弹性力学课件

合集下载

第八章弹性力学优秀课件

第八章弹性力学优秀课件

相容方程说明
对于相容方程说明如下:
(1)物体满足连续性条件 导出形变和位 移之间的几何方程 导 出相容方程。
(2)形变满足相容方程 对应的位移存在 且连续 物 体保持连续;形变不满足 相容方程 对 应的位移不存在 物 体不保持连续。
所以相容方程是位移的连续性条件。
(3)相容方程的导出及对(2)的证明,可
zx
Φ y
,
zy
Φ 。 x
(d )
相容方程
2. 将式(d)代入6个相容方程,前三式和 第六式自然满足,其余两式为
2zx0,
代入(d),得
2 zy
0。
2Φ 0, x
2Φ 0, y
由此得出扭转应力函数Φ应满足的方程:
2ΦC,
( e)
C为待定常数。
边界条件
3. 考察侧面边界条件(n 0 ,fx fy fz 0 ) 前两式自然满足,第三式成为
zx 0,
x
zy 0,
y
zx zy 0。( a )
x y
由式(a)前两式,得 zx ,仅 z为y (x,y)的
函数;第三式成为
xzx yzy。 (b)
又由偏导数的相容性,存在一个应力函数 Φ ,
x yΦ y xΦ,
( c)
对比式(b)和(c),两个切应力均可用一个扭 转应力函数 Φ(x,表y)示为
位移u,v,w应满足平衡微分方程及边界 条件。
考虑对称性:本题的任何x面和y面均 为对称面,∴可设
u0, v0, wwz。(a)
求解方程
(1)将位移(a)代入平衡微分方程,前两式 自然满足,第三式成为常微分方程,
21E 11 2d d2zw 2d d2zw 2g0。

弹性力学绪论课件

弹性力学绪论课件

课程安排
第三部分:弹性力学问题求解方法
01
02
弹性力学问题的分类和特点
弹性力学问题的求解方法及其应用
03
课程安排
第四部分:弹性力学在 工程中的应用
弹性力学在材料科学中 的应用
01
02
03
弹性力学在结构分析中 的应用
04
弹性力学在其他领域中 的应用
学习建议
01
建立清晰的学习目标和方法,明 确学习内容和重点
总结词
多物理场耦合下的弹性性质研究是当前弹性 力学领域的另一个研究前沿,主要涉及多个 物理场之间的相互作用对弹性性质的影响。
详细描述
多物理场耦合下的弹性性质研究主要关注多 个物理场之间的相互作用对弹性性质的影响,
例如:热-力耦合、电磁-力耦合、化学-力 耦合等。这些研究通常需要使用多物理场耦 合理论和数值模拟方法来分析不同物理场之 间的相互作用对弹性性质的影响,为多物理 场耦合问题的解决提供理论支持和实践指导。
材料实例
介绍了一些具体的材料实例,如高 强度轻质合金、纳米复合材料等, 说明弹性力学在其中的应用和重要性。
弹性力学在生物医学工程中的应用
总结词
弹性力学在生物医学工程中应用 日益广泛,为生物组织和器官的
力学特性研究提供有力工具。
详细描述
弹性力学的原理和公式可以用于 研究生物组织和器官的力学特性,
如肌肉、骨骼、血管、心脏等组 织的弹性、韧性和疲劳特性等。
弹性力学在工程中的应用
REPORTING
弹性力学在结构分析中的应用
01
总结词
02
详细描述
03
工程实例
弹性力学在结构分析中应用广泛,为 复杂结构分析提供理论支持。

