2.8他励直流电动机的运行解析
他励直流电动机的运行
二、 反接制动
(一)电压反接制动
U
电动
S
电压反接制动时接线如图所 示。开关S投向“电动”侧时,电枢 Ia
制动
I aB
RB
Ea
接正极电压,电机处于电动状态。
M
进行制动时,开关投向“制动”侧, T n TB
电枢回路串入制动电阻RB 后,接
If
上极性相反的电源电压,电枢回路
内产生反向电流:
I aB
PM Ea Ia 0 , 表明轴上输入的机械功率转变为 电枢回路电功率。
n
B
n0
A
注意:
TL C0
D
n0
Ra
TL
T
Ra RB
电动机拖到反抗性 负载时,若停车应 及时切断电源,否 则当 T TL 时会反
向启动
注意事项:
(1)反接制动转矩大――制动作用较强; (2)制动转矩大是由于电枢电流大,故制 动过程中会使电机发热,故不适合频繁制动
为了扩大调速范围,通常把降压和 弱磁两种调速方法结合起来,在额定 转速以上,采用弱磁调速,在额定转 速以下采用降压 调速。
二、恒转矩调速和恒功率调速
当直流电动机调速运行时,不管转速是多少,如 果保持其电枢电流和每极磁通都为额定值,即对
应的电磁转矩为额定值,则称为恒转矩调速
电枢串电阻调速和降压调速
磁通保持不变,在不同转速下保持电流不变
载的稳定速度。RB 越小,特性曲线的斜率越小,起
始制动转矩越大,而下放负载的速度越小。
但制动电阻越小,制动电流越大。选 择制动电阻的原则是
I aB
Ea Ra RB
Imax
(2 ~ 2.5)IN
即:
RB
他励直流电动机的四象限运行教学
一样,但是电枢电势克服了外加电
压产生的。
精选ppt课件
17
此时,与电动状态相比,电枢电流已经反向, 电磁转矩也反向,由电动状态时的驱动转矩变 为制动转矩。因此,这时电机吸收机械能,输 出电能,具有发电并向电网回馈电能的性质, 故称为回馈制动状态。 通常,我们把回馈制动 分为正向回调制动和反向回馈制动。所谓正向 回馈制动是指电枢加正向电压的回馈制动状态。
精选ppt课件
15
电枢电流为
Ia
U(Ea)UEa RaR RaR
精选ppt课件
16
4.3.5 回馈制动
他励直流电动机在电动状态下提升重物时,如
果反接电枢,就有可能过渡到机械特性的第四象限
运行,此时电动机便在回馈制动状态下匀速下放重
物。他励直流电动机在回馈制动时,转速方向应与
理想空载转速方向一致, 与的方向与电动状态时
精选ppt课件
2
他励直流电动机的固有机械特性与各种人为 机械特性,分布在机械特性的四个象限内,电 动机所带动的生产机械的负载转矩特性,有反 抗性恒转矩、位能性恒转矩、泵类等典型负载 转矩特性,他们分布在四个象限内。电动机会 在四个象限内运行(包括稳态与过渡过程), 即处于各种不同的运行状态。本节将具体分析 他励直流电动机在各个象限内不同的运行状态。
精选ppt课件
18
精选ppt课件
19
精选ppt课件
5
精选ppt课件
6
4.3.2能耗制动
方法:制动瞬间,切除电动机的电源电压并
在电枢回路串入电阻R。在切换后的瞬间,由于
惯性的作用,小车转速n仍保持与原电动机运行
状态相同的方向和大小,不能突变,电动机运行
点从,磁通不变,电枢感应电动势的方向与大小
实验二他励直流电动机试运转及直流发电机的运行特性
U U0 U N 100% UN
I IN
15 发电机外特性—步骤
序
编号
号
分类 nN(rpm) PN(W) UN(V) IN(A) UfN(V) IfN(A)
1 eBDCG1000 发电机 1600
110 185 0.6 220 <0.16
(1)确认可调直流稳压电源、励磁电源开关处于断开 位置;可调直流稳压电源输出调节旋钮处于最小值位 置;
由开路特性可以判断出电 机在额定电压下磁路的饱 和程度。
11 发电机空载特性实验—步骤
序
编号
号
分类 nN(rpm) PN(W) UN(V) IN(A) UfN(V) IfN(A)
1 eBDCG1000 发电机 1600
110 185 0.6 220 <0.16
(1)确认可调直流稳压电源、励磁电源开关处于断开 位置;可调直流稳压电源输出调节旋钮处于最小值位 置;
3、如何改变电动机的转向?
