铸造成型技术
02-1铸造成型技术
缩孔、缩松
体积收缩
收 ③固态收缩 :固相线温度-室温 缩
线收缩
内应力、变形、开裂
2.影响因素
1.2 ①化学成分:灰口铸铁收缩率小 合 ②浇注温度:温度过高,收缩率增加,缩孔倾向大 金 ③铸型结构与铸型条件:在铸型中非自由收缩 的 收 缩
缩孔形成机理:
缩松形成机
逐层凝固方式
理:树枝状
下最后凝3固.缩部孔与缩松
的
件的能力,是材料的一项重要工艺性能。
铸
造
• 通常用金属液的流动性和收缩率来衡量
性
能
1
合 金 的 铸 造 性 能
1.1 •合金的流动性
合 •浇注温度
金 的 充
• 充型压力 • 铸型条件
型
能
力
冷隔
浇不到
1.1 温度 合 ,T 金 的 充 型 能 力
1.合金的流动性取决于其种类与化学成分。
共晶点
碳钢
造
磨床床身
压缩机缸体
暖气片
铸 造 成 语
铸成大错
1.金属液态成形——铸造 2.金属塑性成形——锻造 3.金属连接成形——焊接
定义:所谓金属液态成型,即铸造,casting
1
,是将液态金属借助外力充填到型腔中,使
其凝固冷却而获得所需形状和尺寸的毛坯或
铸
零件的工艺。
造
1 合
• 金属的铸造性能
金
是指铸造成型过程中获得外形准确、内部健全铸
2铸造成型技术(1)
• 中国在公元前513年,铸出了世界上最早
见于文字记载的铸铁件一晋国铸型鼎,重
铸
约270公斤。
造
• 欧洲在公元八世纪前后也开始生产铸铁 件。铸欧洲在公元八世纪前后也开始生
铸造成型的工艺特点
铸造成型工艺的特点
铸造成型工艺的特点主要有以下几个方面:
1.适应性广泛:铸造可以生产各种形状、大小和结构的铸件,尤其适用于难以
加工的复杂形状铸件。
2.材料种类多:可用于铸造的材料种类繁多,包括铸铁、铸钢、铝合金、铜合
金等。
3.成本低:铸造工艺可以使用低成本的材料和简单的工具,且适合批量生产,
因此具有较低的生产成本。
4.适用性强:铸造工艺可用于生产单件、小批量或大批量生产的铸件,也可用
于生产大型或小型铸件。
5.铸造缺陷:铸造过程中可能会出现一些缺陷,如气孔、缩孔、疏松、裂纹等,
这些缺陷需要通过改进工艺或加入相应的添加剂来减少或避免。
6.环保:铸造过程中会产生一些噪音、粉尘和废气等污染物,对环境有一定的
影响,因此需要采取相应的环保措施来减少对环境的影响。
总之,铸造成型工艺具有广泛的适应性、多样的材料种类、低成本、适用性强等特点,但也存在一些铸造缺陷和环境问题需要注意和解决。
在生产过程中需要选择合适的材料、工艺和设备,并进行有效的质量控制和环境管理。
铸造成形技术-基本知识
(1)流动性 (1)流动性
决定合金流动性的因素主要有: 1、合金的种类:合金的流动性与合金的熔点、 热导率、合金液的粘度等物理性能有关。铸 钢熔点高,在铸型中散热快、凝固快,则流 动性差。
(1)流动性 (1)流动性
2、合金的成分:同种合金中,成分不同的铸造 合金具有不同的结晶特点,对流动性的影响 也不相同。
合金的充型能力及影响因素
1、熔融合金的充型能力: 这里有二个基本概念即充型与充型能力。 ★熔化合金填充铸型的过程,简称充型。 , ★熔融合金充满铸型型腔,获得形状完整,轮廓 清晰铸件的能力,称合金的充型能力。
合金的充型能力及影响因素