弹性力学课件

弹性力学课件
研究对象
弹性力学的研究对象主要是弹性 体,即在外力作用下能够发生变 形,当外力去除后又能恢复到原 来形状的物体。
弹性体基本假设与约束条件
基本假设
弹性体在变形过程中,其内部各点间 距离的变化是微小的,且这种变化不 影响物体的整体形状和大小。
约束条件
弹性体的变形受到外部约束条件的限 制,如支撑、连接等,这些约束条件 对弹性体的变形和内力分布产生影响 。
2
例题2
无限大平板受均布载荷作用下的应力分 析。利用弹性力学理论求解无限大平板 在均布载荷作用下的应力分布,并讨论 平板厚度对应力分布的影响。
3
例题3
圆柱体受内压作用下的应力分析。通过 解析法或数值法求解圆柱体在内压作用 下的应力分布,并讨论不同材料属性和 几何参数对应力分布的影响。
03
弹性体变形协调方程与几何方程
3
讨论
通过对比各向同性和各向异性材料的力学行为, 加深对材料本构关系的理解。
05
平面问题求解方法与应用举例
平面问题定义及分类
平面应力问题
长柱形物体受平行于横截面的外力作用,横截面尺寸远小于轴向 尺寸。
平面应变问题
平面或板状物体受平行于中面的外力作用,中面尺寸远大于厚度。
平面问题的简化
忽略体力,将空间问题简化为平面问题。
各向异性材料本构关系简介
各向异性假设
材料在各个方向上具有不同的力学性质。
本构关系特点
应力与应变之间的关系复杂,需要考虑材料的方 向性。
典型各向异性材料
纤维增强复合材料、层合板等。
典型例题解析与讨论
1 2
例题一
求解各向同性材料在简单拉伸条件下的应力和应 变。
例题二
分析各向异性材料在复杂应力状态下的力学行为 。

弹性力学基础知识PPT课件

弹性力学基础知识PPT课件
应力矩阵
应变矩阵
19
20
弹性体变形实际上是弹性体内质点的位置变化,质点位置 的改变称为位移(displacement)。位移可分解为x、y、z 三个坐标轴上的投影,称为位移分量。沿坐标轴正方向的 位移分量为正,反之为负。
位移的矩阵表示为 弹性体发生变形时,各质点的位移不一定相同,因此位移
也是x、y、z的函数。
• 完全弹性分为线性和非线性弹性,弹性力学研究限于线性 的应力与应变关系。
• 研究对象的材料弹性常数不随应力或应变的变化而改变。
8
1 弹性力学的基本假设
5. 小变形假设
——假设在外力或者其他外界因素(如温度等)的影响下, 物体的变形与物体自身几何尺寸相比属于高阶小量。
——在弹性体的平衡等问题讨论时,可以不考虑因变形所引 起的尺寸变化。
• —— 物体的弹性性质处处都是相同的。
• 工程材料,例如混凝土颗粒远远小于物体的的几何形状, 并且在物体内部均匀分布,从宏观意义上讲,也可以视为 均匀材料。
• 对于环氧树脂基碳纤维复合材料,不能处理为均匀材料 6
1 弹性力学的基本假设 3. 各向同性假设
• ——假定物体在各个不同的方向上具有相同的物理性质, 这就是说物体的弹性常数将不随坐标方向的改变而变化。
17
z
oy x
τyz
τyx
σy
应力分量
符号规定: 图示单元体面的法线为y,称为y面,应力分量垂直于单元 体面的应力称为正应力。 正应力记为 ,沿y轴的正向为正,其下标表示所沿坐标轴 的方向。 平行于单元体面的应力称为切应力,用τyx 、τyz表示,其
第一下标y表示所在的平面,第二下标x、y分别表示沿
1,没有正应力,没有正应变 2,没有正应变,没有正应力 3,没有应变,没有位移 4,没有位移,没有应变

弹性力学课件

弹性力学课件

第三章 平面问题的直角坐标解答 求位移
由此解出 f1( y) = −ωy + u0 ,
M 2 f2 (x) = − x +ωx + v0. 2EI
得出位移为
M u= xy −ωy + u0 , EI µM 2 M 2 v=− y − x +ωx + v0。 2EI 2EI
2
∂ 2Φ − f y, σy = 2 y ∂x
∂ 2Φ . τ xy = − ∂x∂y
(d)
第三章 平面问题的直角坐标解答
逆解法
2 .逆解法 ── 先满足(a),再满足(b)。 逆解法 步骤: ⑴ 先找出满足 ∇4Φ=0的解Φ; ⑵ 代入(d), 求出 σ x , σ y , τ xy ; ⑶ 在给定边界形状S下,由式(b)反推出 各边界上的面力,
半逆解法
⑶ 将 Φ 代入相容方程,求解 Φ :
d4 f2 ( y) d2 f ( y) d4 f ( y) 2 d4 f1( y) 1 x+ x+( +2 )=0. 4 4 4 2 2 dy dy dy dy
相容方程对于任何 x, y均应满足,故 x2 , x1, x0 的系数均应等于0,由此得三个常微分方程。
M u= xy + f1 ( y), E I
⑵ 对式(b)两边乘 d y 积分 ,
v=−
µM
2EI
y2 + f2 ( x) 。
第三章 平面问题的直角坐标解答
求位移
⑶ 再代入(c) , 并分开变量,
d f1( y) Mx d f2 (x) + =− (= ω)。 EI dx dy
上式对任意的 x , y 都必须成立,故 两边都必须为同一常量ω。