21
实验报告要求
实验目的、实验内容、实验记录数据; 根据空载实验数据,作出空载特性曲线; 绘出直流发电机的外特性曲线,计算电压调整率:
课后思考题
U U0 U N 100% UN
14 发电机外特性—原理
当转速n等于额定转速,并为常数时,励磁电流等于额定励磁 电流,并保持不变(额定励磁电流是指,转速为额定转速、 电压为额定电压、电流为额定电流时的励磁电流值),改变 负载大小时,端电压随负载电流变化的关系,称为外特性。
U
发电机从空载到满载的
U0
电压变化程度,可用电
UN
压调整率来表示:
1 实验目的
学习电动机的起动、升速、改变转向、停机 条件。
4 他励直流电动机的运行
返回
上一节
下一节
上一页
下一页
1.电枢串电阻调速
电枢回路串接电阻调速方法的特点: 优点:设备简单,调节方便; 缺点:调速范围小,电枢回路串入电阻后 电 动机的机械特性变“软”,使负载变动时 电动机产生较大的转速变化,即转速稳定性差, 而且调速效率较低。
返回
上一节
下一节
上一页
下一页
返回
上一节
下一节
上一页
下一页
恒功率调速 调速中,保持Ia=IN,若Ф↓→n↑,
P =常数。
在保持电枢电流接近或等于额定值条件
下,调速过程中电动机允许输出功率不变的
调速方法称为恒功率调速。如 改变电动机主
磁通Ф 的调速方法就属于恒功率调速方法。
返回
上一节
下一节
上一页
下一页
调速方式与负载类型配合问题
返回
上一节
下一节
上一页
下一页
4.2 他励直流电动机的调速
注意:调速与转速自然变化的区别。
“转速的自然变化”是指生产机械的负载转 矩发生变化时,电动机的电磁转矩T要相应发生 变化,电动机的转速也将随着发生变化。调速 是通过人为手段改变电机参数而实现的转速变 化。
返回
上一节
下一节
上一页
下一页
电气调速方法
返回 上一节 下一节 上一页 下一页
静差率比较
同样硬度 的特性,转速 越低,静差率 越大,越难满 足生产机械对 静差率的要求。
不同机械特性对应的静差率
返回 上一节 下一节 上一页 下一页
2.调速范围D
定义:
nmax D nmin
指额定负载时,电力拖动系统可能运行的 最高转nmax与最低转速nmin之比。其中nmax受直 流电动机转动部分机械强度与换向条件的限制, nmin受低转速时相对稳定性的限制。
他励直流电动机三种制动原理
他励直流电动机三种制动原理直流电动机是一种常用的电动机类型,广泛应用于工业生产和日常生活中。
在使用直流电动机时,为了确保其安全性和可靠性,制动是非常重要的一部分。
本文将介绍以他励直流电动机的三种制动原理。
一、电阻制动原理电阻制动是以他励直流电动机常用的制动方法之一,其原理是通过与电动机并联连接的可调电阻来降低电动机的转速。
当制动命令下达时,电路会将电源与电阻并联连接,形成一个回路,电动机的电流将通过电阻流过,由于电阻的存在,电动机的转矩减小,转速逐渐降低,从而实现制动的效果。
电阻制动的优点是制动效果稳定可靠,缺点是制动时会产生大量的热量,需要散热设备来降低温度。
二、反接电动势制动原理反接电动势制动是以他励直流电动机常用的制动方法之二,其原理是通过改变电动机的接线方式,使其产生反向电动势,从而实现制动的效果。
当制动命令下达时,电路会将电源的正极与电动机的负极相连,电源的负极与电动机的正极相连,从而改变了电动机的电流方向,使电动机产生反向电动势,电动机的转速逐渐减小,实现制动。
反接电动势制动的优点是制动效果快速,缺点是制动时会产生较大的电流,可能对电路和电动机产生冲击。
三、短路制动原理短路制动是以他励直流电动机常用的制动方法之三,其原理是通过将电动机的两端短路连接,使电动机产生较大的电流,从而实现制动的效果。
当制动命令下达时,电路会将电动机的两端通过一个接触器或开关短路连接,电流会在电动机内部形成一个闭环,电动机的转速逐渐减小,实现制动。
短路制动的优点是制动效果快速,制动力度大,缺点是制动时会产生较大的电流,可能对电路和电动机产生冲击。
以他励直流电动机的三种制动原理分别为电阻制动、反接电动势制动和短路制动。
这三种制动方法各有优缺点,根据实际需求选择合适的制动方式能够确保电动机的安全可靠运行。
在实际应用中,需要根据具体情况选择适当的制动方法,并合理设计制动电路,以达到预期的制动效果。
同时,也需要注意制动过程中产生的热量和电流对电路和电动机的影响,采取相应的措施进行散热和保护。
2024年第4章-直流电动机的运行
1)能耗制动过程
如图,处于电动状态的电动机,突然 将开关S投向制动电阻 RB 上,即实现 制动。
制动瞬间(如特性曲线图),U=0,
U
电动
S
Ia
I aB