2、影响合金充型能力的主要因素有: (1)流动性:流动性指熔融金属的流动能力,它是 影响充型能力的主要因素之一。 (2)浇注条件:指的是浇注温度与充型的压力。 (3)铸型条件:熔融合金充型时,铸型的阻铸型 对合金的冷却作用 都将影响合金的充型能力。
(3)铸型条件 (3)铸型条件
4、铸件结构的壁厚 当铸件壁厚过小,壁厚急剧变化、结构复杂 或有大的水平面时,均会使充型困难。因此 在进行铸件结构设计时,铸件的形状应尽量 简单,壁厚应大于规定的最小壁厚。对于形 状复杂、薄壁、散热面大的铸件,应尽量选 择流动性好的合金或采取其它相应措施。
(3)铸型条件 (3)铸型条件
合金的收缩及影响因素
合金的收缩:
铸件在凝固和冷却过程中,其体积减少的现象称为 收缩。
1)收缩过程及影响因素
收缩可分为液态收缩、凝固收缩和固态收缩,液态 收缩和凝固收缩表现为合金的体积缩小,通常以体积 收缩率表示,它们是铸件产生缩孔、缩松缺陷的基本 原因。 合金的固态收缩,尽管也是体积变化,但它只 引起铸件各部分尺寸的变化。因此,通常用线收缩率 来表示。固态收缩是铸件产生内应力、裂纹和变形等 缺陷的主要原因。
铸造成型技术
第一章铸造成型技术铸造:将液态金属浇注到与零件尺寸、形状相适应的铸型型腔中,待其冷却凝固后,获得一定形状的毛坯或零件的方法。
铸件:采用铸造方法铸出的金属制品。
铸造生产的特点1.适应范围广,工艺灵活性大(材料、大小、形状几乎不受限制)2. 可制造各种合金铸件,各种箱体、机架、阀体等3.成本较低(铸件与最终的零件形状相似,尺寸相近)铸造的局限性1材料力学性能比锻件低2容易产生铸造缺陷3劳动条件差第一节铸造成型理论基础一、液态金属冲型充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
液态金属重要的铸造性能指标。
冲型能力差:形状不完整、轮廓不清晰产生缺陷。
(浇不足,冷隔)问:影响液态金属充型能力的因素有哪些?★合金本身的流动性★浇注条件★铸型填充条件★铸件结构1.合金流动性1)合金流动性的概念:合金本身的流动能力流动性好●容易浇注出轮廓清晰、薄而复杂的铸件●气体、夹杂上浮与排除●补缩好流动性差●薄壁铸件浇不足●复杂铸件产生冷隔2)合金流动性的测量螺旋形试样测量法:用浇注后试样的长度表示(实际浇注的螺旋线的长度,长度越长,流动性越好)3)影响合金流动性的因素合金的化学成分:固液两相的间距越大,流动性越差。
A.具有共晶成分的合金,纯金属流动性好B.合金成分越远离共晶点结晶温度范围越宽,流动性越差亚共晶铁随含碳量增加,结晶温度范围减小,流动性提高2 浇注条件1)浇注温度:浇注温度越高充型能力越好2)充型压头:压头越大,金属流动速度越大,充型能力越好,压力铸造、离心铸造的充型能力就比砂型铸造好。
缺点:压力过大:引起喷射和飞溅,增加金属氧化,气体来不及排除,易造成浇不足和冷隔。
3)浇注系统结构:复杂,流动阻力大,充型能力差浇注系统如阻流式、缓流式易增大铸件的流动阻力,使充型能力降低。
浇口杯和内浇口等也有同样的影响。
3. 铸型填充条件1)铸型材料:导热系数越大,合金的充型能力越差金属型铸造较砂型铸造易产生浇不足和冷隔等缺陷2)铸型温度:铸型温度越高,合金的充型能力越强3)铸型中的气体:铸型排气能力差,阻碍液态合金的充型4. 铸件结构1)铸件的折算厚度(体积与表面积之比):折算厚度越大,充型能力越强2)铸件的复杂程度越大,充型能力差5. 提高充型能力的措施1)铸型性质方面金属铸型、熔模铸型:提高铸型温度,填涂料增加铸型热阻,提高铸型排气量,减少铸型在金属充填期间的发气速度等。
