚体对定轴的角动量
在刚体的定轴转动中,刚体对定轴的角动量是一个很重要的物理 量,在很多问题的分析中都要用到这个概念,下面我们来讨论这个问 题。 刚体绕定轴转动时,它的每一个质点都在与轴垂直的平面上运动。下面 我们先分析质点对定轴的角动量,而且只考虑质点在轴的垂面上运动的 情况。如下图所示,有一质点在z轴的垂面M内运动,质点的质量为m, 对z轴(即对质点转心)的矢径为r,速度为v,动量p=mv。如同在角动 量知识点中讨论的一样,我们定义质点对定轴的角动量为
第5章 刚体的定轴转动 ◆ 本章学习目标 理解:刚体、刚体转动、转动惯量的概念;刚体定轴转动定律及角动量守
恒定律。 掌握:转动惯量,转动中的功和能的计算;用刚体定轴转动定律及角动量
守恒定律求解定轴转动问题的基本方法。 ◆ 本章教学内容
1.刚体的运动 2.刚体定轴转动定律 3.转动惯量的计算 4.刚体定轴转动定律的应用 5.转动中的功和能 6.对定轴的角动量守恒 ◆ 本章重点 刚体转动惯量的物理意义以及常见刚体绕常见轴的转动惯量; 力矩计算、转动定律的应用; 刚体转动动能、转动时的角动量的计算。 ◆ 本章难点 力矩计算、刚体转动过程中守恒的判断及其准确计算。
第五章刚体定轴转动典型题型
• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。
O
A
质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt
力
F
钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩
M
质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。
r
R
• 5)角动量守恒定律和机械能守恒定律的综 合应用
05刚体的定轴转动习题解答.
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
第5章 刚体定轴转动.
J过一端垂直于杆 13m L2
圆环: J对称轴mR2
圆盘:
J对称轴
1 2
mR2
薄球壳:
J直径
2 3
mR2
球体:
J 直径
2 5
mR2
例: 如图所示,刚体对经过
棒端且与棒垂直的轴的转动
mL
惯量如何计算?(棒长为L ,
球半径为R)
mO
刚体的转动定律
力矩质点系的角动量改变 任意质点系的角动量定理:
M
轴向总力矩: M z M iz riF isin i
i
i
§5-4 转动定Biblioteka 的应用规范的解题思路:认物体
分析题意,确定哪些物体是刚体, 哪些是质点,及其与问题关系。
看运动
分析刚体的转动和质点运动情况,
找出相关的线量( v,a ) 和角量(,),
确定它们之间的关系。
查受力
画隔离体受力分析图,确定对刚体 有力矩贡献的力和质点的受力及其关系。
列方程
选择坐标系和角量的参考方向,对 刚体列出转动定律方程,对质点列出牛 顿定律方程,并列出角量与线量的关系, 再求解。
[例]一圆盘绕过盘心且与盘面垂直的光滑固定轴O以
角速度ω按图示方向转动.若如图所示的情况那样, F
将两个大小相等方向相反但不在同一条直线的力F沿
F
O
盘面同时作用到圆盘上,则圆盘的角速度 [
时刻=0 ,代入方程= 0+at 得
0
O
an r
v
a
at
a0 50rad/2s
t
50
3.14rad/2s
从开始制动到静止,飞轮的角位移及转数N分别为
00t1 2a2t505 01 2520 125ra0d
[理学]第5章-刚体的定轴转动
(2)刚体可以看作是由许多质点组成,每一个 质点叫做刚体的一个质元,刚体这个质点系 的特点是,在外力作用下各质元之间的相对 位置保持不变。
质元
Δmi
Δmj rij
2. 刚体的运动形式:
⑴平动: 在描述刚体的平动时,可以用一点的运动
来代表,通常就用刚体的质心的运动来代 表整个刚体的平动。
转轴
⑵转动: 转动是刚体的基本运动形式之一。 刚体转动时各质元均做圆周运动,而且各
列方程
mg-T2 = ma2 T1-mg = ma1
T2 (2r)-T1r = 9mr2 / 2 2r = a2 r = a1
2r T2 T2 a2 m mg
r m 2m T1
T1 m a1
mg
解联立方程,得: 2g
19r
练习1:如图所示,有两个质量分别为 M1 、M2 ,对转轴的转动惯
量分别为
Z’ Z
C d
J = Jc+ m d 2
例: 如图一质量为M 长为l的匀质细杆,中间和右端各有一 质量皆为m的刚性小球,该系统可绕其左端且与杆垂直 的水平轴转动,若将该杆置于水平位置后由静止释放, 求:杆转到与水平方向成θ角时,杆的角加速度是多少?