RB
Ea
制 动
M
n不能突变,运行点从A→B,Ф和Ea
T
均不变。此时 IaB <0,TB <0。
制动运行时,将系统储存的动能转换成电能,
n TB
If
消耗在电阻上,直到电机停止转动。
第4章 他励直流电动机的运行
本章主要介绍电力拖动系统的运动方程、负载转矩特 性、直流电动机的机械特性、启动、调速、制动等方法和 物理过程。
一、电力拖动系统的运动方程式
1、运动方程式
运动方程式描述了系统的运动状态,系统的运动状态取决于 作用在原动机转轴上的各种转矩。
电源
电力拖动系统的组成
控制设备
电动机
② 拖动位能性负载;
③电源电压反接U=-U;
④运行在第四象限B点;
TL2 TL1
T
⑤ TB >0,n <0,电磁转矩为制动转矩;
⑥ n<0,反向回馈制动 。
n0
B
能耗制动
5)对于要求频繁正、反转的生 产机械(如可逆轧钢机)采用反 接制动可使正向停车和反向启动 连续进行,缩短过渡过程时间。
4、倒拉反转运行
他励直流电动机拖动位能性负载运行。
在电枢回路中串联一个较大的电阻,即可实现制动。
1)特性曲线
电枢串较大 电阻特性
n
n0 B
A Ra
正向电动 提升重物
工作点由A-B-C-D, CD段为制动段。
电动机以稳 定转速下放
实验一 他励直流电动机特性以及调速运行
实验一他励直流电动机特性以及调速运行一、实验目的1.了解他励直流电动机的基本原理和结构;2.掌握他励直流电动机的特性曲线及其调速方法;3.通过实验研究,掌握生产过程中如何实现合理的调速运行。
二、实验原理电动机是将电能转换为机械能的机械装置。
其构成包括定子和转子两个部分。
定子为不可移动部分,包括电控系统和一个磁场。
转子为可动部分,通常包括电枢和磁极,磁极的极性可以根据需要改变。
当通入可变直流电流时,电枢内产生电磁场与磁极产生的磁场相互作用,使电枢开始转动。
2.调速运行原理他励直流电动机的调速可以通过改变电枢电流、定子电流、磁极电流等方式实现。
其调速原理基于电机理论和电气控制原理,根据负载要求设定输出转矩或转速目标值,然后通过电器控制手段,调整电机输出、电机参数变化来完成调速。
三、实验设备数字万用表、直流电动机、直流电源、变阻器、稳压电源、转速计、电阻箱、实验箱、电压表、电流表、按键板等。
四、实验步骤1.将直流电动机与直流稳压电源接通,检测电动机运行状态是否正常。
2.测量电动机的空载电压和空载电流,在此基础上绘制空载特性曲线。
3.通过调节变阻器中的电阻,改变电动机的负载电路,测量电动机各负载点的电流和电压,然后绘制负载特性曲线。
4.利用变阻器调节直流稳压电源输出电压,测量不同电压下电动机转速,并绘制调速特性曲线。
5.掌握电流和电压的比例关系,通过调整调速器中的电阻值,控制稳压电源输出电压,从而控制电动机的转速。
6.掌握电枢电流和输出转矩的关系,通过改变电枢电流改变电动机的输出转矩,进而控制电动机的输出功率。
五、实验结果分析通过实验,我们可以得到电动机的空载特性曲线、负载特性曲线和调速特性曲线。
通过这些特性曲线,我们可以了解该电动机的电流、电压、负载情况和运行状态。
在生产实际中,需要根据实际需要调节电动机输出的功率和转速。
六、实验注意事项1.实验前,需要仔细查看电动机和稳压电源的连接方式及电路图。
2.操作时,需仔细确认电路连接是否正确,不得错误接线。
他励直流电动机的运行
电网输入功率 P1 UNIa 4 4 5 W 0 0 22 W 0 2 k 0 2 W 0
电枢电路电阻上消耗的功率
P Ia2R 52 0 1.4 3 W 8 33 W 7 3.7 0 k 30 W
轴上功率(为负值,表示从轴上输入功率)
P 2 E a Ia (U N Ia R )Ia( 4 5 4 1 0 .4 ) 3 5 8 W 0 11 W 7 1 .7 k 0 1
B′
B
电气参数:= N, U =-UN, 电枢回路总电
阻R=Ra+Rc
n0
nn0 T
A
TB′
C点n=0时
CE
TB -TC -TL o
TL
T
D
Iac
UNEa RcRa
0
Tc 0
Rc限制制动初 始时刻的电流
若Tc <TL 系统停车
-n0
若Tc > TL Tc-TL<0 n<0 反向加速到D点稳定运行
例9-6 一台他励直流电动机,PN=5.6KW,UN=220V, IN=31A,nN=1000r/min,Ra=0.4,负载转矩 TL=49 N·m,
电枢电流不得超过2倍额定电流。试计算:(略T0)
1).电动机拖动位能性恒转矩负载,要求以300r/min速 度下放重物,采用倒拉反接运行,电枢回路应串入多大电 阻?若采用能耗制动运行,电枢回路应串入多大电阻?