弹性力学与有限元完整版ppt课件

弹性力学与有限元完整版ppt课件
E 1 2 ,
. 1
平面应变
• 4 变形协调方程
平面应力
平面应变
调和方程
由6个简化为1个
平面问题
方程数量: 平衡方程——2个 物理方程——3个 几何方程——3个
合计 8
未知量:
应力分量——3个 x、 y、 xy
应变分量——3个
x、 y z、 xy
位移分量——2个
u、v
合计 8
第三章 弹性力学问题求解方法简述
• 研究的内容:
– 外力作用下
应力、应变、位移
• 物体变形——弹性变形、塑性变形
• 弹性变形:
– 当外力撤去以后恢复到原始状态,没有变形残留,材 料的应力和应变之间具有一一对应的关系。与时间无 关,也与变形历史无关。
• 塑性变形:
– 当外力撤去以后尚残留部分变形量,不能恢复到原始 状态,——即存在永久变形。应力和应变之间的关系 不再一一对应,与时间、与加载历程有关。
1.3 几个基本概念
1. 外力 2. 一点的应力状态 3. 一点的形变 4. 位移分量
1 外力
• 作用于物体的外力可以分为3种类型: 体力、面力、集中力。
• 体力——就是分布在物体整个体积内部各个质点上的
力,又称为质量力。例如物体的重力,惯性力,电磁力等 等。
• 面力——是分布在物体表面上的力,例如风力,静水
大小和方向不同。
• 体力分量:将体力沿三个坐标轴xyz 分解,用X、
Y、Z表示,称为体力分量。
• 符号规定:与坐标轴方向一致为正,反之为
负。 应该注意的是:在弹性力学中,体力是指单位
体积的力 。
• 体力的因次:[力]/[长度]^3
• 表示:F={X Y Z}

弹性力学课件

弹性力学课件
第一章 内容提要
1.弹性力学--研究弹性体由于受外力、边界约束或温度 改变等原因而发生的应力、形变和位移。 2.弹性力学中的几个基本物理量:
-2 体力--分布在物体体积内的力。(量纲)ML T-2.
坐标正向为正
-1 面力--分布在物体表面上的力。(量纲)ML T-2.
坐标正向为正 应力--单位截面面积上的内力值。(量纲) -1T-2. ML 正面正向,负面负向为正
当d x, d y → 0 时,得切应力互等定理 切应力互等定理, 切应力互等定理
τ xy = τ yx
第二节
平衡微方程
说明
平衡微分方程的有关说明: (1)两个平衡微分方程,三个未知量:超静定问题, 需找补充方程才能求解。 (2)适用的条件─连续性、小变形; (3)对于平面应变问题,上述方程两类平面问题均适用; (4)平衡方程中不含E、µ,方程与材料性质无关(钢、 石料、混凝土等); (5)平衡方程对整个弹性体内都满足,包括边界。
∂σy ∂y + ∂τ xy ∂x
ε x = ε x (x, y) ε y = ε y (x, y)
γ xy = γ yx = γ xy (x, y)
+ f =0
平衡微分方程
∂σx ∂τ yx + + fx = 0 ∂x ∂y
第二节
平衡微分方程
思考题 1. 试检查,同一方程中的各项,其量纲 必然相同(可用来检验方程的正确性)。 2. 将条件
第一节
平面应力问题和平面应变问题
平面应变
例如: 挡土墙 隧道
o
o x x
y
y
第一节
平面应力问题和平面应变问题
平面应变
例2 试分析说明,在板面上处处受法向约束且不受切 向面力作用的等厚度薄板中,如图,当板边上只受 x,y向的面力或约束,且不沿厚度变化时,其应变状 态接近于平面应变的情况。 (习题 2-4) 解:按平面应变问题特征 来分析,本题中

