《多元线性回归模型》PPT课件

合集下载

多元线性回归与相关(共30张PPT)

 多元线性回归与相关(共30张PPT)

❖ 根据矩阵行列式性质,矩阵行列式的值等于
其特征根的连乘积。因此,当行列式| X'X|≈0
时,至少有一个特征根为零,反过来,可以
证明矩阵至少有一个特征根近似为零时,X的
列向量必存在多重共线性,同样也可证明 X ' X
有多少个特征根近似为零矩阵X就有多少个多
重共线性。根据条件数 K i
, m
i
其中 m为最
❖ 首先给出引入变量的显著性水平和剔除变量的显著性水平,然后 筛选变量。
回归变量的选择与逐步回归
回归变量的选择与逐步回归
❖ 逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其 偏回归平方和(即贡献),然后选一个偏回归平方和最小的变量,在预 先给定的水平下进行显著性检验,如果显著则该变量不必从回归方程中 剔除,这时方程中其它的几个变量也都不需要剔除(因为其它的几个变 量的偏回归平方和都大于最小的一个更不需要剔除)。相反,如果不显 著,则该变量要剔除,然后按偏回归平方和由小到大地依次对方程中其 它变量进行检验。将对影响不显著的变量全部剔除,保留的都是显著的 。接着再对未引人回归方程中的变量分别计算其偏回归平方和,并选其 中偏回归平方和最大的一个变量,同样在给定水平下作显著性检验,如 果显著则将该变量引入回归方程,这一过程一直继续下去,直到在回归 方程中的变量都不能剔除而又无新变量可以引入时为止,这时逐步回归 过程结束。
多重共线性检验
❖ 检查和解决自变量之间的多重共线性,多多 元线性回归分析来说是很必要和重要的一个 步骤,常用的共线性诊断方法包括:
❖ 直观的判断方法 ❖ 方差扩大因子法(VIF) ❖ 特征根判定法
直观的判断方法
❖ 在自变量 的相关系数矩阵中,有某些自变量 的相关系数值比较大。

第9章多元线性回归-PPT精品文档

第9章多元线性回归-PPT精品文档
9.1 9.2 9.3 9.4 9.5 多元线性回归模型 拟合优度和显著性检验 多重共线性及其处理 利用回归方程进行预测 虚拟自变量的回归
统计学
STATISTICS (第三版)
学习目标
多元线性回归模型、回归方程与估计的回 归方程 回归方程的拟合优度与显著性检验 多重共线性问题及其处理 利用回归方程进行预测 虚拟自变量的回归 用Excel和SPSS进行回归分析
统 计 学
(第三版)
2019
作者 贾俊平
统计学
STATISTICS (第三版)
统计名言
上好的模型选择可遵循一个称为奥 克姆剃刀(Occam’s Razor)的基本原 理:最好的科学模型往往最简单, 且能解释所观察到的事实。
——William Navidi
9-2 2019年8月
第 9 章 多元线性回归
b1,b假定其他变量不变,当 xi 每变 动一个单位时,y 的平均变动值
9 - 10
2019年8月
统计学
STATISTICS (第三版)
估计的多元线性回归的方程
(estimated multiple linear regression equation)
9 - 11 2019年8月
9.1 多元线性回归模型 9.1.2 参数的最小二乘估计
统计学
STATISTICS (第三版)
参数的最小二乘估计
1. 使因变量的观察值与估计值之间的离差平方和 ˆ ,b ˆ ,b ˆ ,, b ˆ 。即 达到最小来求得 b 0 1 2 k
2 2 ˆ ,b ˆ ,b ˆ ,, b ˆ ) (y y ˆ Q( b ) e i i i 最小 0 1 2 k i 1 i 1 n n