电动机带动反作用负载,从 n50r0/mi进n行能耗制动,若其 最大制动电流限制在100A,试计算串接在电枢电路中的电阻值。
解
CeUN
INRa nN
4407.620.3930.39 1050
串接在电枢电路中的电阻值
第4章 直流电动机的运行
4、运动方程式中转矩正、负号的规定
首先确定电动机处于电动状态时的旋转方向为转速的正方向, 然后再规定:
(1)电磁转矩 T 与转速 n 的正方向相同时为正,相反时为负。
(2)负载转矩 TL 与转速 n 的正方向相同时为负,相反时为正。
2 (3)惯性转矩 GD dn 的大小和正负号由 T 和 TL 的代数和决定。
2)降低电枢电压调速
前提 N , R 0 调U。
(1)调速特性曲线
n n0
n01 n02
A (n)
UN
A1 (n1 )
A2 ( n 2 ) U1
U降低
U2
0
TL
T
(2)主要特征
①U↓→n↓; ②从基速向下调速;
③负载转矩TL一定时,电枢电流Ia与转速n无关;
④ β不变,硬度不变,转速稳定性好; ⑤ 可实现转速连续变化,平滑性好。
1、能耗制动 1)能耗制动过程
如图,处于电动状态的电动机,突然 将开关S投向制动电阻 RB 上,即实现 制动。
Ia
U
S
电动
I aB
RB
M
Ea
制 动
制动瞬间(如特性曲线图),U=0, n不能突变,运行点从A→B,Ф 和Ea 均不变。此时 I aB <0,TB <0。 制动运行时,将系统储存的动能转换成电能, 消耗在电阻上,直到电机停止转动。
2)静差率
n n n 100 % 0 100 % n0 n0
额定负载时的转速降落与理想空载转速之比。静差率越小,相对 稳定性越好。
3)平滑性
ni ni 1
相邻两级调速中,高一级转速 n i 与低一级转速 ni 1 之比。 φ 越接近1,平滑性越好。i→∞,φ→1为无极调速。
他励直流电机的启动原理与运行
他励直流电机的运行直流电动机的起动电动机接到规定电源后,转速从0上升到稳态转速的过程称为起动过程。
他励直流电动机起动时,必须先保证有磁场(即先通励磁电流),而后加电枢电压。
合闸瞬间的起动电流很大应尽可能的缩短启动时间,减少能量损耗以及减少生产中的损耗起动电流大的原因:1、起动开始时:n=0,Ea=CeΦn=0,2、电枢电流:Ia=(U-Ea)/Ra=U/Ra Ra一般很小这样大的起动电流会引起后果:1、电机换向困难,产生严重的火花2、过大转矩将损坏拖动系统的传动机构和电机电枢3、供电线路产生很大的压降。
变频器整流回路的启动电阻结论:因此必须采取适当的措施限制起动电流,除容量极小的电机外,绝不允许直接起动起动方法:电枢串电阻启动——起动过程中有能量损耗,现在很少用,在实验室中用降压启动——适用于电动机的直流电源是可调的,投资较大,但启动过程中没有能量损耗。
直流启动器电枢串电阻起动:最初起动电流:Ist=U/(Ra+Rst) 最初起动转矩:Tst=KTΦIst启动电阻:Rst=(UN/λi IN)-Ra为了在限定的电流Ist下获得较大的起动转矩Tst,应该使磁通Φ尽可能大些,因此起动时串联在励磁回路的电阻应全部切除。
有了一定的转速n后,电势Ea不再为0,电流Ist会逐步减小,转矩Tst 也会逐步减小。
为了在起动过程中始终保持足够大的起动转矩,一般将起动器设计为多级,随着转速n的增大,串在电枢回路的起动电阻Rst逐级切除,进入稳态后全部切除。
起动电阻Rst一般设计为短时运行方式,不容许长时间通过较大的电流。
降压起动:对于他励直流电动机,可以采用专门设备降低电枢回路的电压以减小起动电流。
起动时电压Umin,起动电流Ist:Ist= Umin/Ra< λiIN启动过程中U随Ea上升逐渐上升,直到U=UN串励电动机绝对不允许空载起动。
串电阻起动设备简单,投资小,但起动电阻上要消耗能量;电枢降压起动设备投资较大,但起动过程节能。
他励直流电动机的调速
T TL TL Ia 电枢电流 CT N TL = 常数时,I a 常数,如果 T TL ,则 I a I N ,即 I a 因此,
稳定运行时
与电动机转速n无关。 3.弱磁调速:Φ↓ A、调速过程: UN Ra R n T Ce CeCT
U Ea I a Ra =210V+10A(1Ω)
Ts≥(1.l~1.2)TN,这样系统才能顺利起动。
他励直流电动机起动方法有两种,下面分别叙述。
4.1.1 电枢回路串电阻起动 :(如图) UN 起动电流为: I S Ra R 特点:1、根据负载TL起动条件的要求,可确定所串入电阻R的 大小,有级。 2、简单、成本低。 3、功耗大。 4.1.2降电压启动 (如图)
(B)扰动消失后→ 回原稳定点。(食堂买饭)
3 .稳定性分析:(图2.13)
(1)(机特交点A )当干扰导致U↓ → ∵瞬间n = C、Ea = C ∴Ia↓→T↓(新的机特交点B) → TA – T0﹤0 →n↓→Ea↓→Ia↑ →T↑→(稳定在新的机特交点A’)
(2)当干扰导致U↑→ ∵瞬间n= C、Ea= C ∴Ia↑
(2)位能性恒转矩负载:电梯 (A)︱Tf ︳= C; (B)nf>0, Tf>0,nf<0, Tf>0, 2 .泵类:风机、油泵等,(图2.10) Tf ≌ n2 3 .恒功率负载:(图2.11) n↑→Tf↓;n↓→Tf↑; P ≌ Tf * n = C。 二、电力拖动运行的稳定条件: 1 .交点(机特与负特)— 同解(图2.12) 2 .扰动后仍能稳定: (A)U 变化→Tf变化→新的稳定点,而不发散;
n
返回 反抗性 恒功率 通风机
位能性
T 0
反抗性
他励直流电动机,
I I
st N
3 2 8 3 .6 = = 1 5 .8倍 2 0 7 .5
解:(2)
U N − = 220 − 0.067 Ω = 0.64 Ω Rs = 0.5 Ra 1.5 × 207.5 IN
谢谢!再见! 谢谢!再见!