弹性力学课件全本

弹性力学课件全本

© 2006.Wei Yuan. All rights reserved.
2. 应力:单位截面面积的内力.
内力:发生在物体内部的力,即物体 本身不同部分之间相互作用的力。
lim
ΔV 0
z

F A p P


F p A
o x
y
p: 极限矢量,即物体在截面mn上的、在P点的应力。 方向就是F的极限方向。 应力分量:, 量纲:N/m2=kg∙m/s2∙m2=kg/m∙s2 即:L-1MT-2
(Theory of Elasticity),研究弹性体由于受外力、边界
约束或温度改变等原因而发生的应力、形变和位移。 研究对象:弹性体 研究目标:变形等效应,即应力、形变和位移。
2. 对弹性力学、材料力学和结构力学作比较
弹性力学的任务和材料力学, 结构力学的任务一样, 是分析各种结构物或其构件在弹性阶段的应力和位 移, 校核它们是否具有所需的强度和刚度, 并寻求或 改进它们的计算方法.
x
zx
A
y
可以证明,已知x, y, z, yz, zx, xy, 就可求得经过 该点任一线段上的线应变 .也可以求得经过该点任 意两个线段之间的角度的改变。因此,此六个形变 分量可以完全确定该点的形变状态。
© 2006.Wei Yuan. All rights reserved.
(2)研究方法: 弹性力学与材料力学有相似,又有一 定区别。
© 2006.Wei Yuan. All rights reserved.
弹性力学:在弹性体区域内必须严格考虑静力学、 几何学和物理学三方面条件,在边界上严格考虑受 力条件或约束条件,由此建立微分方程和边界条件 进行求解,得出精确解答。 材料力学:虽然也考虑这几个方面的的条件,但不是 十分严格。

2024版弹性力学5PPT课件

2024版弹性力学5PPT课件

2024/1/25
5
边界条件与约束类型
边界条件
位移边界条件、应力边界条件、混合边界条件。
约束类型
几何约束、运动约束、动力约束。
2024/1/25
பைடு நூலகம்
6
应力、应变及位移关系
2024/1/25
应力
单位面积上的内力,包括正应力和剪应力。
应变
物体在外力作用下形状和尺寸的改变,包 括线应变和角应变。
位移
物体在外力作用下某点位置的改变,包括 线位移和角位移。
广义平面应力问题与广义平面应变问题的定义
阐述广义平面应力问题和广义平面应变问题的基本概念和定义。
广义平面应力问题与广义平面应变问题的求解方法
介绍如何利用弹性力学的基本方程和边界条件,求解广义平面应力问题和广义平面应变 问题。
广义平面应力问题与广义平面应变问题的实例分析
通过具体实例,展示广义平面应力问题和广义平面应变问题求解方法的实际应用。
10
功的互等定理与卡氏定理
01
功的互等定理的基本内容
在弹性力学中,如果两个载荷系统在相同的物体上分别作用并产生相同
的位移场,则这两个载荷系统所做的功相等。
2024/1/25
02 03
卡氏定理的基本内容
在弹性力学中,如果物体在某一载荷作用下处于平衡状态,那么在该载 荷作用下物体内部任意点的应力分量与另一与之平衡的载荷在该点所引 起的位移分量成正比。
2024/1/25
03
平面问题求解方法
13
平面应力问题与平面应变问题
平面应力问题
分析薄板在面内荷载作用 下的应力、变形和稳定性。
2024/1/25
平面应变问题
研究长柱体或深埋在地下 的结构物,在垂直于轴线 或地面的荷载作用下,其 横截面内的应力和变形。

