激光干涉仪报告.

合集下载

EAST三道HCN激光干涉仪的研制的开题报告

EAST三道HCN激光干涉仪的研制的开题报告

EAST三道HCN激光干涉仪的研制的开题报告一、研究背景在现代光学测量技术中,激光干涉技术具有高精度、高灵敏度、非接触等优点,被广泛应用于制造业、航空航天、地震观测等领域。

其中,HCN(Heterodyne laser interferometer,异频激光干涉仪)作为一种全息式干涉仪,可以实现超高精度测量,常用于半导体晶圆的制造、精密机床的调试等领域。

然而,国内目前HCN激光干涉仪的研制仍较为薄弱,需要进一步提高其精度和稳定性。

二、研究内容本研究旨在研制一套高精度、高稳定性的三道HCN激光干涉仪,包括以下内容:1.设计干涉仪光路结构:通过光路优化设计,提高干涉仪的灵敏度和空间分辨率。

2.优化激光光源:研究合适的激光光源,提高干涉仪的稳定性和重复性。

3.改进控制系统:升级控制算法,提高干涉仪的跟踪速度和响应能力,减小干扰和误差。

4.测量性能测试:对研制的干涉仪进行多项性能测试,包括线性度、稳定性、普适性等指标的考察。

三、研究意义本研究的实际应用价值主要表现在以下几个方面:1.提高国内三道HCN激光干涉仪的研究和应用水平,使其能够优质、高效地服务于制造业、航空航天、地震观测等领域。

2.优化激光干涉仪光路和控制系统设计,提高仿真和测试的准确性和可靠性。

3.积极探索新型高精度、高稳定性的光学测量技术,推动现代光学测量技术的研究和应用进程。

四、研究方法本研究采用理论分析、实验仿真和实际测试相结合的方法。

1.理论分析:通过数学建模和理论分析,对HCN激光干涉仪的光路、激光光源、控制系统等关键部分进行分析和优化设计,确保硬件设计的科学性和可行性。

2.实验仿真:使用MATLAB等软件进行仿真分析,评估干涉仪在不同参数和条件下的性能和稳定性。

3.实际测试:对研制的三道HCN激光干涉仪进行多项测量和真实环境测试,考察其线性度、测量精度、稳定性、重复性等指标,提出改进措施。

五、预期结果预期本研究将研制出一套高精度、高稳定性的三道HCN激光干涉仪,主要成果包括:1.光学、机械设计方案,包括光路、激光光源、控制系统等硬件设计方案。

激光干涉测长仪报告

激光干涉测长仪报告

贵州民族学院《激光原理及应用》《激光干涉测长仪》课程设计学院计算机与信息工程学院专业09 光信息班级09 光信息姓名张家文许毅强学号200907040054 200907040047指导教师葛一凡老师激光干涉测长仪摘要:本系统利用激光优异的单色性、方向性和高度相干性,光电传感器,移向电路,仪用放大整形,细分辨向电路,单片机控制计数等完成了通过激光干涉来测量物体的长度。

关键词:激光干涉光电传感器移向细分辨向计数目录一激光干涉仪基本原理及系统组成 (4)1 激光干涉仪基本原理 (4)2 激光干涉仪系统组成 (5)二信号处理部分系统设计 (6)1 第一种方案 (6)2 第二种方案 (11)三测试结果 (19)四参考文献 (22)系统程序及系统原理图 (22)一 激光干涉仪基本原理及系统组成1 激光干涉测长仪的基本原理激光干涉测长的基本光路是一个迈克尔逊干涉仪(如图1),用干涉条纹来反映被测量的信息。

干涉条纹是接收面上两路光程差相同的点连成的轨迹。

激光器发出的激光束到达半透半反射镜P 后被分成两束,当两束光的光程相差激光半波长的偶数倍时,它们相互加强形成亮条纹;当两束光的光程相差半波长的奇数倍时,它们相互抵消形成暗条纹。

两束光的光程差可以表示为j MJ jNi ii l nln ∑∑==-=∆11(1)式中j i n n ,分别为干涉仪两支光路的介质折射率;j i l l ,分别为干涉仪两支光路的几何路程。

将被测物与其中一支光路联系起来,使反光镜M 2沿光束2方向移动,每移动半波长的长度,光束2的光程就改变了一个波长,于是干涉条纹就产生一个周期的明、暗变化。

通过对干涉条纹变化的测量就可以得到被测长度。

P光束1单模稳频He-Ne 激光器光电计数器显示记录装置待测物体激光束光束2光电显微镜迈克尔逊干涉仪M 1M 2可移动平台图1 激光干涉测长仪的原理图被测长度L 与干涉条纹变化的次数N 和干涉仪所用光源波长λ之间的关系是2λNL = (2)式(2)是激光干涉测长的基本测量方程。

激光干涉仪实验报告

激光干涉仪实验报告

基于激光干涉仪的CA6140机床精度测量实验学院:姓名:学号:成绩:一、实验目的与要求1.了解雷尼绍XL-80激光干涉仪的工作原理;2.掌握雷尼绍XL-80激光干涉仪的的使用方法;3.掌握普通机床Z轴定位精度、重复定位精度的测量方法;4.掌握普通机床定位误差数据的处理方法。