4.电动机数据同题3,试求出下列几 种情况下的机械特性方程式,并在 同一坐标上画出机械特性曲线。
(1)固有特性; (2)电枢回路串入1.6 电阻; 2 1.6 (3)电源电压降至原来的一半; (4)磁通减少30%。
解:(1)由上一题可知:
R = 0.4 =2.389 in C n =1662r / m , Φ =0.1324, β = C Φ C Φ 9.55×0.1324
(1)额定运行时的电磁转矩、输出转矩及空载转矩; (2)理想空载转速和实际转速; (3)半载时的转速; (4)n=1600r/min时的电枢电流。
解:(1) = − =(220−0.4×53.4)V =198.64V E U RI
a N a a
Pem = Ea Ia =198.64×53.4W =10607.4W
起动瞬间转速n0电动势eacen0最初起动电流若直接起动由于ra很小ist会达到十几倍甚至几十倍的额定电流造成电机无法换向同时也会过热因此不能直接起动
他励直流电动机
—— ——
龚超
1.他励直流电动机稳定运行时,其 电枢电流与哪些因素有关?
解:他励直流电动机稳定运行时,电枢电流:
U − E a U − Ce Φ n I= = Ra Ra
解:(3)电压下降一半时β不变,理想空载 转速n0下降一半。故降压的人为特性为:
1 1 n = n0 − β T em = × 1662 − 2 .389 T em = 831 − 2.389 T em 2 2
他励直流电动机的运行
他励直流电动机三种调速方法的性能比较
调速方法 调速方向
电枢串电阻 降电源电压
向下调
向下调
减弱磁通 向上调
δ≤50%时调速范围
一定调速范围内转速 的稳定性 负载能力 调速平滑性 设备初投资 电能损耗
~2
差 恒转矩 有级调速
少 多
10~12
好 恒转矩 无级调速
多 较少
1.2~2 3~4
与δ无关
较好
恒功率 无级调速
TL T C
保持励磁电流If的大小及方向不变, 将开关接至R, 电枢从电 网脱离经制动电阻R闭合。
参数特点:=N,U=0, 电枢回路总电阻R=Ra+R
实际上是一台他励直流发电机。轴上的机械能转化成电能, 全 部消耗于电枢回路的电阻上, 所以称为能耗制动。
他励直流电动机能耗制动过程中的功率关系
输 入 电枢回路总 电磁功率
n0
n0
D nmax nmax
nmax
n
nmin
n0 nN
n0
1
nN n0
n0
nmax
nmax
n0
nN 1 nN 1
nN
nmax
D1
0
nN nmin
nN 1
1
nN 2 nN 3
3
2
TN
T
2.调速的平滑性 平滑系数:相邻两级转速或线速度之比。
ni
ni 1
3.调速的经济性 设备的初投资、调速时电能的损耗、运行时的维修费用等
电动机的电磁功率:
O TL
PM T
T
9.55Ce
N
I
a
2
60
UN
Ce
他励直流电动机的工作原理
他励直流电动机的工作原理好嘞,咱们今天就来聊聊他励直流电动机的工作原理。
想象一下,电动机就像一个勤劳的小蜜蜂,嗡嗡作响,不停地工作。
你知道吗,这种电动机在生活中可真是无处不在,像家里的电风扇、电动车,甚至洗衣机,都是它的“亲戚”。
我们来看看它背后的那些小秘密吧。
他励直流电动机其实有个特别的地方,它的工作原理真的是个有趣的故事。
电动机的心脏就是那个绕组,嘿,这可不是普通的绕组,它里边绕着电线,形成了电流流动的通道。
当电流通过的时候,它就像给电动机注入了生命的源泉。
这个电流在绕组里一跑,咱们的电动机就开始转动,简直是“动力无限”。
这种电动机用的电源是直流电,这个名字听上去有点高深,其实就是指电流朝一个方向流动。
简简单单,不用太复杂。
再说说他励的意思。
这个“他励”可有点意思,像是给电动机请了个“助教”。
在这里,励磁绕组是个关键角色,负责产生磁场。
电流流经励磁绕组,磁场就像一把无形的“锁”,把转子牢牢锁住。
转子一转,磁场就跟着转,形成一种奇妙的互动。
这个时候,你就会发现,电动机的转动简直是天衣无缝,配合得如同老夫老妻。
再往下讲,咱们得提一下电动机的转速。
电动机的转速可不是固定的,咱们可以根据负载的变化来调整。
想象一下,今天咱们要推着一车水果,动力肯定得足够大;但要是明天只是搬一箱牛奶,那自然就轻松多了。
这就是电动机的妙处,它能根据负载自动调节,真是“随叫随到”。
说到这里,咱们还得聊聊这小家伙的效率。
电动机的效率可真是个了不起的数字。
它把电能转化为机械能的能力可高达90%以上。
也就是说,几乎每一度电都能被它好好利用。
试想一下,要是家里的电器都能这么给力,电费账单得省多少呀!这就像是找到了人生的“省钱妙招”,让人心里那个美呀。
不过,任何事情都有两面性,他励直流电动机也不例外。
虽然它的效率高,但如果长时间工作或者负载过大,就容易发热,甚至出现一些小问题。
就像人一样,工作太累了,难免得休息一下。