弹性力学基础教学课件PPT

弹性力学基础教学课件PPT
弹性力学基础教学课 件
目录
• 引言 • 弹性力学基本概念 • 弹性力学基本方程 • 弹性力学问题解法 • 弹性力学应用实例 • 总结与展望
01
引言
课程简介
弹性力学基础是一门介绍弹性力学基本原理和方法的课程,旨在为学生提供解决 工程问题中弹性力学问题的能力。
本课程将介绍弹性力学的基本概念、基本原理、基本方法以及在工程实践中的应 用,帮助学生建立对弹性力学的基本认识,培养其解决实际问题的能力。
弹性力学基本方程
平衡方程
静力平衡方程
描述了弹性体在力的作用下保持平衡的状态,表达了物体内 部各点的应力与外力之间的关系。
运动平衡方程
在考虑了物体运动的情况下,描述了弹性体在力的作用下保 持运动的平衡状态,涉及到速度和加速度。
几何方程
应变与位移关系
描述了物体在受力变形过程中,位移 与应变之间的关系。
应变与速度关系
描述了物体在受力变形过程中,速度 与应变之间的关系。
本构方程
弹性本构方程
描述了弹性体在受力变形过程中,应力与应变之间的关系,涉及到弹性模量和泊松比等 参数。
塑性本构方程
描述了塑性体在受力变形过程中,应力与应变之间的关系,涉及到屈服准则和流动法则 等参数。
04
弹性力学问题解法
总结词
弹性梁的弯曲问题
总结词
实际工程应用
详细描述
在建筑工程、机械工程和航空航天工程等领域,弹性梁的弯曲问题具有广泛的应用。例如,在桥梁和建筑结构中, 梁是主要的承载构件,其弯曲变形会影响结构的稳定性和安全性。通过掌握弹性力学的基本原理和方法,可以更 加准确地分析梁的弯曲问题,优化梁的设计和计算。
弹性薄板的弯曲问题
越广泛。未来可以进一步研究和发展更加高效、精确的数值计算方法,

弹性力学ppt课件

弹性力学ppt课件

应变定义
物体在外力作用下产生的 形变,表示物体尺寸和形 状的变化。
应力与应变关系
应力与应变之间存在一一 对应关系,通过本构方程 来描述。
广义胡克定律及应用
1 2
广义胡克定律 又称作弹性本构关系,表示应力与应变之间的线 性关系。
广义胡克定律的应用 用于计算弹性体在复杂应力状态下的应力和应变, 是弹性力学中的重要基础。
弹性力学ppt课件
contents
目录
• 弹性力学概述 • 弹性力学基本原理 • 线性弹性力学问题求解方法 • 非线性弹性力学问题简介 • 弹性力学实验方法与技术应用 • 弹性力学在相关领域拓展应用
01 弹性力学概述
弹性力学定义与研究对象
弹性力学定义
弹性力学是研究弹性体在外力和其他 外界因素作用下产生的变形和内力, 从而在变形与外力之间建立一定关系 的科学。
有限元法在弹性力学中应用
有限元法基本原理
将连续体离散化为有限个单元,每个单元用简单的函数近似表示,通 过变分原理得到有限元方程。
有限元法求解过程
包括网格划分、单元分析、整体分析、边界条件处理和求解有限元方 程等步骤。
有限元法的优缺点
有限元法可以求解复杂几何形状、非均质材料和非线性问题,但存在 网格划分和计算精度等问题。
布。
弹性模量和泊松比测定实验
拉伸法
通过对标准试件进行拉伸实验,测量试件的应力和应变,从 而计算得到弹性模量和泊松比。
压缩法
通过对标准试件进行压缩实验,测量试件的应力和应变,进 而计算弹性模量和泊松比,适用于脆性材料的测量。
弯曲法
通过对梁式试件进行三点或四点弯曲实验,测量试件的挠度 和应力,从而推算出弹性模量,特别适用于细长构件的测量。

弹性力学课件(高教课堂)

弹性力学课件(高教课堂)