解:设转轴垂直向里为正,系统对该转轴的转动惯量为
J
第五章 刚体的定轴转动
转轴
复习
一、力矩
M rF
1. 大小:M = rFsinθ
Z F// F
O r F⊥ p
2.方向:由右手螺旋定则确定。
注意:上式中F指的是与转轴垂直平面(转动平面)上的力,
若F不再该平面上,可将F分解为垂直于转轴和平行于转
轴的两个分力,力矩是指的是在转动平面内力F⊥(平行
大学物理教程-刚体的定轴转动
大学物理教程
哈尔滨工业大学(威海)
5.1 刚体的运动 Harbin Institute of Technology at Weihai
1.平动:
刚体在平动时,在任意一段时间内,刚体
中所有质点的位移都是相同的。而且在任何
时刻,各个质点的速度和加速度也都是相同
5.2.1 对轴的力矩
M ro F (r rz ) F
M z (r F ) z r (F Fz )z r F
M z rF sin r F rF
➢ 说明: ① 只有垂直于轴的分量(或在转动平面内的分量)
才能产生沿轴方向的力矩! ② 作用点到轴的垂直距离决定对轴的力矩
大学物理教程
例3. 圆环绕中心轴旋转的转动惯量。
解: 选圆环上dl长度质量微元dm,
设线密度为 m 2 R
dl
m R
Jz R2 d m R2 d l
O
R22 R
mR2
大学物理教程
延伸:
薄壁圆筒: J mR2
哈尔滨工业大学(威海)
5.2 刚体定轴转动定律 Harbin Institute of Technology at Weihai
(A)
(B)
解: (A)
M J
FR 1 mR2
2F mR
2
2F
mR
a R 2F / m
R
R
m
m
(B) m1g T m1a
TR J 1 mR2
2
a R
m1
g
m1
1 2
m
R
a
m1
g
m1
1 2
m
恒力 F
大学物理第5章刚体的定轴转动
Jz Jx Jy
Jc J mC
质心
d
yi
xi
ri
y
x
Δmi
1 2
mR
2
R
1 4
mR
2
6
第六页,编辑于星期六:二十一点 四十五分。
常用的转动惯量
细杆:
J过中点垂直于杆
1 12
mL2
J过一端垂直于杆
1 3
mL2
圆柱体:
J对称轴
1 2
mR 2
薄球壳:
J 直径
2 3
mR
2
球体:
J 直径
2 5
mR
2
7
第七页,编辑于星期六:二十一点 四十五分。
d L Lsin dΘ M d t
旋进角速度: Ω dΘ
dt
Ω d
dL
Lsin L
Ω M M
Lsin J sin
O
当 90 时 ,Ω M J
Ω
1
,
Ω
演示 车轮旋进(KL023) TV 旋进防止炮弹翻转(注2)
M外z 0 ,则 J z const .