因此,适时的维护和保养可不能少,给它一个良好的工作环境,才能让它发挥最佳状态。
第4章 他励直流电动机的运行
• 他励直流电动机的启动 电枢回路串电阻启动,降低电源电压启动。
• 他励直流电动机的调速 电枢串电阻调速,降低电源电压调速,弱磁调速。
• 他励直流电动机的电动与制动 电动运行,能耗制动,反接制动,倒拉反转 运行,回馈制动运行。
• *他励直流电动机的过渡过程
4.1 他励直流电动机的启动
p0
回馈给电源。“过程”是指 没有稳定状态,是变速过程。
|P1|
|PM|
|P2|
1. 正向回馈制动运行
• 电车在下坡时,TL2<0,加 速,当n超过n0后,T<0,T 与n反向。最后稳定在B点运 行。
• T与n反向,且n>0,电动机 为正向反馈运行。功率关系 与正向反馈过程相同。
• 功率关系与发电机一致,由 称发电状态。
0
TL1 T
e -n0
B -UN,Ra
nC
C
4.3 他励直流电动机的电动与制动运行
• U连续变化时,转速也连续变化,无级调速。 比电枢串电阻调速要平滑的多,是直流电力拖 动系统广泛采用的调速方式。
3. 弱磁调速
n
UN
Ce
Ra
CeCt
2
T
n0
n
• 保持U和Ra ,减弱磁通Φ时,n0↑,Δn↑(斜率 变大),弱磁时转速升高。
n
UN
Ce
Ra
Ce
Ia
,
T CtIa 9.55 CeIa
PM=TΩ=UIa-Ia2Ra
如拖动恒功率负载: TLΩ=常数 PM = TΩ = TLΩ=常数 Ia=常数
n
Φ1<ΦN
n01 A1(n1)
n0
A(nN) Φ1
电机拖动基础他励直流电动机运行
【例题8.9】Z2-71他励直流电动机额定数据为:PN=17kW, UN=220V,IN=90A,nN=1500r/min,Ra=0.147Ω,计算:(1) 直接起动时的起动电流;(2) 拖动额定负载起动,若采用电 枢回路串电阻启动,应串入多大电阻;若降压启动,电压 应降至多少?(以顺利起动为条件) 解:(1)直接起动电流
T CT I a TL n 2 I a n 2 n Ia n N 1200 I aN 34.4 23.56A 1450
2 2
根据调速点处电枢回路方程
UaN Ea I a Ra Rr
得外串电阻为
降低电源电压调速,输入功率
P1 Ua I aN 150.5 115 173075W .
输出功率与电枢回路串电阻调速相同。
【例题】一台他励直流电动机额定功率PN=7.5kW, UN=220V,IN=41A,nN=1500r/min,Ra=0.376Ω,拖动恒转 矩负载运行,TL=TN,把电源电压降到150V,问:(1) 电源 电压降低了但电动机转速还来不及变化的瞬间,电动机的 电枢电流及电磁转矩各是多大?电力拖动系统的动转矩是 多大?(2) 稳定运行转速是多少? 解:(1)电动机额定状态运行
Φ1 ΦN
T
Φ 1 <ΦN
TL n2 n1
a.带恒转矩负载时,各个调速点T相 n 同,但Φ不同,因此电枢电流 Ia 不 n01 同,电动机利用率不同。 b.带恒功率负载时,虽然T2<T1,但 n0 PL= Pe=UaIa-Ia2Ra=常数,则Ia1=Ia2 ,各个调速点电动机利用率相同。
Φ1 <ΦN Φ1 ΦN
4.1.1 电枢回路串电阻起动
他励直流电机的启动原理与运行
他励直流电机的启动原理与运行直流电机是一种常见的电动机,它的启动原理和运行过程相对简单。
下面将详细介绍直流电机的启动原理和运行过程。
一、直流电机的启动原理直流电机的启动原理主要涉及到电动机绕组和电刷之间的相互作用。
在直流电机中,电源(通常为直流电源)通过电刷与转子绕组中的线圈相连,通过转子绕组产生的磁场与永磁体的磁场相互作用,从而产生回转力矩,推动转子旋转。
具体来说,直流电机启动的基本原理可以归纳为以下几个步骤:1.电源通电:将直流电源与电机绕组相连,使得电源输出电流通过电刷进入转子绕组。
2.电流通过转子绕组:当电源通电后,电流会通过电刷进入转子绕组,并在线圈中形成磁场。
3.电刷与转子绕组之间的相互作用:这一步是直流电机启动的关键步骤。
通过电刷与转子绕组之间的接触和相互作用,使得电流通过转子绕组时产生的磁场和永磁体的磁场相互作用,从而发生力矩作用。
这个力矩使得转子开始旋转。
4.转子运动:一旦转子开始旋转,它会通过机械耦合将力矩传递给机械负载,从而实现所需的运动。
二、直流电机的运行过程直流电机的运行过程可以分为启动阶段和稳态运行阶段。
1.启动阶段:在启动阶段,当电源通电后,通过以上的原理,电机开始旋转。
在这个阶段,由于转子的惯性和机械特性,转速可能会逐渐增加直到达到稳定状态。
同时,电刷与电刷槽之间的接触会导致一些摩擦和火花,因此通常需要在这个阶段进行额外的控制来保证电刷和电刷槽之间的良好接触。
2.稳态运行阶段:一旦电机启动并进入稳态运行阶段,转子将以稳定的速度旋转。