经典多元线性回归模型PPT课件

经典多元线性回归模型PPT课件
Y 0 1X1 2 X2 ... k Xk u
此即为多元线性总体回归模型。

g(X1, X 2 ,...,X k ) 0 1 X1 2 X 2 ... k X k
为多元线性总体回归函数。
3
第3页/共53页
计量经济学模型引入随机扰动项的原因:
反映影响被解释变量的未知因素; 代表数据观测误差; 反映影响被解释变量的个体因素;
• 同时,随着样本容量增加,参数估计量具有一致性。
28
第28页/共53页
1、线性性
βˆ (XX)1 XY CY
其中,C=(X’X)-1 X’ 为一仅与X有关的矩阵。
2、无偏性
E(βˆ ) E(( XX)1 XY) E(( XX)1 X(Xβ μ )) β (XX)1 E(Xμ ) β
记残差向量为
可以表示为
^
eY X
e1
e
e2
en
此时,多元线性样本回归模型:
Yi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X ki ei
可以表示为:
Y Xβˆ e
11
第11页/共53页
由上述正规方程组
^^
^
(Yi 0 1 X1i ... k X ki) 0
得多元线性样本回归函数:
^
^
^
^
g(X1, X 2 ,...,X k ) 0 1 X1 ... k X k
^^
^
定义残差: ei Yi (0 1 X1i ... k X ki )
称 Yi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X ki ei
为多元线性样本回归模型。 5 第5页/共53页
^
j
~
c N( , c ) 2

多因变量的多元线性回归课件

多因变量的多元线性回归课件
多因变量的多元线性回归课件
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。

《多元线性回归》PPT课件

《多元线性回归》PPT课件

ˆ 0.7226 0.0003 15674 103 .172 1 ˆ β ˆ 0 . 0003 1 . 35 E 07 39648400 0 . 7770 2
x11 x x 1n x k1 x kn
假设6:回归模型是正确设定的
§3.2
多元线性回归模型的参数估计
一、普通最小二乘估计 二、参数估计量的性质 三、样本容量问题
参数估计的任务和方法
1、估计目标:回归系数βj、随机误差项方差б2 2、估计方法:OLS、ML或者MM * OLS:普通最小二乘估计 * ML:最大似然估计
E(X(Y Xβ )0
矩条件
*矩条件和矩估计量*
1、 E(X(Y Xβ ) 0 称为原总体回归方程的一组矩条件,表明了
原总体回归方程所具有的内在特征。
2、如果随机抽出原总体的一个样本,估计出的样本回归方程:
ˆ 能够近似代表总体回归方程的话,则应成立: ˆ X Y
1 ˆ)0 X (Y Xβ n
第三章
多元线性回归模型
§ 3.1 多元线性回归模型
§ 3.2 多元线性回归模型的参数估计 § 3.3 多元线性回归模型的统计检验 § 3.4 多元线性回归模型的预测 § 3.5 可线性化的多元非线性回归模型 § 3.6 受约束回归
§3.1
多元线性回归模型
一、模型形式 二、基本假定
一、模型形式
Yi 0 1 X 1i 2 X 2 i ... k X ki i 0 j X ji i
#参数估计的实例
例3.2.1:在例2.1.1的家庭收入-消费支出例中,

第五章 多元线性回归PPT课件

第五章 多元线性回归PPT课件

ˆ b0 b1 x1 b2 x2 ... bk xk y
如果xi增加一个单位,即xi变为xi+1,而 其他自变量均保持不变,相应有
ˆ b b x b x y
1 0 1 1 2
2
... bi ( xi 1) ... bk xk
则y的变化幅度为
ˆ [b b x b x ... b ( x 1) ... b x ] ˆ y y [b b x b x ... b ( x 1) ... b x ] b
R
2
二、调整的确定系数
R
2
偏高
<(1:10)
自变量个数 样本规模
三、多元相关系数R
因变量观测值和预测值之间的相关程度
四、方差分析
回归平方和
y的总变 差平方 和
第五节
回归方程的检验和回归系数的推断统计
检验
统计推断
参见郭志刚主编,《社会统计分析方法—SPSS软件应用》第二章, 中国人民大学出版社1999
第一节 相关和回归
一、相关统计量 用一个数值表示两个变量间的相关程度 (无单位度量)(-1~+1)

解读

X与y的相关系数为0.6,x与z的相关系数为 0.3
答案: 只能说明x与y相关程度高于x与z的相关程 度,但不能说前者是后者的两倍
x y x y x y 1 2 y y y y 1 y y 1 2 x x y x 1 x y
y
y
练习:根据下表数据计算lambda
志愿 男
快乐家庭 理想工作 增广见闻 总数 10 40 10 60
性别 女
30 10 0 40
总数