二、实验仪器与设备1.雷尼绍XL-80激光干涉仪一台;2.CA6140机床一台。

三、实验原理图1 线性定位精度测量原理图来自XL-80激光头的光束进入线性干涉镜,在此光束被分成两束。

一束光(称为参考光束)被引向装在分光镜上的反射镜,另一束光(测量光束)则穿过分光镜到达第二个反射镜。

然后,两束光都被反射回分光镜,在此它们重新组合并被导回到激光头,激光头内的探测器监测两束光之间的干涉。

一般在线性测量过程中,一个光学组件保持静止不动,另一个光学组件沿线性轴移动。

通过监测测量光束和参考光束之间的光路差异的变化,产生定位精度测量值(注意,它是两个光学组件之间的差异测量值,与XL激光头的位置无关)。

此测量值可以与理想位置比较,获得机床的精度误差。

四、实验步骤图2 定位精度测量示意图1.光路搭建(1)开动机床,在保证激光不被机床碰到的情况下,激光干涉仪应离机床越近越好(便于对光)。

(2)放好支架,大体判断镜子所需架设的高度,然后调整支架至合格位置。

各个活动部件都要锁死。

(3)将激光干涉仪安装至支架,激光干涉仪下有锁扣,扣死。

使用水平仪,通过调整支架使激光干涉仪达到水平状态。

(4)将激光干涉仪各个微调螺母调制中间位置(便于以后微调)。

(5)连接激光干涉仪电源、数据线、数据收集器、传感器、电脑等,打开激光干涉仪电源使激光干涉仪预热,等激光指示灯出现绿色后,表明激光已稳定(正常需5分钟)。

(6)架镜子:遵循干涉镜不动,反射镜随机床动a.将机床擦拭干净并将机床开到合适位置,被测量轴工作台需要开到极限位置(最靠近激光仪的一侧)。

b.先架干涉镜,将干涉镜用安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。

激光干涉仪报告教材

激光干涉仪报告教材

机械工程综合实践实验报告课程名称机械工程综合实践专业精密工程指导教师彭小强小组成员刘强14033006谌贵阳吴志明实验日期2012.4.2—2011.6.25国防科学技术大学机电工程与自动化学院目录1激光干涉仪1.1激光干涉仪介绍1.2激光干涉仪原理2 激光干涉仪测量机床的直线度2.1实验器材以及平台的搭建2.2激光干涉仪的调试2.3直线度的测量3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建3.2激光干涉仪的调试3.3重复定位精度的测量4 实验分析与总结目录一、实验目的与任务 (4)二、实验内容与要求 (4)三、实验条件与设备 (4)四.实验原理 (5)1.定位精度测量 (5)2.直线度测量 (6)五、实验步骤 (7)1.设定激光测量系统 (7)2.调整激光光束,使之与机器运动轴准直。

(7)3.数据记录与数据处理 (8)六、实验过程和结果.......................... 错误!未定义书签。

1.X轴定位精度 ........................... 错误!未定义书签。

2.X轴直线度 ............................. 错误!未定义书签。

3.误差分析............................... 错误!未定义书签。

七、实验总结与体会.......................... 错误!未定义书签。

1.实验总结............................... 错误!未定义书签。

2.实验心得体会........................... 错误!未定义书签。

3.对课程的一些建议....................... 错误!未定义书签。

综合实践3 伺服系统运动精度建模与评价一、实验目的与任务通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。

激光干涉复原实验报告

激光干涉复原实验报告

一、实验目的1. 了解激光干涉的基本原理和现象。

2. 掌握干涉仪的使用方法和操作技巧。

3. 通过实验,观察和复原激光干涉条纹,加深对干涉现象的理解。

二、实验原理激光干涉是指两束或多束相干光波相遇时,由于光程差的存在,产生明暗相间的干涉条纹。

干涉条纹的形成条件是两束光波必须满足相干条件,即频率相同、相位差恒定。

本实验采用迈克尔逊干涉仪进行激光干涉复原实验。

迈克尔逊干涉仪是一种利用分振幅法产生双光束以实现干涉的精密光学仪器。

实验中,通过调整迈克尔逊干涉仪的光路,观察和复原激光干涉条纹。

三、实验仪器1. 迈克尔逊干涉仪2. He-Ne激光器3. 光屏4. 移动平台5. 秒表四、实验步骤1. 将迈克尔逊干涉仪放置在实验台上,调整光路,使激光束垂直照射到分束镜上。

2. 调整移动平台,使激光束垂直照射到分束镜上,并通过反射镜反射回光屏。

3. 调整分束镜和反射镜的角度,使激光束在光屏上形成干涉条纹。

4. 观察干涉条纹的形状、位置和数量,记录实验数据。

5. 改变激光束的入射角度,观察干涉条纹的变化,记录实验数据。

6. 调整反射镜的位置,使干涉条纹发生移动,记录实验数据。

7. 通过分析实验数据,复原激光干涉条纹。

五、实验结果与分析1. 干涉条纹的形状:实验中观察到的干涉条纹为明暗相间的直条纹,符合干涉现象的基本特征。

2. 干涉条纹的位置:干涉条纹的位置随激光束入射角度的变化而变化,符合干涉原理。

3. 干涉条纹的数量:干涉条纹的数量随反射镜位置的调整而变化,符合干涉原理。

通过实验数据分析,可以得出以下结论:1. 激光干涉条纹的形成与光程差有关,光程差越大,干涉条纹间距越大。

2. 干涉条纹的位置与激光束入射角度有关,入射角度越大,干涉条纹间距越小。

3. 干涉条纹的数量与反射镜位置有关,反射镜位置越靠近光屏,干涉条纹数量越多。

六、实验总结1. 本实验成功观察和复原了激光干涉条纹,加深了对干涉现象的理解。

2. 通过实验,掌握了迈克尔逊干涉仪的使用方法和操作技巧。

激光干涉计量实验报告

激光干涉计量实验报告

一、实验目的1. 理解激光干涉原理,掌握激光干涉计量的基本操作。

2. 学习使用激光干涉仪进行长度、距离等参数的精确测量。

3. 了解激光干涉仪在工程测量中的应用。

二、实验原理激光干涉计量是基于光波干涉原理,通过测量干涉条纹的变化来确定长度、距离等参数的一种方法。

实验中使用的激光干涉仪通过分束器将激光束分为两束,一束光通过待测距离,另一束光作为参考光。

两束光在探测器处发生干涉,产生干涉条纹。

通过测量干涉条纹的变化,可以计算出待测距离。

三、实验仪器1. 激光干涉仪2. 分束器3. 反射镜4. 探测器5. 计算机及数据采集软件四、实验步骤1. 将激光干涉仪、分束器、反射镜和探测器按照实验要求连接好。

2. 打开激光干涉仪电源,预热10分钟。

3. 打开数据采集软件,设置采集参数。

4. 将反射镜放置在待测距离处,调整反射镜的角度,使光束与探测器垂直。

5. 观察干涉条纹的变化,记录条纹移动的次数。

6. 根据干涉条纹移动的次数,计算出待测距离。

五、实验数据1. 待测距离:d = 10m2. 干涉条纹移动次数:n = 10003. 干涉条纹间距:ΔL = 1mm六、数据处理根据实验数据,可以使用以下公式计算待测距离:d = n × ΔL代入实验数据,得到:d = 1000 × 1mm = 1000mm = 1m七、实验结果与分析实验结果显示,待测距离为1m,与实际距离基本一致,说明实验结果准确可靠。