快速成型铸造技术
快速成型铸造技术快速成型与铸造相结合的产物是快速铸造技术简称QC,这种快速铸造使得多种材料、任何形状复杂、内部结构精细的铸件都能生产出来,产品开发周期短、精度高,大大地提高了企业获取订单的竞争力,快速成型为实现铸造的短周期、多品种、低成本、高精度提供了一个快速响应技术,显示出了强大的生命力和巨大的应用潜力。
1. 直接铸造法直接铸造法主要是指由RP技术直接一步成形铸造用的型壳、型芯,型壳、型芯经处理后,即可进行金属浇注,铸造出金属零件。
由于从原型到金属零件不经过造型转化,故称直接铸造法。
该类工艺方法一般用于单件、复杂零件的制造。
2.直接壳型铸造直接壳型铸造是利用SLS激光快速成型,技术对以反应性树脂包覆的陶瓷粉进行烧结,可以一步制成铸造用的型壳、型芯的方法。
在CAD环境中,直接将零件模样转换为壳型,再配以浇注系统。
型壳的厚度可取5~10mm,烧结过程中,非零件部分进行烧结,零件部分仍是粉末。
烧结完成后将粉末倒出,再经固化处理就获得铸造用的型壳,进行浇注后即可制得金属零件。
用此方法,省去传统精密铸造多种工艺过程,是传统铸造的重大变革。
它的最大优点是速度快,不需要任何模具,甚至不需画图,设计工程师通过计算机网络将资料送到铸造车间的系统中便可完成型壳的设计与制作。
该工艺的不足之处主要是零件表面粗糙度值较高。
其关键技术是型壳厚度、型壳表面粗糙度及固化处理工艺。
近几年开发研制的激光快速自动成形系统,还可以利用铸造覆膜砂直接进行SLS激光快速成型技术,制作铸造壳型和壳芯,使这一技术在铸造上的应用得到更进一步的发展。
3.直接制模铸造直接制模铸造缩写为DSPC,其成形方法不是采用激光进行选择性烧结,而是采用粘结剂进行选择性粘接。
把CAD模型转换成模壳,然后以类似于熔模铸造的工艺,制造出金属零件。
从设计到成品零件出厂前后只要10天,是金属零件设计和制造上的一个突破。
直接制模铸造来源于三维印刷快速成形技术。
本文由湖南华曙高科快速模型小编整理完成。
铸造成型工艺
第7章铸造成型工艺⏹⏹⏹⏹⏹金属成型方法概述铸造、塑性成形(或称压力加工)、切削加工、焊接和粉末冶金五大类。
1、铸造的概念2、铸造的分类3、铸造的特点4、铸造的应用。
手工(紧实)造型造型时填砂抛砂(紧实)造型震压(紧实)造型机器造型型芯撑及其应用大型铸件的型芯铸造生产线上浇注浇注现场§7-1 铸造工艺基础❑定义:❑铸造的基本过程:液态金属充型铸件凝固收缩实质:主要影响因素冷却速度凝固方式凝固收缩充型条件浇注条件金属的流动性充型铸造主要影响因素阶段⏹⏹金属的流动性:改善金属的流动性加快凝固中液体的补缩排除内部夹杂物和气体形成薄壁复杂的铸件有利于金属流动性测试实验⏹合金的流动性是液态金属能否充满铸型,获得外形完整、尺寸准确、轮廓清晰的铸件的基本条件⏹⏹浇注条件:1. 浇注温度高温出炉,低温浇注”2.充型压力:P 充型↑V 流动↑充型能力↑铸型的充填条件◆铸型材料◆铸型温度◆铸型中的气体◆铸件结构二、凝固收缩☐☐铸件的“凝固方式”就是依据凝固区的宽窄来划分的逐层凝固糊状凝固中间凝固⏹⏹⏹2.铸件的收缩:定义:分类:浇注温度室温凝固终止温度开始凝固温度液态收缩凝固收缩固态收缩体积收缩线收缩收缩率:⏹液态收缩和凝固收缩体收缩率⏹固态收缩线收缩率1010注意: 3.3~4.20.13.614003.50灰口铸铁5.4~6.34.22.414003.00白口铸铁7.863.01.616100.35碳钢固态收缩(%)凝固收缩(%)液态收缩(%)浇注温度(℃)碳含量(%)合金种类影响因素◆化学成分◆浇注温度◆铸件结构三、铸造缺陷1. 缩孔与缩松:缩孔:产生原因:产生原因:后形成了形状不一的分散性孔洞即缩松。