大小不变 正、负不变
对刚体系, M外z = 0 时, Jizi const.,
此时角动量可在系统内部各刚体间传递,
而却保持刚体系对转轴的总角动量不变。
演示 角动量守恒:茹科夫斯基转椅(KL016)
转台车轮 (KL017)
陀螺仪(KL029)
30
第三十页,编辑于星期六:二十一点 四十五分。
5、车轮进动
2
第二页,编辑于星期六:二十一点 四十五分。
§5.1 刚体的定轴转动定律
z
Mz
dLz dt
刚体定轴转动
1.刚体的转动 刚体的转动 在圆盘上任意取一个质元 切向速度: 切向速度:
ω
c
vi = ωri = θri
mi , ri
r i
mi
r ai = ωri = θi = αri 切向加速度: 切向加速度:
角加速度rad
s2
由于质元是任取的,所以刚体上各质元的v 由于质元是任取的,所以刚体上各质元的v、a一般 角加速度α 不同,但角量(角位移θ、角速度ω 、角加速度α)都 不同, 角位移θ 角速度ω 相同,所以描述刚体定轴转动用角量最方便 用角量最方便。 相同,所以描述刚体定轴转动用角量最方便。
刚体定轴 转动定律 对 比 牛顿第二定律
dLc = d (I cω ) = I dω = I α Mc = c c dt dt dt
dp d(mv) dv F= = =m =ma dt dt dt
刚体定轴转动定律在转动问题中的地位相当于质 刚体定轴转动定律在转动问题中的地位相当于质 点运动中牛顿第二定律 牛顿第二定律的 点运动中牛顿第二定律的,各物理量间存在明显的 对应关系。 对应关系。
刚体定轴转动
1
安徽工业大学 数理学院 刘畅
2. 刚体的转动动能和转动惯量 刚体的转动动能 转动动能和 1 2 1 2 2 质元 mi的动能 Eki = mivi = miω ri m i 2 2 r c i 总动能 Ek = ∑Eki 2 1 ω 2 2 2 = ∑ miω ri = ∑miri 2 2 1 I—转动惯量 = Ic ω2 2 单个质点绕定轴转动的转动惯量 单个质点绕定轴转动的转动惯量 I = mr 2 质量连续分布的刚体的转动惯量 I = r dm
dt 若 M =0LΒιβλιοθήκη M =dL∫
第5章 刚体的定轴转动 习题解答
对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
第五章 刚体的定轴转动
刚体定轴转动
ω
v 的方向按右手螺旋法则确定. 的方向按右手螺旋法则确定.
在定轴转动中, 在定轴转动中,角速度的方向 沿转轴方向. 沿转轴方向.
角加速度α 角加速度
v ω
2
ω dω d θ = = 2 α = lim t →0 t dt dt
单位: 单位:rad /s 2 角加速度也是矢量, 角加速度也是矢量,方向与角速度增量 的极限方向相同,在定轴转动中, 与 同向 的极限方向相同,在定轴转动中,α与ω同向 或反向. 或反向. 刚体的转动其转轴是可以改变的, 刚体的转动其转轴是可以改变的,为反映瞬时轴的方 向及其变化情况,引入角速度矢量和角加速度矢量. 向及其变化情况,引入角速度矢量和角加速度矢量. 注意 退化为代数量. :定轴转动时, ω,α退化为代数量. 定轴转动时, 退化为代数量
刚体的一般运动都可认为是平动和转动的结合. 刚体的一般运动都可认为是平动和转动的结合.
1. 用角量描述转动 (1) 角位移 θ : ) 时间内刚体转动角度. 在 t 时间内刚体转动角度. 单位: 单位:rad (2)角速度 ω : )
z θ
B A
θ dθ ω = lim = t →0 t dt
●
r2
转动惯量的定义: 转动惯量的定义:
J = ∑mi ri
2
对质量连续分布的刚体, 对质量连续分布的刚体,上式可写成积分形式
J = ∫ r dm
2
dm—质元的质量 质元的质量 r—质元到转轴的距离 质元到转轴的距离
线分布 dm = λdx 面分布 dm = σds 体分布 dm = ρdV
λ 是质量的线密度
F iz
ri = roi sinθ
第5章 刚体的定轴转动
m J 1 mR 2 2 2 pR l
可见,转动惯量与l无关。所以,实心圆柱对其轴的 转动惯量也是mR2/2。
例3、求质量为m,长为L的均匀细棒对下面三 种转轴的转动惯量: 转轴通过棒的中心O并与棒垂直
转轴通过棒的一端B并与棒垂直 转轴通过棒上距质心为h的一点A并与棒垂直 A h
如图建立坐标,以物体初始位置为势能零 点。根据机械能守恒:
y
1 J w 2 1 mv2 mg h 0 2 2
滑轮转动动能 物体动能
物体势能
mg
O
1 MR2 , w v 代入可解得: 将J 2 R
物体的速度:
滑轮角速度:
4mgh v 2m M
v 4mgh R w 2m M R
力矩的功反映力矩对空间的积累作用,力矩越大,在 空间转过的角度越大,作的功就越大。这种力矩对空 间的积累作用的规律是什么呢?