弹性力学课件(高教课堂)教学内容:1. 弹簧的弹性特性:弹簧的弹性系数、弹簧的弹性力、弹簧的弹性势能。

2. 弹性体的变形与应力:弹性体的应变、应力、胡克定律、弹性模量。

3. 弹性体的变形能:弹性体的变形能的定义、计算方法、变形能与弹性势能的关系。

4. 弹性体的平衡条件:弹性体的受力分析、弹性体的平衡条件、弹性体的支座反力。

教学目标:1. 理解弹簧的弹性特性和弹性体的变形与应力。

2. 掌握弹性模量的概念和计算方法。

3. 能够计算弹性体的变形能和支座反力。

教学难点与重点:重点:弹簧的弹性特性、弹性体的变形与应力、弹性模量的计算、弹性体的变形能的计算。

难点:弹性体的受力分析和支座反力的计算。

教具与学具准备:教具:黑板、粉笔、弹簧演示器、弹性体模型。

学具:笔记本、尺子、计算器。

教学过程:1. 实践情景引入:通过弹簧演示器展示弹簧的弹性特性,让学生观察和感受弹簧的弹性力。

2. 讲解弹簧的弹性特性:解释弹簧的弹性系数、弹性力和弹性势能的概念,并用公式进行说明。

3. 讲解弹性体的变形与应力:解释弹性体的应变、应力和胡克定律的概念,并用公式进行说明。

4. 讲解弹性体的变形能:解释弹性体的变形能的定义和计算方法,并用公式进行说明。

5. 讲解弹性体的平衡条件:解释弹性体的受力分析和支座反力的概念,并用公式进行说明。

6. 例题讲解:给出一个弹性体的受力分析的例题,让学生运用所学的知识进行解答。

7. 随堂练习:给出几个关于弹性体的变形与应力、变形能和支座反力的问题,让学生进行练习和解答。

板书设计:1. 弹簧的弹性特性:弹性系数、弹性力、弹性势能。

2. 弹性体的变形与应力:应变、应力、胡克定律、弹性模量。

3. 弹性体的变形能:变形能的定义、计算方法、变形能与弹性势能的关系。

4. 弹性体的平衡条件:受力分析、支座反力。

作业设计:1. 计算一个弹簧在拉伸5cm时的弹性力。

答案:根据胡克定律,弹性力F=kx,其中k为弹簧的弹性系数,x 为弹簧的伸长量。

弹性力学课件

弹性力学课件

代入 u ρ,,uφ得轴对称应力对应的位移通解,
u
1 [(1 ) A 2(1 )B(ln 1)
E
2(1 )C I cos K sin,
(1
3
)B
(e)
u
4B E
H
I
sin
K
cos。
其中
I,K—为x、y向的刚体平移,
H —为绕o点的刚体转动角度。
说明
说明
(1)在轴对称应力条件下,式 (c),(d),(e) 为应力函数、应力和位移的通解,适用 于任何轴对称应力问题。
2 2 2 ( 2 1 1 2 )。 (g)
x2 y2 2 2 2
2.极坐标中的相容方程
4Φ 22Φ 0,
相容方程应力公式
(h)
3.极坐标中应力用应力函数 Φ( ρ表,φ示)
可考虑几种导出方法: (1) 从平衡微分方程直接导出(类似于
直角坐标系中方法)。
应力公式
(2) 应用特殊关系式,即当x轴移动到与 ρ
PC PB
ρdφ
ρ φ
所以切应变为
1
u 。
2. 只有环向位移 u,φ求形变。
P,A,B变形后为 P,A,B, 各点的位移如图
几何方程
几何方程
PA线应变
0,(略去高阶小量).
PB线应变
εφ
PB PB PB
(u
φ
uφ φ
dφ)
u
ρdφ
1 ρ
uφ φ
;
PA转角
α
DA
uφ ρ
d
ρ

,
PA d ρ ρ
的向有投影。
MC -0-通过形心C的力矩为0,当
考虑到二阶微量时,得

弹性力学专题知识课件

弹性力学专题知识课件
7
2)弹性力学: 在弹性力学中,一般不作出那些假定,故解比较精确。
例如在研究直梁在横向荷载作用下旳弯曲,弹性力学就不引 用了平面截面旳假定;又例如在研究有孔旳拉伸构件,弹 性力学也不假定拉应力在净截断面均匀分布;这使数学推 演复杂, 但解往往是比较精确旳。
3)构造力学: 构造力学研究措施有位移法、力法或混正当等。 弹性力学一般不研究杆件系统,但诸多人致力于弹
10
2. 面力
(1)定义:分布在物体表面上旳力。如流体压力和接触力
F 。如图1-3所示。
(2)性质:面力一般是物体表面点旳位置坐标旳函数。
(3)面力集度: S 上面力旳平均集度为: F
S
P点所受面力旳集度为:
z
fz F
f lim F S 0 S
△S F (4)面力分量:
fx
P fy
y
P点旳面力分量为 fx , f y , fz ,量 纲是 L1MT 2
zy yz , yx xy , xz zx
作用在两个相互垂直旳面上而且垂直于该两面交线旳切应 力是互等旳(大小相等,正负号也相同。)
17
图1-9
(4)注意弹性力学切 应力符号和材料力学是有 区别旳,图1-9中,弹性
弹性力学 力学里,切应力都为正,
而材料力学中相邻两面旳 旳符号是不同旳。正应力 与材料力学旳正负号要求 相同(即拉为正压为负)。
C
y
z
yx z
x P yz
A
y
(1)为了分析一点P旳应力
状态,在这一点从物体内取出
一种微小旳正平行六面体,各
yz
面上旳应力沿坐标轴旳分量称
y 为应力分量。即每个面上旳应
yx B 力分量可分解为一种正应力和