危害:防止措施:(图中Ⅰ)(图中Ⅱ、Ⅲ)顺序凝固:内置冷铁法外置冷铁法设置冒口法冒口、冷铁共用法2. 铸造应力:铸造应力相变应力热应力机械应力铸件收缩受阻铸件因V 冷却、温度不同,各部位收缩不一致产生铸件组织发生相变时,因温度差异出现体积变化不一致铸造应力:减少和消除铸造应力的方法3. 变形与裂纹:⏹⏹⏹铸件特殊位置的裂纹示意图裂纹的常见部位:裂纹和变形的防止:冷隔浇不足 4.其它铸造缺陷:鼓泡渗漏§7-2 砂型铸造工艺砂型铸造是指用砂粒制备铸型来生产铸件的铸造方砂型铸造概略图应用最普遍,工艺准备造型落砂合箱浇注造芯清理检验熔炼金属配砂、制模砂型铸造(一)造型材料型砂和芯砂透气性可塑性耐火性足够的强度退让性一、造型与造芯(二)模样与芯盒木材(三)造型1、手工造型整模造型挖砂造型三箱造型活块造型刮板造型假箱造型分模造型整模造型。
机械铸造成型技术
机械铸造成型技术机械铸造成型技术机械铸造成型技术是一种利用模具或型芯将熔化金属注入铸件型腔并冷却凝固而得到的金属制品生产技术。
它是制造工业中的一种重要工艺,广泛应用于各个领域,例如汽车制造、航空航天、电子设备、建筑装饰、农业机械、机械制造等行业。
机械铸造成型技术主要包括砂型铸造、金属型铸造、气体模铸造和压力铸造等几种常见形式。
一、砂型铸造砂型铸造是最常见的铸造工艺之一,形成的产品也最广泛。
这种工艺通过在砂型中制造型腔,然后将熔化的金属倒入型腔中,等待凝固过程完成后,砂型和铸件分离。
这种铸造过程适用于大量、大型、复杂的零部件,但需要较长的时间来制造砂型和去除铸件。
二、金属型铸造金属型铸造是在金属型中形成铸件型腔,然后将熔化的金属注入其中。
这种工艺适用于高温合金和高精度的铸件生产。
由于金属型的热导率较高,因此金属型铸造可以获得更快的冷却时间和更快的凝固速度,从而获得更快的生产速度。
三、气体模铸造气体模铸造是一种利用沙芯和沙模组成的铸造工艺。
气体模铸造可以制造形状复杂、尺寸精确的铸件。
由于沙芯的结构刚性较好,所以可以制造高精度的铸件;同时沙芯可以通过空气与铸件脱离,更好地控制缩孔和气孔。
四、压力铸造压力铸造是一种高效率的铸造方法,适用于各种金属合金,包括铝、镁、铜和锌等。
压力铸造通过将熔化金属送入高压模具中来形成铸件,其中高压可以达到几百至几千兆帕。
这种铸造方法可以获得更高的生产速度和更高的铸件质量。
总结:机械铸造成型技术是制造工业中的一种重要方法,它涵盖了许多不同的工艺形式,包括砂型铸造、金属型铸造、气体模铸造和压力铸造等。
这些方法都有各自的优点和适用范围,可以帮助生产者以更快的速度和更高的质量生产零部件。
机械铸造成型技术是工程技术中最具实用性和应用广泛的技术之一。
随着各行各业对金属材料性质和应用需求的不断提高,铸造工艺也不断进步。
下面将对砂型铸造和压力铸造两种常见的机械铸造工艺进行详细介绍。
1.制作模具砂型铸造的首要工作是制作模具,模具是铸造操作的核心。
铸造工艺总汇-新成型技术
同的铸件,浇注系统也因此十分灵活。