《多元线性回归分析》PPT课件

《多元线性回归分析》PPT课件

的线性关系而使因变量Y 变异减小的部分;
SS回归 b1l1Y b2l2Y bmlmY biliy
SS剩余 表示剩余平方和,说明除自变量外,其它随机因素
对 Y 变异的影响。 SS剩余 SS总 SS回归
整理ppt
14
各变量的离差矩阵
b1 0.1424 , b2 0.3515 , b3 0.2706 , b4 0.6382
Y 的误差平方和Q (Y Yˆ)2 为最小值
的一组回归系数b1 ,b2 ,bm 值。
求回归系数 b1 ,b2 ,bm 的方法
是求解正规方程组(normal equations):
b1l11 b2l12 bml1m l1y
b1l21
b2l22
bml2m
l2y
b1lm1 b2lm2 bmlmm lmy
整理ppt
28
2.决定系数
决定系数(coefficient of determination)表示回归平 方和占总平方和的比例,反映各自变量对因变量回 归贡献的大小,用 R2 表示。 R2 SS回归
SS总
R2 无单位,取值在 0~1 之间。值越大,说明回归平 方和在总平方和中所占的比重越大,剩余平方和所占 比例越小,回归效果越好。
partial
regression
coefficient)。标准偏回归系数
b
' i

注 意
偏回归系数之间的关系为:
b
' i
=
bi
lii l yy
= bi
si sy
标准偏回归系数绝对值的大小,可用以衡量自变量对
因变量贡献的大小,即说明各自变量在多元回归方程
中的重要性。

第三章-多元线性回归模型ppt课件

第三章-多元线性回归模型ppt课件

32
§3.5 最小二乘估计量的特征
上一章中谈到,经典一元线性回归模
型的OLS估计量满足线性、无偏及方差最
小性,即高斯——马尔可夫定理,对于经
典多元线性回归模型的普通最小二乘估计
量,这一性质仍然存在,换言之,对于满
足经典假设的多元线性回归模型,采用
OLS方法所得估计量 也满足线性、无偏
及方差最小性。 ppt精选版
ˆ 3
yi x3i
x
2 2i
x
2 2i
yi x2i
x2i x3i
x32i ( x2i x3i ) 2
ppt精选版
30
解方程时的系数行列式:
x22i
x2ix3i
x2ix3i
x32i
解 ˆ2 时的分子行列式:
yix2i
x2ix3i
yix3i
x32i
ppt精选版
31
第三章 第五节
ppt精选版
Y 01P2D P 3P I 2 U
ppt精选版
5
二、多元总体线性回归模型 总体模型: 1、分量式:
Y i 0 1 X 1 i 2 X 2 i k X k u ii
2、总量式
Y 01X 1 ppt精选版2X 2 kX k 6U
称 之 为 变 量 Y 关 于 变 量 X1, X2, …, Xk的k元总体线性回 归模型,Y称为被解释变量 ,X1, X2, …, Xk称为解释变 量,k 称为解释变量个数, U 称为随机扰动项,或随机 项,或扰动项。
一、多元总体线性回归模型的矩阵表示
YX βU Y1
Y
Y
2
Yn
1 X 21 X k1
X
1
X 22

第八章:多元线性回归模型-PPT精选文档

第八章:多元线性回归模型-PPT精选文档


表示: 各变量 X值固定(即给定)时 Y的平均响 应(即均值)。
j也被称为偏回归系数,表示在其他解释变
量保持不变的情况下,X j每变化1个单位时,Y的 均值E(Y)的变化; 或者说j给出了X j的单位变化对Y均值的 “直接”或“净”(不含其他变量)影响。
用来估计总体回归函数的样本回归函数为:
§3.2 多元线性回归模型的估计
一、普通最小二乘估计
*二、最大或然估计(Maximum Likelihood) *三、矩估计(Moment Method)
四、参数估计量的性质
* 五样本容量问题
六、估计实例
说 明
(注:参数有两类:结构参数和分布参数,分布参数是 指随机误差项的均值和方差) 估计方法: 3大类方法:OLS、ML或者MM – – 在经典模型中多应用OLS 在非经典模型中多应用ML或者MM
ˆ ˆ ˆ ˆ ˆ Y X X X i 0 1 1 i 2 2 i ki ki


ˆ ˆ ˆ ˆ X X X e 其随机表示式: Y i 0 1 1 i 2 2 i ki ki i
ei称为残差或剩余项(residuals),可看成是 总体回归模型中随机扰动项i的近似替代。
n
Q
ˆ ˆ ˆ ˆ ( Y ( X X X )) i 0 1 1 i 2 2 i k k i
i 1
n
2
• 于是得到关于待估参数估计值的正规方程组:
ˆ ˆ X ˆ X ˆ X ) SY S( 0 1 1i 2 2i k ki i ˆ ˆ X ˆ X ˆ X ) X SY X S( 0 1 1i 2 2i k ki 1i i 1i ˆ ˆ X ˆ X ˆ X ) X SY X S( 0 1 1i 2i 2i k ki 2i i 2i ˆ ˆ X ˆ X ˆ X ) X SY X S( 0 1 1i 2 2i k ki ki i ki