通过激光干涉计量实验,我们掌握了激光干涉计量的基本原理和操作方法,为以后进行工程测量奠定了基础。

八、实验总结1. 激光干涉计量是一种精确的测量方法,广泛应用于工程测量、科学研究等领域。

2. 在实验过程中,要确保光路稳定,避免外界因素对实验结果的影响。

3. 通过实验,我们掌握了激光干涉计量的基本原理和操作方法,提高了自己的实验技能。

九、注意事项1. 实验过程中,注意安全,避免激光直射眼睛。

2. 实验前,仔细阅读实验指导书,了解实验原理和操作步骤。

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告
实验目的,通过使用迈克尔逊干涉仪,观察干涉条纹的形成和变化,了解干涉仪的工作原理和应用。

实验仪器,迈克尔逊干涉仪、激光器、准直器、反射镜、半反射镜、平台等。

实验步骤:
1. 将激光器放置在实验台上,并使用准直器使激光光束垂直射向半反射镜。

2. 调整半反射镜,使激光光束分为两束,一束经过半反射镜直射向固定反射镜,另一束被反射后再次经过半反射镜。

3. 调整反射镜和半反射镜的角度,使两束光线在干涉仪的观察屏上产生干涉条纹。

4. 观察干涉条纹的形成和变化,记录实验现象。

实验结果,通过实验观察,我们得到了清晰的干涉条纹图像,并且观察到了干涉条纹随着反射镜和半反射镜角度的变化而产生变化的现象。

这进一步验证了干涉仪的工作原理,也加深了我们对干涉现象的理解。

实验结论,通过本次实验,我们深入了解了迈克尔逊干涉仪的工作原理和应用,加深了对干涉现象的理解。

同时,我们也学会了如何操作干涉仪,观察干涉条纹,并且能够通过实验结果进行分析和总结。

存在问题,在实验过程中,我们发现在调整反射镜和半反射镜的角度时,需要非常小心和耐心,以确保光线能够正确地产生干涉条纹。

在今后的实验中,我们需要更加细心地进行操作,以避免误差的产生。

改进措施,在今后的实验中,我们将更加注重操作细节,加强团队协作,以确保实验能够顺利进行并得到准确的实验结果。

实验人员,XXX、XXX、XXX。

日期,XXXX年XX月XX日。

实验报告激光干涉仪的原理与应用探究

实验报告激光干涉仪的原理与应用探究

实验报告激光干涉仪的原理与应用探究实验报告:激光干涉仪的原理与应用探究一、引言激光干涉仪是一种重要的光学仪器,在许多领域都有广泛的应用。

本实验旨在探索激光干涉仪的原理以及其在科学研究和工程应用中的意义。

二、原理介绍干涉是指两束或多束光相互叠加时产生的干涉条纹现象。

激光干涉仪通过干涉现象来进行测量和分析,它主要由激光光源、分束器、反射镜及检测器等组成。

1. 激光光源激光干涉仪采用激光作为光源,激光的特点是具有高亮度、高直线度和相干性。

这使得激光干涉仪能够产生清晰、稳定的干涉条纹,提高测量的准确性。

2. 分束器分束器是将一束激光分为两束的光学元件,主要分为平面分束器和楔形分束器两种类型。

分束器将激光分为参考光和待测光两束,分别经过不同的光程后再次汇合形成干涉现象。

3. 反射镜反射镜用于改变光程,通常由平面镜和反射膜组成。

它的作用是使两束光在一定程度上相遇,产生干涉现象,进而形成干涉条纹。

4. 检测器检测器用于接收干涉条纹,并将其转换为电信号。

常用的检测器有光电二极管和光敏电阻,它们能够实时、精确地检测光信号的强度变化。

三、实验步骤本实验的具体操作步骤如下:1. 准备激光干涉仪实验装置,确保系统稳定。

2. 调整激光光源,保证激光的强度和稳定性。

3. 调整分束器的位置和角度,使参考光和待测光能够汇合。

4. 调整反射镜的位置和角度,使光程差满足干涉条件。

5. 使用检测器接收干涉条纹,并将信号转换为电信号。

6. 分析和记录干涉条纹的特征和变化,根据特征判断材料的性质或研究光学现象。

四、应用探究激光干涉仪广泛应用于各个领域,以下是一些主要应用:1. 表面形貌测量激光干涉仪可以通过测量表面的高度差异来确定样品的形貌和粗糙度。

在制造业中,它被广泛用于光学元件的检测和加工过程中。

2. 材料性质研究通过测量材料中的光程差,可以获得材料的折射率、膜层厚度等相关参数。

这对于研究材料的光学特性和优化材料的性能非常重要。

3. 光学干涉实验激光干涉仪在光学教学实验中有着重要的地位。

2024年激光干涉仪市场调查报告

2024年激光干涉仪市场调查报告

激光干涉仪市场调查报告1. 引言激光干涉仪是一种利用激光干涉原理进行测量的仪器,广泛应用于工业、科研和医疗等领域。

本报告旨在对激光干涉仪市场进行调查,分析市场规模、竞争格局、产品特点以及未来发展趋势,为相关企业提供参考。

2. 市场规模根据调查数据显示,激光干涉仪市场在过去几年呈现稳定增长的趋势。

2019年,全球激光干涉仪市场规模达到X亿美元,预计到2025年将达到X亿美元。

这一增长主要受到工业自动化的推动和科学研究的需求增加的影响。

3. 竞争格局目前,激光干涉仪市场呈现出竞争激烈的态势。

主要厂商包括A公司、B公司和C公司等,它们在产品技术、质量和价格等方面具有一定的竞争优势。

此外,一些小型企业和新兴企业也在不断涌现,增加了市场的竞争程度。

4. 产品特点激光干涉仪具有以下几个主要特点:•高精度:激光干涉仪的测量精度通常在纳米或亚纳米级别,能够满足对精度要求较高的应用场景。

•高稳定性:激光干涉仪的设计和制造考虑到了温度、振动等外部环境因素的影响,能够保证测量结果的稳定性。

•多功能:激光干涉仪可根据需求提供不同的工作模式和测量范围,以适应不同领域的需求。

•易于使用:激光干涉仪的操作界面友好,操作简单,不需要复杂的调试和校准过程。

5. 发展趋势在未来几年,激光干涉仪市场将面临以下几个发展趋势:•小型化:随着技术的不断进步,激光干涉仪的尺寸将会变得更小,更便携,便于在不同场景中使用。

•自动化:工业自动化的需求不断增加,激光干涉仪将更加智能化,实现自动化控制和数据处理。

•新兴应用:激光干涉仪在医疗、生物科学等领域的应用正在逐渐增加,未来将有更多新兴应用的涌现。

•价格下降:随着生产技术的提升和市场竞争的加剧,激光干涉仪的价格有望下降,推动市场规模进一步扩大。

6. 结论综上所述,激光干涉仪市场具有良好的发展前景。

市场规模正在不断扩大,竞争格局趋于激烈。

激光干涉仪的高精度、高稳定性、多功能和易于使用等特点,使其在工业、科研和医疗等领域得到广泛应用。

2023年激光干涉仪行业市场调研报告

2023年激光干涉仪行业市场调研报告

2023年激光干涉仪行业市场调研报告激光干涉仪是一种用于测量物体长度、形状、表面粗糙度和振动等物理量的精密测量仪器,广泛应用于机械制造、航空航天、光学、电子、化工、医学等领域。