总之,我们可以说,每种优势都与经济利益相一致,同时还改善了工作条件。
1.2.3 环境保护聚苯乙烯和PMMA在燃烧时产生一氧化碳、二氧化碳、水及其他碳氢化合物气体,其含量均低于欧洲允许的标准。
干砂可使用天然硅砂,100%反复循环使用,不含有粘结剂。
模型使用的涂料是在水中添加粘结剂等辅料组成,不产生污染。
2.快速成型技术及其在铸造中的应用2.1 引 言快速成型制造(Rapid Prototyping-RP)技术是国际上新开发的一项高科技成果,简称快速成型技术。
它的核心技术是计算机技术和材料技术。
快速成型技术摒弃了传统的机械加工方法,根据CAD生成的零件几何信息,控制三维数控成型系统,通过激光束或其它方法将材料堆积而形成零件的。
用这种方法成型,无需进行费时、耗资的模具或专用工具的设计和机械加工,极大地提高了生产效率和制造柔性。
在铸造生产中,模板、芯盒、压蜡型、压铸模等的制造往往是靠机械加工的办法,有时还需要钳工进行修整,费时耗资,而且精度不高。
特别是对于一些形状复杂的薄壁铸件,例如飞机发动机的叶片、船用螺旋浆,汽车、拖拉机的缸体、缸盖等,模具的制造更是一个老大难的问题。
虽然一些大型企业的铸造厂也进口了一些数控机床、仿型铣等高级设备,但除了设备价格昂贵之外,模具加工的周期也很长,而且由于没有很好的软件系统支持,机床的编程也很困难。
面对今天世界上经济市场的竞争,产品的更新换代日益加快,铸造模具加工的现状很难适应当前的形势。
而快速成型制造技术的出现为解决这个问题提供了一条颇具前景的新路。
2.2 快速成型方法目前世界上已投入应用的快速成型装置所采用的主要方法有以下6种:(1)SL(Stereo Lithography)法--立体平版印刷法;(2)SLS(Selective Laser Sintering)--激光分层烧结法;(3)LOM(Laminated Object Manufactu-ring)--逐层轮廊成型法;(4)SGC(Sold Ground Curing)--光掩膜法;(5)FDM(Fused Deoposite Manufacturing)--熔化堆积法;(6)DSPC (Direct Shell Production Casting)--陶瓷壳法。
铸造成形
• “砂型铸造” 时先将下半型放在平板上, 放砂箱、填型砂、紧实刮平,下型造完, 将造好的砂型翻转180度,放上半型,撒 分型剂,放上砂箱,填型砂并紧实、刮 平,将上砂箱翻转180度,分别取出上、 下半型,再将上型翻转180度和下型合好, 砂型造完,等待浇注。这套工艺俗称-“翻砂”。
清 铜螃蟹形
“铸造”俗称“翻砂”的 由来
四、熔模铸造(investment casting)
中国古代三大铸造技术
• 泥范铸造
• 失蜡铸造 • 金属型铸造
古青铜器主要制作法
青铜器的铸造,主要采用泥范铸造和失蜡铸造。 中国的青铜器铸造以泥范为主,并在近代兴起砂型 铸造之前的三千多年时间内,泥范分范合铸一直是 最主要的铸造成形方法,春秋中期以前几乎是唯一 的方法。这和美索不达米亚、埃及等地以失蜡铸造 为主的情况截然不问,是中国独有的技术道路。
接造出曲面分型面,代替挖砂造型,操作较简单。
应用:用于小批或成批生产,分型面不平的铸件。
刮板造型 特点:刮板形状和铸件截面相适应,代替实体模样,
可省去制摸的工序。
应用:单件小批生产,大、中型轮类、管类造型
特点:采用上、下、中三个砂箱,有两个分型面,铸件