2、定轴转动的动能定理
质点系动能定理 A外 A EKB EKA 也适用于刚体。 内 由于刚体内质点的间距不变,一切内力作的功都为零。 而对于定轴转动而言,外力作的功总表现为外力矩作 的功,故有: 1 2 1 2
dA Md
力对转动刚体作的元功 等于相应的力矩和角位 移的乘积。
在一微小过程中 力矩作的功
dA Md (1)
在考虑一个有限过程,设 在力矩作用下,刚体的角 位置由 1 2 则力矩的 功:
2 1
X X
1
w2 w1
O
2
M
M
A dA Md (2)
B
O质
B
A
h L
O质
dm
X
x
dx
大学物理第五章和第六章习题答案
( B) 刚体受力越大,此力对刚体转轴的力矩也越大; (C)刚体绕定轴转动,则一定受到力矩的作用; (D)刚体绕定轴的转动定律表述了作用于刚体上的外力对转轴的合外力矩与角加速度两者之间的瞬 时关系。 解答 转动定律 M Ja 表述了作用于给定刚体上的外力对定轴的合外力矩与角加速度之间的瞬 时关系,即某时刻对定轴的合外力矩将引起该时刻刚体转动状态的改变,使刚体获得角加速度,可类比 于牛顿第二定律 F ma 表示的合外力与加速度之间的瞬时关系。 刚体受外力 F 作用,如果力的作用线通过刚体的转轴 0,力臂为零,这时力矩 M 为零,因此虽然刚体受 力作用,但对刚体不一定有力矩作用。即使刚体受力大,若此力对定轴的力臂甚小,则力矩仍也可能很
——————1——————
大学物理习题集(上)
解答
如图 5-4(a)所示,设滑轮半径为 R,转动惯量为 J。当绳下滑挂一质量为 m 的物体时,受
绳的张力 FT 和重力 W=mg 作用,加速度 a 铅直向下。由牛顿第二定律知, mg FT ma ,又按滑轮的 转动定律知 FT R J ,已知 a aR ,解之得
1 2 ml ,则棒在竖直位置时的角加速度大小 3
;若将棒拉到水平位置,然后由静止释放,此时棒的角加速 。 棒在竖直位置时,受重力 mg 和轴的支承力 FN 作用,此两
力的作用线通过棒轴 O ,力臂为零,所以力矩为零,所以力矩为零,按转动定律,角加速度 a 为零。 棒被拉到水平位置,自静止释放,重力的力矩 M mg 律,可求得角加速度为
1 mL2 。开始时细杆静止,有一个质量为 m 的小球沿桌面正对着杆的 的竖直轴自由转动,其转动惯量为 3
2L
; (B)
2 3 4 ; (C) ; (D) 。 3L 4L 5L
大学物理教程第五章刚体的转动
⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。
大学物理力学第五章1刚体、转动定律
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;
刚体的定轴转动
F
F
圆盘静止不动
F 圆盘绕圆心转动
F
力矩可以反映力的作用点的位置对物体运动的影响.