一、市场概述随着科技的不断进步和工业化水平的提高,激光干涉仪的应用领域和市场需求持续扩大。

2019年,全球激光干涉仪市场规模约为10.7亿美元,预计到2025年将达到13.2亿美元,年均复合增长率约为3.2%,市场前景广阔。

二、竞争格局目前,激光干涉仪市场竞争主要集中在德国、美国、日本等欧美日三国,其中美国康宁公司、德国蔡司公司、日本恩智浦公司等企业占据了市场的大部分份额。

国内激光干涉仪生产企业数量较多,但集中度低,竞争程度较大。

三、市场需求随着先进制造、高速公路、光纤通信等领域的快速发展,对激光干涉仪的需求不断增加。

未来几年,激光干涉仪市场最为重要的需求将来自于机器人、光学电子、汽车和飞机制造等领域。

此外,智能手机、平板电脑等消费电子产品市场对激光干涉仪也有一定的需求。

四、技术发展趋势随着科技的不断进步,激光干涉仪将进一步发展成为更加高精度、高速度、高分辨率和更加智能化的测量仪器。

未来,激光干涉仪技术发展的趋势主要包括以下几个方面:1.多路激光干涉技术多路激光干涉技术可以实现多个反射面的同时测量,提高了测量精度和速度。

当前,多路激光干涉仪已从样机阶段逐渐走向商业化。

2.脉冲激光干涉技术脉冲激光干涉技术可以实现高速度、高精度的测量,是未来激光干涉仪技术的发展方向之一。

3.数字信号处理技术数字信号处理技术可以实现实时测量、高速传输和数据处理,将成为激光干涉仪智能化发展的重要方向。

总之,未来激光干涉仪市场前景广阔,技术将不断进步,为更多领域的实时监测和非接触式测量提供支持。

激光干涉仪实验报告

激光干涉仪实验报告

基于激光干涉仪的CA6140机床精度测量实验一、实验目的与要求1.了解雷尼绍XL-80激光干涉仪的工作原理;2.掌握雷尼绍XL-80激光干涉仪的的使用方法;3.掌握普通机床Z轴定位精度、重复定位精度的测量方法;4.掌握普通机床定位误差数据的处理方法。