在这个阶段,电机的性能和输出力矩取决于电机的设计和工作条件。
通常,可以通过控制电刷和电流的输入来调整电机的输出力矩和速度。
此外,需要注意的是,直流电机的运行过程也涉及到电机的磁场、电流和机械特性等因素的相互作用。
例如,电机的磁场由电流通过转子绕组时产生,转子的惯性和机械特性会影响电机的动态响应和稳态运行特性。
总结起来,直流电机的启动原理和运行过程包括电源通电、电流通过转子绕组、电刷与转子绕组之间的相互作用以及转子的旋转等步骤。
5-直流电机的运行原理与换向--注册电气工程师供配电专业
-
-
3. 转矩
=
U-E
Ra+ Rf
=
T CTΦ
T = CTΦ Ia (1)当 Ia 较小、磁路未饱和时,Φ∝Ia →T ∝Ia2
(2)当 Ia 较大、磁路已饱和时,Φ≈常数 →T ∝Ia
即 T∝Iam (1<m<2)
◆ 与并励电动机比较,有如下特点:
① 对应于相同的△T ,△Ia 小; ② 对应于允许的 Iamax ,能够产生的 T 大,
Tst 和 Tmax 较大。
T
◆ 转矩特性:
U = UN 时, T = f (Ia )
O
Ia
4. 转速 n= E
= U-(Ra + Rf ) Ia
CEΦ
CEΦ
=
U -Ra + Rf
CEΦ CECTΦ2
T
(1) 当T = 0 时,Ia = If = 0,Φ =Φr ,
n 很大,n = (5 ~ 6) nN (2) 当T 很小时,Ia 很小,磁路未饱和,
T↑→ Ia↑ →Φ↑ → n 迅速下降; (3) 当T 很大时,Ia 很大,磁路已饱和,
T↑→ Ia↑ →Φ 基本不变 → n下降较少;
n
n
O
T
O
Ia
◆ 转速特性: n = f (Ia )| UN= U
n=
U-
CEΦ
Ra + Rf CEΦ
Ia
=
U-
CE' Ia
Ra + Rf CE'
5. 应用
(1) 特别适用于起重机和电气机车等运输机械;
T = CTΦN Ia
O
Ia
= CT' Ia
他励直流电动机的制动
他励直流电动机的制动电机有两种运转状态:电动运转与同向。
制动运转与反向。
制动的目的使系统停车或限速。
自由停车法,电气制动,机械制动。
能耗制动;反接制动;回馈制动。
分析每种制动过程产生的条件,机械特性,及特点等。
1、能耗制动:产生条件:电机顺时针方向旋转,与之同方向。
电机在电动状态下运行.各物理量正方向如图所示:电机在电动状态下运行,合上,断开,制动。
不变,U=0.制动瞬间:励磁不变,因惯性转速不变,不变,但电枢电流与同方向,而转变了方向,使反向,电机处于制动状态。
若带位能性负载最终将稳定在C点,等速下放。
越大,制动越快。
2、反接制动:1)、转速反向的反接制动:正接反转。
产生条件:起重机起吊重物,电机的起动转矩小于重物的负载转矩,电机被负载拖动反向起动,使电机的转速逆电磁转矩的方向旋转,n 与反向,电机处于制动状态。
功率全消耗于上。
2)、电枢反接的反接制动:正转反接。
产生条件:电机在电动状态下运行,突将电枢反接,即U为负,电枢电流转变方向,使转变方向,电机处于制动状态。
在 C 应即时断开电源,否则电机将反转。
3、回馈制动:再生制动。
1)、位能负载拖动电动机,电机运行在反向电动状态,某缘由使电机的转速达到某一数值时,电机的,使电枢电流反向,即T 反向,电机进入发电机运行状态,而起制动作用。
电机将轴上输入的机械功率大部分回馈给电网,小部分消耗在电阻上。
2)、转变电枢电压:电机在正向电动状态运行,突降电枢电压,来不及变化,使,消失回馈制动,特性在其次象限。
同一电动机在相同电枢电阻时各种运行状态:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ia
Ia
T
暂时 T > TL
最后达到新的平衡
2.8他励直流电动机的运行
4 恒转矩调速方式和恒功率调速方式 两者都是在负载电流Ia=IN的前提下调速的,用来表 征电动机采用某种调速方法时的负载能力或允许输 出的性能指标。
最充分利用电动机,应该让它工作在Ia=IN的情况下
电力拖动系统中,负载有不同的类型,电动机有不同 的调速方法,具体分析电动机采用不同调速方法拖 动不同类型的负载时,电枢电流即负载电流的情况, 对充分利用电动机有好处
§2.8他励直流电动机的起动
我们在电枢回路中串入电阻 Rst ,可减小起动电流, 当起动转矩大于负载转矩,电动机开始转动,此 时 Ea 0,则 U N Ea I st Ra Rst
可见,随着转速的升高,反电动势不断增大,起动电 流继续减小,但是,同时起动转矩也在减小,所以 为了在整个起动过程中保持一定的起动转矩 ,加速 电动机的起动过程,我们采用将起动电阻一段一段 逐步切除,最后电动机进入稳态运行,此时,起动 电阻应被完全切除
磁通的办法一般不用。 法。
• Rf If n ,减弱磁通是常用的调速方
§2.8他励直流电动机的运行