多元线性回归分析PPT模板

多元线性回归分析PPT模板

=1−
SSE
SST
σ e2i
= 1 − σ(y −y)2
i
(6-42)
10
由判定系数的定义可知,R2的大小取决于残差平
2
方和σ e2i 在总离差平方和σ(yi − y) 中所占的比
重。在样本容量一定的条件下,总离差平方和与
自变量的个数无关,而残差平方和则会随着模型
中自变量个数的增加而不断减少,至少不会增加。
回归系数对应的自变量对因变量的影响是否显著,以
便对自变量的取舍做出正确的判断。一般来说,当发
现某个自变量的影响不显著时,应将其从模型中删除,
这样才能做到以尽可能少的自变量达到尽可能高的拟
合优度。
17
多元模型中回归系数的检验同样采用t检验,其原理和基本
步骤与一元回归模型中的t检验基本相同,此处不再赘述。
因此,R2是自变量个数的非递减函数。
11
在一元线性回归模型中,所有模型包含的变量个
数都相同,如果所使用的样本容量也一样,判定
系数便可以直接作为评价拟合优度的尺度。然而
在多元线性回归模型中,各回归模型所含的变量
的个数未必相同,以R2的大小作为衡量拟合优度
的尺度是不合适的。
12
因此,在多元回归分析中,人们更常用的评价指标是所谓
( ′ )是一个(k + 1) × (k + 1)的对称矩阵,根据标准假定1,
rank() = k + 1,k + 1个变量之间不存在高度的线性相关,
因此其逆矩阵存在。式(6-40)两边同时除以( ′ ),可以
得到回归系数最小二乘估计的一般形式:
෡ = ( ′ )−1 ′

(6-41)

数学建模多元线性回归分析PPT课件

数学建模多元线性回归分析PPT课件

的标准误。
检验假设: H0: j 0 , t j 服从自由度为 n m 1的 t 分 布。如果| t j | t / 2,nm1 ,则在 (0.05)水平上拒 绝 H0,接受 H1,说明 X j 与Y 有线性回归关系。
第19页/共50页
结果
0.1424 t1 0.3656 0.390
0.2706 t3 0.1214 2.229
计算公式: R R2 ,本例 R 0.6008 0.7751 若 m=1 自变量,则有 R | r |,r 为简单相关系数。
第14页/共50页
(二)对各自变量 指明方程中的每一个自
变量对Y的影响(即方差分析和决定系数检 验整体)。
1. 偏回归平方和
含义 回归方程中某一自变量 X j 的偏回归 平方和表示模型中含有其它 m-1 个自变量 的条件下该自变量对 Y 的回归贡献,相当于 从回归方程中剔除 X j 后所引起的回归平方 和的减少量,或在 m-1 个自变量的基础上新 增加 X j 引起的回归平方和的增加量。
第16页/共50页
各自变量的偏回归平方和可以通过拟合包含不同 自变量的回归方程计算得到,表15-5给出了例15-1数 据分析的部分中间结果。
表15-5 对例15-1数据作回归分析的部分中间结果
回归方程中
平方和(变异)
包含的自变量
SS 回
SS 残
① X1 , X 2 , X 3 , X 4 133.7107 88.8412
求偏导数
原理
最小二乘法
l11b1 l12b2 l1mbm l1Y l21b1 l22b2 l2mbm l2Y lm1b1 lm2b2 lmmbm lmY
b0 Y (b1X 1b2 X2 bm Xm )