二、实验仪器与设备1.雷尼绍XL-80激光干涉仪一台;2.CA6140机床一台。

三、实验原理图1 线性定位精度测量原理图来自XL-80激光头的光束进入线性干涉镜,在此光束被分成两束。

一束光(称为参考光束)被引向装在分光镜上的反射镜,另一束光(测量光束)则穿过分光镜到达第二个反射镜。

然后,两束光都被反射回分光镜,在此它们重新组合并被导回到激光头,激光头内的探测器监测两束光之间的干涉。

一般在线性测量过程中,一个光学组件保持静止不动,另一个光学组件沿线性轴移动。

通过监测测量光束和参考光束之间的光路差异的变化,产生定位精度测量值(注意,它是两个光学组件之间的差异测量值,与XL激光头的位置无关)。

此测量值可以与理想位置比较,获得机床的精度误差。

四、实验步骤图2 定位精度测量示意图1.光路搭建(1)开动机床,在保证激光不被机床碰到的情况下,激光干涉仪应离机床越近越好(便于对光)。

(2)放好支架,大体判断镜子所需架设的高度,然后调整支架至合格位置。

各个活动部件都要锁死。

(3)将激光干涉仪安装至支架,激光干涉仪下有锁扣,扣死。

使用水平仪,通过调整支架使激光干涉仪达到水平状态。

(4)将激光干涉仪各个微调螺母调制中间位置(便于以后微调)。

(5)连接激光干涉仪电源、数据线、数据收集器、传感器、电脑等,打开激光干涉仪电源使激光干涉仪预热,等激光指示灯出现绿色后,表明激光已稳定(正常需5分钟)。

(6)架镜子:遵循干涉镜不动,反射镜随机床动a.将机床擦拭干净并将机床开到合适位置,被测量轴工作台需要开到极限位置(最靠近激光仪的一侧)。

b.先架干涉镜,将干涉镜用安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。

迈克尔逊测量激光波长实验报告

迈克尔逊测量激光波长实验报告

迈克尔逊测量激光波长实验报告
一、实验目的
本实验的目的是通过迈克尔逊干涉仪测量激光波长,了解激光的基本性质和干涉仪的原理。

二、实验原理
1. 激光的特性
激光是一种具有高亮度、单色性和相干性等特点的光源。

其单色性指激光只有一个波长,而相干性则指激光中各个波面之间存在稳定的相位关系。

2. 迈克尔逊干涉仪
迈克尔逊干涉仪是利用分束器将一束入射光分成两束,经反射后再合成为一束,通过观察干涉条纹来测量物体表面形状或者测量波长等物理量。

三、实验步骤
1. 搭建迈克尔逊干涉仪
首先将分束器放置在平台上,使其与地面平行。

然后调整反射镜和半反射镜位置,使得两路反射后的光线能够重合并在同一位置上。

2. 调整角度
调整半反射镜角度,使得反射后的两路光线长度相等。

然后调整反射镜位置,使得两路光线在重合处相消干涉。

3. 测量波长
在干涉条纹清晰的情况下,用卡尺测量反射镜移动的距离,即可计算出激光波长。

四、实验结果
通过实验测量得到激光波长为632.8nm。

五、实验分析
本实验通过迈克尔逊干涉仪测量激光波长,利用了干涉条纹的特性来
确定激光的单色性。

通过调整反射镜和半反射镜位置和角度,使得两
路光线相遇时能够发生干涉,并且产生清晰的干涉条纹。

由此可以计
算出激光波长,并且验证了激光的单色性。

六、实验总结
本次实验通过迈克尔逊干涉仪测量激光波长,深入了解了激光的基本
性质和干涉仪的原理。

同时也锻炼了我们操作仪器和分析数据的能力。

激光干涉仪实验总结

激光干涉仪实验总结

激光干涉仪实验总结引言激光干涉仪是一种基于干涉原理来测量物体长度、表面形貌和薄膜厚度等参数的仪器。

它利用激光光源产生的平行光束,经过分光器和衍射光栅分成两束光,再通过反射镜和透射镜合并后产生干涉。

通过测量干涉的光强变化,可以得到待测物体的参数信息。

本次实验旨在探究激光干涉仪的工作原理,并通过实验数据进行分析总结。

实验设备和材料•激光器•分光器、衍射光栅•反射镜、透射镜•干涉仪台•水平仪、刻度尺•光电二极管、功率计实验步骤实验一:激光干涉现象观察1.将激光器放在实验台上并打开,调整激光器朝向,使得激光光线尽量平行且垂直于实验台。

2.使用反射镜和透射镜,将激光光线分成两束光,尽量保证两束光线平行。

3.调整分光器的角度,使得两束光线在实验台上重合并产生明亮的干涉条纹。

4.观察干涉条纹的形状和变化,记录观察结果。

实验二:测量物体长度1.放置一个待测物体在干涉仪台上,使得激光光线通过物体并投影到干涉屏上。

2.注意调整物体的位置,使得投影在干涉屏上的两条光线尽量平行。

3.使用水平仪和刻度尺,测量干涉屏上两条光线的间距。

4.根据干涉屏到物体的距离和两条光线的间距,计算出物体的长度。

实验三:测量薄膜厚度1.在实验台上放置一个带有薄膜的样品。

2.调整激光光线通过样品和反射镜的路径,使得样品上产生干涉条纹。

3.使用光电二极管感测干涉条纹的强度变化,并将数据记录下来。

4.根据干涉条纹的强度变化,计算出薄膜的厚度。

实验结果和分析通过实验一的观察,我们可以发现激光干涉仪能够产生明亮的干涉条纹。

这是由于激光光线的相干性导致光的干涉现象。

根据干涉条纹的形状和变化,我们可以判断出光的相位差和波长的关系。

在实验二中,我们使用激光干涉仪测量了一个物体的长度。

通过测量干涉屏上两条光线的间距以及物体到干涉屏的距离,我们可以计算出物体的长度。

这个实验结果可以用于测量长度较大的物体或者不易直接测量的物体。

在实验三中,我们使用激光干涉仪测量了薄膜的厚度。

激光干涉仪报告解读

激光干涉仪报告解读

机械工程综合实践实验报告课程名称机械工程综合实践专业精密工程指导教师彭小强小组成员刘强14033006谌贵阳吴志明实验日期2012.4.2—2011.6.25国防科学技术大学机电工程与自动化学院目录1激光干涉仪1.1激光干涉仪介绍1.2激光干涉仪原理2 激光干涉仪测量机床的直线度2.1实验器材以及平台的搭建2.2激光干涉仪的调试2.3直线度的测量3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建3.2激光干涉仪的调试3.3重复定位精度的测量4 实验分析与总结目录一、实验目的与任务 (4)二、实验内容与要求 (4)三、实验条件与设备 (4)四.实验原理 (5)1.定位精度测量 (5)2.直线度测量 (6)五、实验步骤 (7)1.设定激光测量系统 (7)2.调整激光光束,使之与机器运动轴准直。

(7)3.数据记录与数据处理 (8)六、实验过程和结果.......................... 错误!未定义书签。

1.X轴定位精度 ........................... 错误!未定义书签。

2.X轴直线度 ............................. 错误!未定义书签。

3.误差分析............................... 错误!未定义书签。

七、实验总结与体会.......................... 错误!未定义书签。

1.实验总结............................... 错误!未定义书签。

2.实验心得体会........................... 错误!未定义书签。

3.对课程的一些建议....................... 错误!未定义书签。

综合实践3 伺服系统运动精度建模与评价一、实验目的与任务通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。

激光干涉仪课程设计报告

激光干涉仪课程设计报告

一种高分辨率双频激光干涉仪设计双频激光干涉仪技术现状与国内外概况 (2)总体方案设计 (6)总体框图 (6)双频激光干涉测量系统组成 (6)测量电路设计 (9)1)初级光电转换 (9)2)初级调理电路 (9)3)差分转换和放大电路 (10)4)波形转换电路 (11)5)细分电路 (12)6)同步器电路 (14)7) 连续计数模块 (15)8)显示电路 (17)系统电路总图(部分连线使用网络标号) (19)软件设计 (20)1)first piece: (20)2)second piece: (20)总结与展望 (25)系统最大的特点及优势 (25)误差分析与补偿 (25)综述 (25)经验总结 (26)参考文献 (27)双频激光干涉仪技术现状与国内外概况激光具有亮度高、方向性好、单色性及相干性好等特点,随着现代科技的不断进步,激光技术已渐渐地被人们所接受和认同。

随着激光干涉测量技术日渐成熟,激光的应用领域也已十分广泛,几乎涉及到当今科技的各个方面。

尤其是在激光加工、激光测量、军事上的应用更是显现出极大的优势与潜力。

激光器的出现,使古老的干涉技术得到迅速发展。

激光干涉仪是以激光波长为已知长度、利用迈克耳逊干涉系统测量位移的通用长度测量工具。

激光干涉仪有单频的和双频的两种,单频的是在20世纪60年代中期出现的,最初用于检定基准线纹尺,后又用于在计量室中精密测长。

而双频激光干涉仪的发明使激光干涉仪最终摆脱了计量室的束缚,更为广泛的应用于工业生产和科学研究中。

双频激光干涉仪是七十年代初期由美国HP公司首先推出的,至八十年代中期十几年时间内几乎垄断了世界市场。

双频激光干涉仪采用外差干涉测量原理,克服了普通单频干涉仪测量信号直流漂移的问题,具有信号噪声小、抗环境干扰、允许光源多通道复用等诸多优点,使得干涉测长技术能真正用于实际生产。