特性:减弱磁通,只能升高 转速
因为: n0
1
Φ
, n
1
Φ
2
所以:磁通减小以后特性上移,而且斜率增加。
§2.8他励直流电动机的运行
调速过程,U一定
Rf
E
E
n
注意的是串励电动机绝对不允许在空载下起动,否则 电机的转速将达到危险的高速,电机会因此而损坏。
§2.8他励直流电动机的运行
n
n0
A
TL
TS
T
§2.8他励直流电动机的运行
二、他励直流电动机的调速方法 电动机稳态工作点:满足稳定运行条件的电动 机机械特性与负载转矩特性的交点,电动机 工作工作点恒转速运行 过渡过程:电动机运行在工作点之外的机械特 性上,电磁转矩与负载转矩不相等
§2.8他励直流电动机的运行
二、他励直流电动机的调速方法 由机械特性方程
Ra R U n T 2 Ce Ce CT
可知,他励直流电动机有三种调速方法: (1)电枢回路串入调节电阻 (2)改变电枢电压 (3)改变励磁电流,即改变磁通
§2.8他励直流电动机的运行
1电枢串电阻调速 电枢回路串入的电阻 越大,机械特性的斜率 越大,因此在负载转矩 恒定时,即为常数,增大 电阻可以降低电动机的 转速.在电枢中串入电阻, 使 n 、 n0不变,即 电机的特性曲线变陡 (斜率变大),在相 同力矩下,n
§2.8他励直流电动机的运行
所以,起动电流为: I st
UN Ra
可见,这种方法下的起动电流很大,因此,除了小容 量的电动机可采用直接加电压起动的方法外,一般 直流电动机都不采用这种方法。 1、直流电动机的起动方法: 1)电枢回路串电阻起动: 由相关公式可知: I st
UN Ra Rst
电枢绕组串电阻和降低电源电压调速 适合拖动恒转矩负载
2.8他励直流电动机的运行
(2)恒功率调速方式:在某种调速方法中,保持电 枢电流Ia=IN不变,若该电动机电磁功率恒 定不变,则称该调速方法为恒功率调速方式。 这种调速方式下,如电动机拖动恒功率负载, 且Ia=IN,负载转矩TL=TN,则电动机得到 充分利用,称这种恒功率调速方式与恒功率 负载相匹配。
§2.8他励直流电动机的运行
缺点:1)转速度稳定性差.电枢回路串电阻的人为机械 特性,是一组经过理想空载点的直线,串入的调速电 阻越大,机械特性越软.这样在低速运行时,负载在不 大的范围内变动,就会引起转速发生较大的变化. 2)损耗大:串入的电阻上要消耗很多电能,转速越低, 消耗的电能越大. 3)不易做到连续调速:电阻值不易做到连续调节 优点:设备简单
2.8他励直流电动机的运行
内容包括: 他励直流电动机的起动 他励直流电动机的调速 他励直流电动机的制动 基本要求: 理解他励直流电动机的运行,掌握起动方式、 调速方法和制动中的工程计算
§2.8他励直流电动机的运行
一、直流电动机的起动: 起动:电机接上电源从静止状态转动起来 到达稳态运行,这就是电动机的起 动过程 起动条件:1、起动转矩要足够大, 2、起动电流不要太大, 注意:因为在起动时,n=0,反电动势Ea=0
2.8他励直流电动机的运行
(1)恒转矩调速方式:在某种调速方法中,保持电 枢电流Ia=IN不变,若该电动机电磁转矩恒 定不变,则称该调速方法为恒转矩调速方式。 这种调速方式下,如电动机拖动恒转矩负载, 且Ia=IN,额定负载转矩TL=TN,则电动机 得到充分利用,称这种恒转矩调速方式与恒 转矩负载相匹配。
§2.8他励直流电动机的起动
n
n0
A
TL
TS
T
§2.8他励直流电动机的运行
从最原始的公式,我们可以看出,除了增大电阻外,还可以通 过减小电枢电压来减小起动电流: 2)他励直流电动机降低电枢电压起动:
I st
U Ra
这种方法在起动过程中不会有大量的能量消耗.串励 与复励直流电动机的起动方法基本与并励直流电动机 一样,采用串电阻的方法以减小起动电流.但特别值得
§2.8他励直流电动机的运行
3.弱磁调速 保持他励直流电动机电源电压不变,电枢回路也不串 入电阻,在电动机拖动的负载转矩不过分大时,见地 他励直流电动机的磁通,可以使电动机转速升高.
If的调节有两种情况:
• Rf If n ,但在额定情况下, 已接 近饱和,If 再加大的运行
2降低电源电压调速
Ra U n T n n0 n 其中 n0 , 2 K EΦ KT K EΦ
由转速特性方程知: 调电枢电压U,n0 变化,斜率不变, 所以调速特性是一 组平行曲线。
§2.8他励直流电动机的运行
特点:(1)工作时电枢电压一定,电压调节时,不允 许超过UN,而 n U,所以调速只能向下调。 (2)可得到平滑、无级调速。 (3)调速幅度较大。 说明:改变电压的调速方法必须有连续可调的大功 率直流电源,这种调速方法适用G - M(发电机-电 动机)系统。G-M 系统通过改变直流发电机的励磁 电流来改变发电机的输出电压,发电机的输出电压 再去控制电动机的电枢电压。这种方法投资大,目 前广泛使用的方法是可控硅整流电路调节电枢电压。