的中间截面小,用两个砂箱时取不出模样,必须分模,操 作复杂。 应用:单件小批生产,适合于中间截面小,两端截面大 的铸件。 分型面 上砂箱 中砂箱 下砂箱 分型面
铸件名义尺寸的百分比。
5)铸造圆角 (curving of casting ) 定义:指设计铸件时,在璧间的连接和拐角处,应设
计处圆弧过渡,此圆弧称为铸造圆角。
作用:可避免热节形成;改善应力分布;避免砂型损
坏和产生砂眼。
凝固特性 热节、充型
确定浇铸位置和分型面
铸造成型工艺介绍
铸造成型工艺介绍1. 引言铸造成型是一种常见的制造工艺,用于生产各种金属制品,如零件、工具和机械部件。
在铸造成型工艺中,通过在熔化的金属中倒入模具中,使其冷却和凝固,得到所需的形状。
本文将介绍铸造成型的基本步骤、常见的铸造方法和一些注意事项。
2. 铸造成型的基本步骤铸造成型通常包括以下基本步骤:2.1 模具设计与制造首先,根据所需产品的形状和尺寸,设计和制造铸造模具。
模具可以是金属或非金属材料制成,具有所需的形状和表面质量。
2.2 熔炼金属材料将所需的金属材料放入锅炉或冶炼炉中,进行熔炼。
在熔炼的过程中,需要根据所需产品的成分要求,适量地添加合金元素。
2.3 金属液体的浇注当金属熔化并达到所需温度后,将其从熔炉中倒入预先准备好的模具中。
要确保金属液体在倒入模具前达到适当的温度和流动性。
2.4 冷却和凝固一旦金属液体倒入到模具中,它将开始冷却和凝固。
冷却时间的长短取决于金属的种类和模具的尺寸。
通常,铸造产品需要在模具中保持足够长的时间,以确保完全凝固。
2.5 模具的打开和清理一旦金属凝固完全,在模具上应用足够的力量来打开模具,以便从中取出铸造产品。
之后,需要清理铸造产品上的任何余砂或其他不需要的物质。
3. 常见的铸造方法3.1 砂型铸造砂型铸造是最常用的铸造方法之一,也是最早应用的方法。
在砂型铸造中,使用一种特殊的砂作为模具材料。
砂型铸造适用于生产简单的金属产品,如零件和工具。
3.2 铸型铸造铸型铸造是一种高精度的铸造方法,用于生产复杂形状的金属产品。
在铸型铸造中,使用耐火材料制成的金属模具。
铸型铸造通常用于生产汽车发动机和航空发动机等高精度零件。
3.3 压铸压铸是一种将金属加热至液体状态,并将其注入模具中的铸造方法。
压铸是一种高效的生产方法,适用于生产大批量的金属产品,如汽车零件和家用电器。
4. 注意事项4.1 安全性在进行铸造成型工艺时,必须严格遵守安全操作规程。
使用适当的个人防护装备,如耐热手套、防护眼镜和防护服。
铸造成型技术完整版
铸造成型技术完整版铸造成型技术是一种广泛应用于工业领域的制造工艺,用于生产各种类型的金属零件。
通过铸造成型技术,可以将熔化的金属注入成型工具中,随后冷却凝固,最终得到所需形状的零件。
这项技术的应用范围非常广泛,从汽车行业到航空航天,从机械制造到建筑领域,都有铸造成型技术的身影。
铸造成型技术的主要步骤包括:设计模具、选材、熔炼、浇注、冷却和取模。
下面将具体介绍每个步骤的详细过程。
首先,设计模具是铸造成型技术中至关重要的一步。
模具的设计需要根据所需零件的形状和尺寸来确定。
设计师们利用计算机辅助设计软件进行模型的三维建模,并结合具体生产需求,制定出最佳的模具设计方案。
其次,选材是非常重要的一环。
根据所需零件的性质和用途,选择合适的金属材料进行铸造。