一、力矩
刚体绕Oz轴旋转,力 F作用在刚体上点P,且在转动平面内, 由 点O 到力的作用点P的径矢为 。r
F 对转轴z的力矩
MrF 大小
M F rsin
z
M
Or
d
F
P
Fd
d : 力臂
二、力矩的功
F 力 F 对质元P所做的元功:
角位置: ( t ) 单位:r a d
角速度: d dt
角加速度:
d
dt
d 2
dt2
角量与线量的关系
v a
i it
ri ri
a
in
ri
2
质元
vi
ri mi x
转动平面
固定轴
方向: 右手螺旋方向
刚体定轴转动的转动方向可以用角速度的正负来表示.
z
z
0
0
2 匀变速转动公式 当刚体绕定轴转动的角加速度为恒量时,刚体做匀变速转动.
dW FdrFcosds
cossin
dsrd
d W F r s i n d
又 M F r s in
d W M d
力矩的功 W 2 Md 1
z
d
F dr
rP
y
F
dr
d r
P
o
x
三、转动动能
在刚体上取一质元 p :i
动能:Eki
1 2
mivi2
1 2
mi
ri22
F 对刚体上所有质元的动能求和:
M F d J 1 t 2 2 F2dJt2 126N
《大学物理》第五章刚体的定轴转动
偏转角为30°。问子弹的初速度为多少。
o
解: 角动量守恒:
30°
mva 1 Ml 2 ma 2
la
3
v
机械能守恒:
1 1 Ml 2 ma 2 2 mga1 cos 30 Mg l 1 cos 30
23
2
v 1 g 2 3 Ml 2ma Ml 2 3ma 2 ma 6
刚体可以看成是很多质元组成的质点系,且在外力 作用下,各个质元的相对位置保持不变。 因此,刚体的运动规律,可通过把牛顿运动定律应 用到这种特殊的质点系上得到。
3
2.刚体的运动
平动:刚体在运动过程中,其上任意两点的连线 始终保持平行。
刚体的平动可看做刚体质心 的运动。
转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动 .
r2dm
L
r2 dl
L
(线质量分布)
12
3 平行轴定理
如果刚体的一个轴与过质 心轴平行并相距d,则质量 为 m 的刚体绕该轴的转动 惯量,等于刚体绕过质心 轴的转动惯量与 md2 之和:
J z Jc md 2
请同学们自己证明平行轴定理的。
提示:利用余弦定理 ri2 ri '2 d 2 2dxi 13
hc hi
若A外+ A内非=0
Ep=0
则Ek +Ep =常量。
例13 一均质细杆可绕一水平轴旋转,开始时处于 水平位置,然后让它自由下落。求: ( )
解 方法一 动能定理
M mg L cos
2
W
Md
mg
L cosd
0
0
2
mg L sin
2
θ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α
R o v0 =0
T
mg − T = ma
TR = Jα
h
a = αR 而且 1 J = MR2 2
mg →a = 1 m+ M 2
重物作匀加速直线运动, 重物作匀加速直线运动,定滑轮作匀加速定轴转动
mg a= M m+ 2
a mg α= = M R m+ R 2
h ω = 2αθ , θ = R
2
转动惯量J 转动惯量
∑ (r F
i i
i ,t
) + ∑ (ri ∑ f ij ,t ) = (∑ ∆mi ri )α
2 i j i
合外力矩M 合外力矩
内力矩和为0 内力矩和为
J = ∑ ∆mi ri
2
M = Jα
关于同一个轴
i
—— 刚体定轴转动定律
转动定律:合外力矩=转动惯量与角加速度的积 转动定律:合外力矩=
与牛顿第二定律比较: 与牛顿第二定律比较:
M = Jα
F = ma
因此,与惯性质量对应,转动惯量反映刚体转动的惯性。 因此,与惯性质量对应,转动惯量反映刚体转动的惯性。 转动惯量的大小由质量对轴的分布决定 由定轴转动定律可推导动能定理: 由定轴转动定律可推导动能定理:
ω2 dω 1 1 2 A = ∫ Jαdθ = ∫ J dθ = ∫ Jωdω = Jω2 − Jω12 dt 2 2 θ1 ω1 θ
O
1 l 2
l 1 2 mg cosθ = ml α → α = 3 g cos θ 2 3 2l
d ω 3 g cos θ = dt 2l
θ
d ω dθ 3 g cos θ → = dθ dt 2l
ω θ
α
mg
3 g cos θ 3 g cos θ dθ dθ → ∫ ω d ω = ∫ → ω dω = 2l 2l 0 0 3 g sin θ 2 →ω = l
d 3 4 2 3 ω ( t+ t − t )=a+ b − c = a b c 3t 4t d t
角加速度是角速度对 的导数 的导数, 角加速度是角速度对t的导数,因此得
d ω d 2 3 2 a= = ( + b − c )= b − 2 t a 3t 4t 6t 1c d d t t
由此可见飞轮作的是变加速转动。 由此可见飞轮作的是变加速转动。
§5.3 转动惯量的计算 5.3
质点系对轴的转动惯量
z
J = J z = ∑ ∆mi ri 2
质量连续分布刚体对轴的转动惯量
ri
mi
J = ∫ r 2 dm
形状、大小相同,质量越大, 越大; 形状、大小相同,质量越大,J越大; 质量相同,分布离轴越远, 越大; 质量相同,分布离轴越远,J越大; 转轴不同, 不同。 转轴不同,J不同。 量纲: 量纲:ML2 单位:千克平方米, 单位:千克平方米, kg ⋅ m 2
0 π 2) 5 8 rd ω=ω + t =(5 π− × 5 =2 π=7 .5a /s 0 α
ω的方向与ω0相同 ;
(2)t =25s 时飞轮的角速度为 )
(3)t=25s 时飞轮边缘上一点P 的速度 和加速度。 和加速度。
ω0
v= r=7 . m s ω 85 /
2 3
a =a =− .1 m s2 r 34 / t a =ωr=61 × 0 m s .61 / n
Fi , t ( a i , t ) Fi
ri w
f ji
∆mi
f ij
rj
∆m j
Fi ,t + ∑ f ij ,t
j
dvi dw = ∆mi ai ,t = ∆mi = ∆mi ri dt dt
以∆mi到轴的垂直距离ri 乘上式 ri Fi ,t + ri ∑ f ij ,t
j
dw 2 = ∆mi ri = ∆mi ri α dt
一条绳索绕过一定滑轮拉动一升降机, 例1、一条绳索绕过一定滑轮拉动一升降机,滑轮半径r,如果升降机从 匀加速上升, 静止开始以加速度a匀加速上升,求开始上升后滑轮的角加速度β,任意 和滑轮转过的角度, t 时刻的角速度ω和滑轮转过的角度,以及滑轮边缘上一点的加速度 a′ 假设绳索与滑轮之间不打滑)。 (假设绳索与滑轮之间不打滑)。 解:滑轮边缘上一点的 切向加速度
2 2 a= a + n a t
2
O a
an
v r at
61 × 0 2 31 2 / 2 = ( . 6 1 3) + . 4 m s 61 × 0 / 2 ≈ . 6 1 3m s
a的方向几乎和 a 相同。 n 相同。
一飞轮在时间t 式中a、 、 例 一飞轮在时间t内转过角度θ=at+bt3-ct4 ,式中 、b、c 都是 常量。求它的角加速度。 常量。求它的角加速度。 将此式对t求 解:飞轮上某点角位置可用θ表示为 θ =at+bt3-ct4将此式对 求 飞轮上某点角位置可用θ 导数, 导数,即得飞轮角速度的表达式为
mx 'C
⇒J=
∑
i
∆mi ri2 =
∑
i
∆mi ri'2 + (
∑
i
∆mi )d 2 − 2d
∑
i
' ∆mi x i
= J C + md 2
例
右图所示刚体对经过棒端且与
1 2 1 2 x=x +v t + a θ= 0 + 0t + α t θ ω t 0 0 2 2
v= 0 + t v a
v =v + a x−x ) 2( t 0
2 2 0
ω= 0 + t ω α
ω = + αθ− 0) ω 2( θ
2 2 0
刚体获得角加速度的原因?