它可用于精密机床、大规模集成电路加工设备等的在线在位测量、误差修正和控制,是激光在计量领域中最成功的应用之一,也是工业中最具权威的长度测量仪器。

激光干涉仪使用实训报告

激光干涉仪使用实训报告

一、实训目的本次实训旨在使学生了解激光干涉仪的基本原理、结构特点和应用领域,掌握激光干涉仪的操作方法,提高学生的动手能力和实践技能。

二、实训时间2021年X月X日三、实训地点XXX实验室四、实训器材1. 激光干涉仪一台2. 计量台一台3. 精密水准仪一台4. 标准测量块若干5. 计算机一台五、实训内容1. 激光干涉仪的基本原理激光干涉仪是利用光的干涉现象来测量物体长度、角度、形状等几何参数的仪器。

其基本原理是利用两个或多个光波在空间相遇时,由于相位差的存在,产生干涉条纹。

通过测量干涉条纹的间距,可以计算出被测物体的几何参数。

2. 激光干涉仪的结构特点(1)激光发生器:产生稳定、单色的激光光束。

(2)分光器:将激光光束分为两束,一束用于测量,另一束作为参考光束。

(3)反射镜:用于反射激光光束,形成干涉条纹。

(4)探测器:用于检测干涉条纹,并将信号传输至计算机进行处理。

(5)计算机:用于处理探测器接收到的信号,计算被测物体的几何参数。

3. 激光干涉仪的操作方法(1)打开激光干涉仪,连接计算机,进入软件界面。

(2)调整激光干涉仪的位置,使其与被测物体保持一定的距离。

(3)调整反射镜,使激光光束照射到被测物体上。

(4)启动测量程序,观察干涉条纹的变化。

(5)根据干涉条纹的间距,计算被测物体的几何参数。

4. 实验步骤(1)将标准测量块放置在计量台上,调整激光干涉仪的位置,使其与标准测量块保持一定的距离。

(2)调整反射镜,使激光光束照射到标准测量块上。

(3)启动测量程序,观察干涉条纹的变化。

(4)记录干涉条纹的间距,计算标准测量块的几何参数。

(5)将实际测量值与标准值进行比较,分析误差原因。

六、实训结果与分析1. 实验结果通过本次实训,我们成功测量了标准测量块的几何参数,并计算出其实际长度。

实验结果如下:标准测量块长度:L = 10.00 ± 0.01 mm2. 分析(1)实验过程中,我们严格按照操作步骤进行操作,确保了实验结果的准确性。

迈克尔逊干涉仪(实验报告)

迈克尔逊干涉仪(实验报告)

一、实验目的1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。

2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长二、实验仪器迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。

(图一)(图二)三、实验原理①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。

②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。

四、实验步骤1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。

2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。

3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。

没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。

4、微调 M2是干涉图案处于显示屏的中间。

5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。

记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)6、关闭激光电源,整理仪器,处理数据。

五、实验数据处理数据记录:数据处理:Δd0=d5-d0=0.05202mm Δd1=d6-d1=0.05225mm Δd2=d7-d2=0.04077mm Δd3=d8-d3=0.04077mm Δd4=d9-d4=0.05071mmΔd(平均)=(Δd0+Δd1+Δd2+Δd3+Δd4)/5 =0.047304mmA类不确定度σ=*10-6mΔk=150所以λ(平均)=2Δd(平均)/Δk = nmB类不确定度: UΔB=*10-7 m总不确定度: UΔd =*10-6 mUλ =2UΔd/Δk = nm所以λ=λ(平均)+Uλ= + nmEλ=()/ *100% =%。

激光干涉仪数据分析报告名称解释

激光干涉仪数据分析报告名称解释

激光干涉仪数据分析报告名称解释激光干涉仪ISO 230-2 1997 统计数表中的名词解释1.选定位置偏差值Xij:=位置偏差运动部件到达的实际位置减去目标位置之差。

下标i:表示沿轴线或绕轴线选择的目标位置中的特定位置下标j:运动部件第j次向第i个目标位置趋近2.单项均位偏差=单项平均位置偏差Xi(带上划线)由n次单项趋近某一位置Pi所得到的位置偏差的算术平均值。

3.标准不确定度Si: 在某一位置的单向定位标准不确定度的估算值Si↑或Si↓通过对某一位置Pi的n次单向趋近所获得的位置偏差标准不确定度的估算值。

4. 2si:5. 平均2Si:6. 4Si:7.反向差值Bi:一根轴线从两个相对方向趋近目标位置第i个点时两单项平均位置偏差之差8.双向重复定位精度Ri:Ri=max【2Si↑+2Si↓+/Bi /;Ri ↑;Ri↓]8.1单向重复=单向重复定位精度Ri↓或Ri↑由某一位置Pi的单向位置偏差的扩展不确定度确定的范围,覆盖因子为2.Ri↑=4Si ↑和Ri↓=4Si↓9. 双向均位偏差=双向平均位置偏差从两个方向趋近某一位置Pi所得得单向平均位置偏差↑↓的算术平均值,即一来一回单向平均位置偏差相加然后除以二。

10.反向差值B:=轴线反向差值B:沿轴线或绕轴线的各目标位置的反向差值Bi{反向差值Bi:一根轴线从两个相对方向趋近目标位置第i个点时两单项平均位置偏差【单项平均位置偏差Xi带上划线:由n次同一方向趋近某一位置Pi 时所得到的位置偏差(位置偏差:运动部件到达的实际位置减去目标位置之差)的算术平均值。

】之差}的绝对值中的最大值。

11.平均反向差值=轴线平均反向差值:沿轴线或绕轴线的各个目标位置反向差值的算术平均值12.平均位置偏差M=轴线双向平均位置偏差M:在沿轴线或绕轴线的所有被测量目标点的双向平均位置偏差中,找出最大值和最小值,最大值-最小值=平均位置偏差。

13.系统偏差=定位系统偏差E=轴线双向定位系统偏差E在沿轴线或绕轴线的所有设定目标点来回两个方向的单向平均位置偏差值里面找出最大值和和最小值,最大值-最小值=定位系统偏差E /在一个轴的来回两个方向的被检测点的单向平均位置偏差里,找出最大值和最小值,最大值-最小值=定位系统偏差E13.1单向定位系统偏差:在沿轴线或绕轴线的所有设定目标点的同一个进给方向的单向平均位置偏差值里面找出最大值和最小值,同一个方向的最大值-同一个方向的最小值=单向定位系统偏差14. 单向重复=单向重复定位精度Ri↓或Ri↑由某一位置Pi的单向位置偏差的扩展不确定度确定的范围,覆盖因子为2.Ri↑=4Si ↑和Ri↓=4Si↓15.定位精度A=轴线双向定位精度A:由双向定位系统偏差和双向定位标准不确定度估算值的2倍的组合来确定的范围。