弹性力学课件完整版

弹性力学课件完整版

材料拉伸或压缩时力学性能指标
弹性模量
弹性模量是描述材料抵抗弹性变形能力的指标,它等于应 力与应变的比值。
泊松比
泊松比是描述材料在拉伸或压缩时横向变形与纵向变形之 间关系的指标。
屈服极限和强度极限
屈服极限是指材料开始产生塑性变形的应力值,强度极限 是指材料在拉伸或压缩时所能承受的最大应力值。这些指 标对于评价材料的力学性能具有重要意义。
生物医学领域人体骨骼、肌肉等软组织力学性能研究
骨骼力学性能研究
运用弹性力学理论对人体骨骼进行受力分析 和模拟,研究骨骼在不同载荷下的应力分布 和变形情况,为骨折治疗和骨骼生物力学研 究提供理论支持。
肌肉软组织力学性能研究
通过弹性力学方法建立肌肉软组织的力学模 型,研究肌肉在收缩和舒张过程中的应力应 变关系以及能量转换机制,为运动生物力学
通过弹性力学中的运动方程可以建立位移梯度与应变之间的联系。
03
位移边界条件与约束
在实际问题中,空间各点的位移会受到边界条件和约束的影响。因此,
在分析空间各点位移变化规律时,需要考虑这些因素的影响。
06
弹性力学在工程中应用 举例
建筑结构中梁、板、柱设计原理
梁的设计原理 根据梁的受力特点和支承条件,运用弹性力学理论进行内 力、应力和变形的分析,从而确定梁的截面尺寸和配筋。
实验法在弹性力学研究中作用
验证理论模型
通过实验手段,可以验证弹性力学理论模型 的正确性和有效性。
研究材料性能
通过实验可以研究不同材料的力学性能,为 弹性力学的研究提供基础数据。
获取实验数据
通过实验可以获取大量的实验数据,为弹性 力学的研究提供有力的支持。
探索新现象和新规律
通过实验可以发现新的力学现象和规律,推 动弹性力学的发展。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学
第二节 弹性力学中的几个基本概念
面力
面力(Surface force) --(定义)作用于物 S0 S
度, f x , f y , f z .
(量纲)M L-1T -2 .
(符号)坐标正向为正 。
弹性力学
第二节 弹性力学中的几个基本概念
(1)理解和掌握弹力的基本理论; (2)能阅读和应用弹力文献; (3)能用弹力近似解法(变分法、差分法
和有限单元法)解决工程实际问题; (4)为进一步学习其他固体力学分支学
科打下基础。
弹性力学
思考题
1. 弹性力学和材料力学相比,其研究对 象有什么区别?
2. 弹性力学和材料力学相比,其研究方 法有什么区别?
体力
体力(Body force)
F f lim
V 0 V
--(定义)作用于物体体积内的力。
(表示)以单位体积内所受的力来量
度, fx, fy, fz.
(量纲) ML-2T-2.
基本量纲是指具有独立性的量纲。国际单位制有7个基本量 的量纲符号,与力学有关的为:长度L、质量M、时间T。
(符号)坐标正向为正。
徐芝纶编《弹性力学》(第四版,上册),高等教育出
版社,2006
S.Timoshenko & Goodier J.《Theory of Elasticity》 清华大学出版社, 2004
徐芝纶编《Applied Elasticity》,高等教育出版社,
1991
弹性力学
Give me a fish and I will eat today, Teach me to fish and I will eat for a life time.
例:表示出下图中正的体力和面力
O(z)
x
fx
fx
fy
fy
y
O(z)
x
fy
fx
fx
fy
y
弹性力学
第二节 弹性力学中的几个基本概念
内力
内力 (Internal force)
--假想切开物体,截面两边互相作用 的力(合力和合力矩),称为内力。
弹性力学
第二节 弹性力学中的几个基本概念
应力
应力 (Stress) --截面上某一点处,单 位
授人以鱼,不如授人以渔。
弹性力学
第一节 弹性力学的内容 第二节 弹性力学中的几个基本概念 第三节 弹性力学中的基本假定 第四节 弹性力学发展简史
弹性力学
第一章 绪 论 §1-1 弹性力学的
定义
内容
弹性力学(Elasticity)
--研究弹性体由于受外力、边界约束或温度 改变等原因而发生的应力、形变和位移。
截面面积上的内力值。
p lim F A0 A
(量纲)M L-1T -2 .
(表示)σ x -- x面上沿 x向正应力(Normal
stress),
xy -- x面上沿 y向切应力(Shearing
stress)。
(符号)坐标面上的应力以正面正向,负面负
向为正。
弹性力学
柯西(1789-1857) 出生于巴黎。在纯数学和应用数学的功力 是相当深厚的,很多数学的定理和公式也 都以他的名字来称呼,如柯西不等式、柯 西积分公式...在数学写作上,他是被认为在数量上 仅次于欧拉的人。 柯西在1822年的一篇论文中,建立了弹性理论的 基础。 1857年5月23日,他突然去世,享年68岁,临终前, 他还与巴黎大主教在说话,他说的最後一句话是: 人总是要死的,但是,他们的功绩永存。
弹性力学
二滩拱坝
H=240m
施工中的龙滩大坝
H=192m
小湾拱坝混凝土浇筑H=292m
锦屏一级拱坝
H=305m
弹性力学