多元线性回归课件

多元线性回归课件
误差项之间不存在自相关性。
线性关系
自变量与因变量之间存在线性 关系。
无异方差性
误差项的方差在所有观测值中 保持恒定。
无异常值
数据集中没有异常值。
02
多元线性回归的参 数估计
最小二乘法
最小二乘法是一种数学优化技术,其 基本思想是寻找一个函数,使得该函 数与已知数据点的总误差(或总偏差 )的平方和最小。
最小二乘法通过构建残差平方和பைடு நூலகம்数 学模型,并对其求最小值来估计参数 ,这种方法具有简单、直观和易于计 算的特点。
在多元线性回归中,最小二乘法的目 标是找到最佳参数值,使得实际观测 值与通过模型预测的值之间的残差平 方和最小。
参数的估计值与估计量的性质
参数的估计值是通过最小二乘法 或其他优化算法从样本数据中得
多元线性回归课件
目录
CONTENTS
• 多元线性回归概述 • 多元线性回归的参数估计 • 多元线性回归的评估与诊断 • 多元线性回归的进阶应用 • 多元线性回归的软件实现 • 多元线性回归的案例分析
01
多元线性回归概述
定义与模型
定义
多元线性回归是一种统计学方法,用于 研究多个自变量与因变量之间的线性关 系。
决定系数(R^2)
衡量模型解释变量变异程度的指标,值越接近1表示模型拟合度越好。
调整决定系数(Adjusted R^2)
考虑了模型中自变量的增加,对R^2进行调整后的拟合度指标。
均方误差(MSE)
衡量模型预测误差大小的指标,值越小表示模型预测精度越高。
变量的显著性检验
t检验
通过t统计量检验自变量对因变量 的影响是否显著,值越大表明该 变量越重要。
用于判断自变量之间是否存在多重共线性的指标,值小于阈值时可能存在多重共线性问 题。

第11章多元线性回归-PPT课件

第11章多元线性回归-PPT课件

si bi bi = bi SS sy 总
lij
四、复相关系数
在多元线性回归分析中,直接建立Y 与 全部自变量之间的线性回归模型通常是 不可取的,因为不能说这些自变量对建 立回归模型都是必要的。因此,在建立 回归方程的过程中有必要考虑对变量进 行筛选,从许多自变量中挑选出对Y 有 影响的自变量,有利于提高回归方程的 质量。
value),表示当给定各自变量的值时,因 变量Y 的估计值; b0 为截距,在回归方程中又称为常数项, 表示各自变量均为0 时Y 的估计值; bi 称为偏回归系数(partial regression coefficient),简称为回归系数,表示其它 自变量不变时,Xi 每改变一个单位,Y 的 平均变化量。
原始资料作多元线性回归分析, 理论上应满足的条件有:
1)线性(linear),因变量与自变量的关系是 线性的; 2)独立性(independence),随机误差项在 不同样本点之间是独立的,无自相关; 3)正态性(normality),随机误差项服从均 数为零、方差为σ2的正态分布;
4) 方差齐性(equal variance ,or homogeneity),随机误差项在不同 样本点的方差相等。
二、多元回归方程统计学意义的假设检验
假设检验包括多元回归方程的假设检验与偏回归系数 的假设检验。 多元回归方程的假设检验常用方差分析:
M S回归 F MS 误差
变异来源 Regression Residual Total ANOVA(方差分析表) Sum of squares df Mean Square F P 33.65 2 16.82 11.31 0.0008 25.28 17 1.49 58.93 19
例11.1 同样身高的20名健康男子的收缩压、年 龄和体重的测量结果见表。试建立收缩压与年 龄和体重之间的多元线性回归方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中,C=(X’X)-1 X’ 为一仅与固定的X有关的行向量
2、无偏性
E(βˆ ) E((XX)1 XY) E((XX)1 X(Xβ μ )) β (XX)1 E(Xμ ) β
这里利用了假设: E(X’U)=0
3、有效性(最小方差性)
其中利用了 和
βˆ (XX)1 XY
(XX) 1 X(Xβ μ) β (XX) 1 Xμ
解该(k+1)个方程组成的线性代数方程组,即可得 到 (k+1)个待估参数的估计值 j , j 0,1,2,, k 。
正规方程组的矩阵形式
n
X1i
X ki
X1i
X
2 1i
X ki X 1i
X ki
X1i X
X
2 ki
ki
ˆ0 ˆ1
ˆ k
1 X 11
ˆ1
ˆk
基本假定
假设1 随机误差项具有零均值
u1
E
u2
0
ui
假设2 随机误差项具有同方差 假设3 随机误差项不序列相关性
E (μμ )
E
1
1
n
n
var(1 ) cov(1, n ) 2 0
2I
cov(
n
,
1
)
var(n )
由于 (Yi Yˆ)(Yˆi Y ) ei (Yˆi Y )
ˆ0 ei ˆ1 ei X1i ˆk ei X ki Y ei
=0
所以有:
TSS (Yi Yˆi )2
XY XXβˆ
βˆ (XX)1 XY
随机误差项u的方差2的无偏估计
可以证明,随机误差项的方差的无偏估计量为
ˆ 2
e
2 i
e e
n k 1 n k 1
第三节 参数估计量的性质
在满足基本假设的情况下,其结构参数的普通最小二乘估计具有: 线性性、无偏性、有效性。
1、线性性
βˆ (XX)1 XY CY
E(μμ) 2I
第四节 可决系数
• 总离差平方和的分解 • 多元样本可决系数 • 修正样本可决系数
总离差平方和的分解
TSS (Yi Y )2 ((Yi Yˆi ) (Yˆi Y )) 2 (Yi Yˆi )2 2(Yi Yˆi )(Yˆi Y ) (Yˆi Y )2
值E(Y)的变化; 或者说j给出了Xj的单位变化对Y
均值的“直接”或“净”(不含其他变量)影 响。
总体回归模型矩阵表达式
总体回归模型矩阵表达式为
Y=Xβ+U
其中
1
X
1
1
X 11 X 12
X 1n
X 21 X 22
X 2n
X k1
X
k
2
X
kn
n(k 1)
0
1
β
2
k (k1)1
((ˆˆ00(ˆ0ˆˆ11XX1ˆ1i1i X1ˆiˆ22i XXˆ222ii
X 2i ˆk ˆk X ki ˆk X ki
X ki) ) X 1i )X 2i
Yi Yi Yi
X 1i X 2i
(ˆ0 ˆ1 X1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
i ~ N (0, 2 )
3.2 最小Hale Waihona Puke 乘法• 参数的最小二乘估计