干涉仪实习报告

干涉仪实习报告

干涉仪 实 习 报 告工作了一周,学到了很多,也经历了很多。

刚入职XXXX ,心情跌跌荡荡,我知道也是因为刚开始工作,但是我没有消极,我相信这段不适应很快就会过去,我要用最大的热情和认真的态度对待我的工作。

在领导的悉心指导和带领下,我开始系统学习元件测试,用到的仪器包括干涉仪、分光计、偏芯仪等,下面我就这周的学习过程及成果作以简单介绍。

实习内容简述:1.干涉仪第一天开始接触干涉仪,干涉仪主要用于检测镜片面型(或面精度)。

干涉仪中,作为参考光学表面的标准透镜和作为被检光学表面的镜片,由于他们分别的曲率半径存在偏差,所以会在显示器上形成黑白相间的条纹,我们通过条纹的形状是否符合标准来判定镜片的面型是否合格。

对于面精度的判定,主要以面本数作为依据,我们一般又称亚斯,面本数以牛顿环的红色光带为标准,有几个红色光带即有几圈(几本),用半径偏差N 表示,它是指被检光学表面的曲率半径相对于参考光学表面曲率半径的偏差。

(1)当1N ≥时,以有效检验范围内直径方向上最多干涉条纹数的一般来度量光圈数N ;(2)当1N <时,光圈数以通过直径上干涉条纹的弯曲量(h )相对于条纹的间距(H)的比值来度量,即N=h/H 。

对于面型的判定还有象数偏差N 1∆和局部偏差N 2∆,N 1∆是指被检光学表面与参考光学表面在两个相互垂直方向上产生的光圈数不等所对应的偏差,N 2∆是指被检光学表面与参考光学表面在任一方向上产生的干涉条纹的局部不规则程度。

镜片面型不良时,干涉条纹会出现的几种主要现象包括垂边/勾边、中高、中低、分散、面割、压印、压圈等。

干涉仪根据测量的镜片R (曲率半径)不同分为两种,一种用于测量平面镜片,另一种用于测量球面镜片。

公司现用于测平面的有QSI-60TP 激光平面干涉仪,该仪器操作较简易,但要特别注意,测量前须在平面镜片的一面涂抹凡士林,否则镜片两面的面型条纹会同时被显示,造成干扰。

检测球面的干涉仪有多台,球面干涉仪使用前要根据被测镜片的R 值来选取标准镜头,公司现使用的标准镜头主要有Smarc F0.7、Smarc F1.0,用于测小型镜片;FUJINON F0.7 R23C 、FUJINON F2 R105C 、FUJINON F56 R270C 、FUJINON F8 R442C 四种用于测较大型镜片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械工程综合实践实验报告课程名称机械工程综合实践专业精密工程指导教师彭小强小组成员刘强14033006谌贵阳吴志明实验日期2012.4.2—2011.6.25国防科学技术大学机电工程与自动化学院目录1激光干涉仪1.1激光干涉仪介绍1.2激光干涉仪原理2 激光干涉仪测量机床的直线度2.1实验器材以及平台的搭建2.2激光干涉仪的调试2.3直线度的测量3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建3.2激光干涉仪的调试3.3重复定位精度的测量4 实验分析与总结目录一、实验目的与任务 (4)二、实验内容与要求 (4)三、实验条件与设备 (4)四.实验原理 (5)1.定位精度测量 (5)2.直线度测量 (6)五、实验步骤 (7)1.设定激光测量系统 (7)2.调整激光光束,使之与机器运动轴准直。

(7)3.数据记录与数据处理 (8)六、实验过程和结果........................... 错误!未定义书签。

1.X轴定位精度 ............................ 错误!未定义书签。

2.X轴直线度 .............................. 错误!未定义书签。

3.误差分析................................ 错误!未定义书签。

七、实验总结与体会........................... 错误!未定义书签。

1.实验总结................................ 错误!未定义书签。

2.实验心得体会............................ 错误!未定义书签。

3.对课程的一些建议........................ 错误!未定义书签。

综合实践3 伺服系统运动精度建模与评价一、实验目的与任务通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。

主要内容包括了解双频激光干涉仪测量位移的基本原理,掌握利用双频激光干涉仪测量机床进给轴的定位误差的方法,深刻理解轴运动的精度的概念。

在对机床进给轴运动定位误差测量的基础上,分析机床的运动误差。

二、实验内容与要求(1)直线轴运动误差测量。

利用双频激光干涉仪建立直线轴定位精度、直线度、姿态误差的测量系统,并对机床典型三维进给机构各轴的运动误差进行测量,分析测量结果的不确定度;(2)垂直度测量。

任选进给机构两轴,利用双频激光干涉仪建立两轴垂直度的测量系统,并对垂直度进行测量,并对测量结果进行评价;(3)典型三维进给机构的精度建模。

在分析多轴进给机构拓扑结构的基础上,用多体系统理论和变分法建立多轴进给机构运动空间各点的运动误差传递模型;(4)典型三维进给机构的精度分析与评价。

在测量得到的进给机构轴运动误差的基础上,利用所建立的精度模型,对机构的典型运动轨迹如直线、圆弧、平面等的运动误差进行分析,并对分析结果的不确定度进行评价。

三、实验条件与设备双频激光干涉仪,含直线度、定位精度测量组件。

具体如图1所示。

(图1 定位精度测量组件直线度测量组件)四.实验原理1.定位精度测量(图2 测量光路图)来自XL激光头的光束进入线性干涉镜,在此光束被分成两束。

一束光(称为参考光束)被引向装在分光镜上的反射镜,另一束光(测量光束)则穿过分光镜到达第二个反射镜。

然后,两束光都被反射回分光镜,在此它们重新组合并被导回到激光头,激光头内的探测器监测两束光之间的干涉。

图3为ISO230-1-1996(E) 5.212.15规定的测量设备组建和标准光路。

(图3:ISO标准光路)一般在线性测量过程中,一个光学组件保持静止不动,另一个光学组件沿线性轴移动。

通过监测测量光束和参考光束之间的光路差异的变化,产生定位精度测量值(注意,它是两个光学组件之间的差异测量值,与XL激光头的位置无关)。

此测量值可以与被测机器定位系统上的读数比较,获得机器的精度误差。

通常,将反射镜设定为移动光学部件,将干涉镜设定为静止部件,如图4所示。

二者可以反过来使用。

(图4 定位精度测量光路示意图)2.直线度测量激光通过直线度干涉仪后,分开成具有小角度的两束光,这两束光被直线度反射镜反射后沿新的路径返回直线度干涉仪,在这里两束光汇聚在一起返回到激光头内。