线








海洋石油钻井平台



弹性力学
天生桥厂房高边坡
南 水 北 调 蔺 家 坝 泵 站
引 水 隧 洞
弹性力学
第一节 弹性力学的内容
学习目的
工科学生学习弹力的目的:
因此材料力学建立的是近似理论,得出 的是近似的解答。从其精度来看,材料力 学解法只能适用于杆件形状的结构。
弹性力学
第一节 弹性力学的内容
地位
弹性力学在力学学科和工程学科中,具
有重要的地位:
弹性力学是其他固体力学分支学科的基 础。
弹性力学是工程结构分析的重要手段。尤 其对于安全性和经济性要求很高的近代大型 工程结构,须用弹力方法进行分析,或以弹 性应力分析和变形分析为基础。
结构力学(Structural mechanics)--在材料力
学基础上研究杆系结构(如桁架、刚架等)的内力 和位移计算。
弹性力学(Elasticity)--研究各种形状的弹性
体,如杆件、平面体、空间体、板壳、薄壁结构等的位 移、变形和应力计算。
弹性力学
第一节 弹性力学的内容
研究方法
在研究方法上,弹力和材力也有区别:
3. 试考虑在土木、水利工程中有哪些非 杆件和杆系的结构?
弹性力学
第一章 绪论
外力
§1-2 弹性力学中的几个基本概念
外力(External force) --其他物体对研究对象 (弹性体)的作用力。
远距作用和接触作用 前者包括万有引力、电磁力等 后者包括表面压力、摩擦力等
弹性力学
第二节 弹性力学中的几个基本概念
Elasticity
弹性力学
弹性力学也称弹性理论,主要研究 弹性体在外力作用或温度变化等外界因 素下所产生的应力、应变和位移,从而 解决结构或机械设计中所提出的强度和 刚度问题。
弹性力学
教材
徐芝纶编《弹性力学简明教程》(第四版),高
等教育出版社,2013
主要参考书
陈国荣编《弹性力学》,河海大学出版社,2002
弹力研:究在方区法域V内严格考虑静力学、 几何学和物理学三方面条件,建立三套方程;
在边界s上考虑受力或约束条件,建立边界
条件; 并在边界条件下求解上述方程,得出 较精确的解答。
弹性力学
第一节 弹性力学的内容
研究方法
材力 也考虑这几方面的条件,但不是十
分严格的:常常引用近似的计算假设(如 平面截面假设)来简化问题,并在许多方 面进行了近似的处理。
弹性体:理想化的固体材料、材料受荷载 后只发生弹性变形(卸载后可恢复的变形)
研究弹性体的力学,有材料力学、结构力学、 弹性力学。它们的研究对象分别如下:
弹性力学
第一节 弹性力学的内容
研究对象
材料力学(Mechanics of materials)--研究简单
构件(主要是杆件如梁、柱和轴的拉压、弯曲、剪切、扭 转和组合变形等)的强度、刚度和稳定性计算。
相关文档
最新文档