随机误差项的方差
2的估计量
u
参数的普通最小二乘估计
对于随机抽取的n组观测值 (Yi , X ji ), i 1,2,, n, j 0,1,2,k 如果样本函数的参数估计值已经得到,则有:
Yˆi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X Ki
Yi 0 1 X1i 2 X 2i k X ki ui i=1,2…,n 其中:k为解释变量的数目,j称为回归参数。习 惯上:把常数项看成为一虚变量的系数,该 虚变量的样本观测值始终取1。这样模型中 解释变量的数目为(k+1)
Yi 0 1X1i 2 X 2i k X ki ui
根据最小二乘原理,参数估计值应该是下列方程组的解
i=1,2…n
ˆ
0
ˆ1
ˆ
2
ˆ k
Q
Q
Q Q
0 0 0
0
n
n
其中 Q ei2 (Yi Yˆi ) 2
i 1
i 1
n
2
(Yi (ˆ0 ˆ1 X1i ˆ2 X 2i ˆk X ki ))
i1
正规方程
于是得到关于待估参数估计值的正规方程组:
0
2
基本假定
假设4 n(k+1)矩阵X是非随机的,且X的秩 =k+1,即X满秩。解释变量与随机项不相关
E(X’U)=0
ui E(ui )
E
X1iui
X
1i E(ui
)
0
X Kiui X Ki E(ui )
假设5 解释变量之间不存在完全线性关系
假设6,随机项满足正态分布
第三章 多元线性回归模型
• 模型的建立及其假定条件 • 最小二乘法 • 最小二乘估计量的特性多元线性回归模型的
预测 • 可决系数 • 显著性检验与置信区间 • 预测 • 案例分析
模型的建立及其假定条件
• 基本概念 • 多元线性回归模型的基本假定
基本概念
多元线性回归模型:表现在线性回归模型中的 解释变量有多个。一般形式:
也被称为总体回归函数。
E(Yi | X1i , X 2i , X ki ) 0 1 X1i 2 X 2i k X ki
被称为多元总体线性回归方程,简称总体回归方程。方程表示各变 量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变量
保持不变的情况下,Xj每变化1个单位时,Y的均
X k1
1 X 12
X k2
1 Y1 X 1n Y2 X kn Yn

(XX)βˆ XY
由于X’X满秩,故有
βˆ (XX)1XY
将OLS过程用矩阵表示如下:
即求解方程组:
βˆ (Y
Xβˆ )(Y
Xβˆ )
0
得到: 于是:
βˆ (YY βˆ XY YXβˆ βˆ XXβˆ ) 0 βˆ (YY 2YXβˆ βˆ XXβˆ ) 0 XY XXβˆ 0
u1
U
u2
u
n
样本回归函数
样本回归函数用来估计总体回归函数
Yˆi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X ki

Yi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X ki ei
其中的 ei为残差。 样本回归函数的矩阵表达为
Yˆ Xβˆ 其中:
ˆ0
βˆ
相关文档
最新文档