4、解决刚体动力学问题的一般方法 、 原则:质点系的三个定理 原则 质点系的三个定理 利用刚体的特征化简到方便形式( 好记) 利用刚体的特征化简到方便形式 简便 好记 (1)刚体的平动 ) 质点模型 运用质心运动定理 (2)刚体的定轴转动 ) 利用刚体的模型(无形变 利用刚体的模型 无形变) 无形变 化简角动量定理 功能原理 ⇒ 方便的形式
r
a′
at an r
at = a = αr
a →α = r
滑轮的角加速度
a
a
任意 t 时刻的角速度 ω = α t 转过的角度 θ =
1 2 αt 2
2
滑轮边缘上一点的 法向加速度 a n = ω r 加速度
a′ =
an + at
2
2
an 与切向夹角 β = arctan at
§5.2 转动定律 5.2
r
dm
一、常用转动惯量 质元: 质元:dm =
ρ dl
均匀圆环: 均匀圆环:半径R、质量m
质元对轴的转动惯量: 质元对轴的转动惯量:dJ = R 2 dm
2 转动惯量: 转动惯量:J = ∫ dJ = ∫ R ρdl m 2πR
R
= R 2 ρ 2π R = mR 2
质元: 质元:dm = σ 2π rdr 质元对轴的转动惯量: 质元对轴的转动惯量:dJ = r 2 dm
2
dm = ρ dx
dJ = x dm
2
l
转动惯量: 转动惯量:
J C = ∫ dJ = ∫ x 2 ρdx
m −l 2
l 2
J A = ∫ dJ = ∫ x 2 ρdx
m 0
1 ml 2 = = 12 12
ρl 3
1 2 = ml = 3 3
ρl 3
几 种 常 见 刚 体 的 转 动 惯 量
二、转动惯量遵循的规律
o′ ω
v
θ
线速度
ω
α
r
v = ωr
P
线加速度
a t = rα
an = ω r
2
o 定轴
3、匀变速转动的公式 在质点作匀加速直线运动 常数,有以下相 时,a =常数,有以下相 应的公式: 应的公式: 在刚体作匀角加速转动时, 在刚体作匀角加速转动时, 常数,有以下相应的公 α=常数,有以下相应的公 式:
dθ 角速度: 角速度: = ω dt
dω d 2θ 角加速度: 角加速度: = α = 2 dt dt
线速度: 线速度: v = rω 加速度: 加速度:
at = rα
an = rω 2
Hale Waihona Puke 一飞轮转速n=1500r/min,受到制动后均匀地减速,经t=50 s后 例 一飞轮转速 ,受到制动后均匀地减速, 后 静止。 静止。 求角加速度a 和飞轮从制动开始到静止所转过的转数N; (1)求角加速度 和飞轮从制动开始到静止所转过的转数 ; 求制动开始后t=25s 时飞轮的角速度ω ; (2)求制动开始后 设飞轮的半径r=1m,求在 (3)设飞轮的半径 , ω0 t=25s 时边缘上一点的速度和加速度。 时边缘上一点的速度和加速度。 方向如图所示, 解 (1)设初角度为ω0方向如图所示, O a an v r at
回顾
力矩 改变物体的转动状态 物体获得角加速度
质点的角动量定理
M r× = F
L=r×p=r× v m
d L M r× = = F d t
处理转动的所 有公式都是从 这个公式导出
刚体运动遵从的力学规律
力 学(Mechanics)
第5章 刚体的定轴 章 转动
(Fixed-spindle Rotation of Rigid Body)
θ2
θ2
1
刚体定轴转动定律的应用
已知:定滑轮(可视为均匀圆盘) 已知:定滑轮(可视为均匀圆盘)质量M、半径R ;重物质 忽略轴处摩擦及绳的质量。 量m,忽略轴处摩擦及绳的质量。 高度时滑轮和重物的加速度和速度 速度。 求:重物由静止下落h 高度时滑轮和重物的加速度和速度。 解: 对重物