在测量过程中干涉仪随工作台一起运动,反射镜固定。

干涉仪和反射镜之间的横向偏差会导致光程差的变化,通过监测测量光束和参考光束之间的光路差异的变化,产生直线度测量值。

下图是测量水平方向的直线度,当把同时旋转90°时就可以测量竖直方向的直线度。

由于两束光束受到环境同样的影响,所以不需要进行环境补偿。

图直线度测量光路示意图图ISO230-1中直线度测量光路示意图五、实验步骤定位精度测量所需的步骤如下:1.设定激光测量系统将线性光学镜组连接到要校准的机床上;在三角架上安装XL激光头;用USB 电缆将XL激光头连接到PC机上,将电缆的一端插到XL激光头尾部的USB插槽中,另一端插到PC机上;为安全起见,开始时XL激光头的光闸应转至关闭位置,如下图5所示。

图5 XL光闸位置(不发出任何光束) 图6 定位精度测量光路原理图2.调整激光光束,使之与机器运动轴准直。

本文所述准直步骤是假定按图6所示进行光学镜组设定,其中线性干涉镜为固定光学镜,反射镜为移动光学镜。

(1)线性干涉镜和反射镜定位对三脚架和激光进行定位,使之垂直指向测量光学镜组。

用机架作为目测视线,使激光和运动轴线二者大致准直。

(2)旋转激光光闸,使激光输出光束直径减小,如图7所示:图7 激光干涉仪光闸图8 激光头标靶(3)移动机床被测轴,使线性反射镜靠近激光头,将标靶安装在前面,白点在上。

平移激光器或机床轴,直到光束射到标靶上的白点。

(4)去除标靶,检查从反射镜上反射回的光束是否射到XL激光光闸上标靶的中心。

如果没有,则平移激光器或机器,直到激光光束射到标靶的中心。

(5)使线性干涉镜尽量靠近反射镜,如图9所示。

如果二者靠近,则余下的准直工作仅仅是调整激光头。

图9 干涉镜靠近反射镜示意图(6)确保干涉镜和反射镜的外表面与机器垂直,而且彼此保持准直。

如果干涉镜歪斜,可能出现精度降低并无法检测到光束是否被挡。

一般说来,在滚摆(roll)、俯仰(pitch)和扭摆(yaw)方向上,最好使干涉镜的准直角度小于±2°,这通常可通过目测完成。

(7)将标靶安装在干涉镜的入射光孔中,然后,垂直和水平平移干涉仪,使光束射到标靶。

(8)从线性干涉镜上取下标靶,检查干涉镜反射回的光束是否射到XL激光光闸的中心并位于反射镜反射回的光束的上方。

如果不是,则平移干涉镜直到光束射到白色标靶的中心。

注:一个有效的方法是,在干涉镜和反射镜之间放置一个卡片,挡住反射镜上反射回的光束。

图10 激光干涉仪光闸上反射光示意图图11 调整后的准直光路图(9)调整好光路准直后,调整干涉镜大约在光路的中间.最终准直好的光路如下图所示:3.数据记录与数据处理使用自动采集数据功能,可自动触发激光记录读数。

它或是定时采集数据或是在测量线性位移时,系统检测到所测机器停止在预定目标位置上而采集数据。

“自动数据采集设置”选项是通过从“采集”菜单内选择自动采集设置而定义的。

选中了所需选项后,单击“确定”,退出“自动数据采集设置”对话框。

图12 自动采集数据设定窗口图13 数据采集主窗口当从Renishaw LaserXLTM浏览器窗口中选择一个测量图标时,将显示数据采集主窗口。

系统在线性测量模式下的典型屏幕画面如图13所示。

不同测量模式的显示屏幕与之相似,但为了更清楚明了,这里仅说明线性测量屏幕。

1激光干涉仪1.1激光干涉仪介绍激光具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。

目前常用来测量长度的干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。

激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。

1.2激光干涉仪原理干涉仪是以激光波长为已知长度、利用迈克耳逊干涉系统测量位移的通用长度测量工具。

激光干涉仪有单频的和双频的两种。

本实验使用的是双频干涉仪。

在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。

由于塞曼分裂效应和频率牵引效应, 激光器产生1和2两个不同频率的左旋和右旋圆偏振光。

经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。

一路经偏振片1后成为含有频率为f1-f2的参考光束。

另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。

当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2 ±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。

这路光束和由固定反射镜反射回来仅含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。

测量光束和上述参考光束经各自的光电转换元件、放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。

经可逆计数器计数后,由电子计算机进行当量换算(乘1/2激光波长)后即可得出可动反射镜的位移量。

双频激光干涉仪是应用频率变化来测量位移的,这种位移信息载于f1和f2的频差上,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。

它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可用作测长机、高精度三坐标测量机等的测量系统。

利用相应附件,还可进行高精度直线度测量、平面度测量和小角度测量。

2激光干涉仪测量机床的直线度2.1实验器材以及平台的搭建器材:激光干涉仪、三脚架、XC补偿单元、试验平台(磁流变机床)、直线度反射镜、直线度光学镜组、笔记本电脑、安装组件、传感器平台搭建步骤:1 清理好试验平台(磁流变机床)2按要求将干涉仪、电脑、传感器、补偿单元的线路连接。

3 将直线度光学镜组、直线度反射镜大概固定在平台上。

(本实验中,光学镜组固定在运动轴上,反射镜则放置在光路的末端)2.2激光干涉仪的调试1波长补偿周围环境参数温度、相对湿度、气压将会影响激光光束的波长,如果不对波长的变化进行补偿,实验将会产生一定的测量误差。

在本实验中,我们选取了XC补偿单元,温度和相对湿度传感器对激光光束波长进行补偿,基本上消除了由于周围环境变化引起的测量误差。

2光路的调试激光调光基本步骤1,确定测量轴方向,并选择好干涉镜组合方式,干涉镜,反射镜安装地点(确保测量顺利完成,镜组安全)。

相关文档
最新文档