不同材料具有不同的特性,在选择材料时需要考虑其机械性能、耐腐蚀性和可加工性等因素。
接下来是熔炼阶段,也是铸造成型技术中的核心步骤之一。
选定合适的金属材料后,将其加热至熔化状态,形成熔融金属。
通常采用高温炉来进行熔炼,确保金属材料达到适宜的流动性。
然后是浇注阶段。
在熔融金属状态下,将其倒入事先设计好的模具中。
浇注时需要注意金属的温度和浇注速度,以确保金属能够充分填充模具的空腔,并且得到均匀的密实度。
接着是冷却阶段。
在金属充分充满模具后,开始进行冷却。
通过控制冷却速度和冷却时间,可以使金属逐渐凝固并达到所需的硬度和强度。
冷却过程中,还需要考虑金属的收缩和应变等因素,以确保最终成型的零件符合要求。
最后是取模。
在完成冷却后,将模具打开,取出凝固完整的金属零件。
根据需要,还可以进行后续加工,如去毛刺、打磨和热处理等工艺,以达到最终的零件要求。
总结起来,铸造成型技术是一项重要的制造工艺,广泛应用于各个领域。
通过合理的模具设计、选材、熔炼、浇注、冷却和取模等步骤,可以实现金属零件的快速制造。
此外,随着科技的不断进步,铸造成型技术也在不断发展,出现了更多新的材料和工艺,为各行各业提供了更多的选择。
铸造成型技术DOC
第一章铸造成型技术铸造:将液态金属浇注到与零件尺寸、形状相适应的铸型型腔中,待其冷却凝固后,获得一定形状的毛坯或零件的方法。
铸件:采用铸造方法铸出的金属制品。
铸造生产的特点1.适应范围广,工艺灵活性大(材料、大小、形状几乎不受限制)2. 可制造各种合金铸件,各种箱体、机架、阀体等3.成本较低(铸件与最终的零件形状相似,尺寸相近)铸造的局限性1材料力学性能比锻件低2容易产生铸造缺陷3劳动条件差第一节铸造成型理论基础一、液态金属冲型充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
液态金属重要的铸造性能指标。
冲型能力差:形状不完整、轮廓不清晰产生缺陷。
(浇不足,冷隔)问:影响液态金属充型能力的因素有哪些?★合金本身的流动性★浇注条件★铸型填充条件★铸件结构1.合金流动性1)合金流动性的概念:合金本身的流动能力流动性好●容易浇注出轮廓清晰、薄而复杂的铸件●气体、夹杂上浮与排除●补缩好流动性差●薄壁铸件浇不足●复杂铸件产生冷隔2)合金流动性的测量螺旋形试样测量法:用浇注后试样的长度表示(实际浇注的螺旋线的长度,长度越长,流动性越好)3)影响合金流动性的因素合金的化学成分:固液两相的间距越大,流动性越差。
A.具有共晶成分的合金,纯金属流动性好B.合金成分越远离共晶点结晶温度范围越宽,流动性越差亚共晶铁随含碳量增加,结晶温度范围减小,流动性提高2 浇注条件1)浇注温度:浇注温度越高充型能力越好2)充型压头:压头越大,金属流动速度越大,充型能力越好,压力铸造、离心铸造的充型能力就比砂型铸造好。
缺点:压力过大:引起喷射和飞溅,增加金属氧化,气体来不及排除,易造成浇不足和冷隔。
3)浇注系统结构:复杂,流动阻力大,充型能力差浇注系统如阻流式、缓流式易增大铸件的流动阻力,使充型能力降低。
浇口杯和内浇口等也有同样的影响。
3. 铸型填充条件1)铸型材料:导热系数越大,合金的充型能力越差金属型铸造较砂型铸造易产生浇不足和冷隔等缺陷2)铸型温度:铸型温度越高,合金的充型能力越强3)铸型中的气体:铸型排气能力差,阻碍液态合金的充型4. 铸件结构1)铸件的折算厚度(体积与表面积之比):折算厚度越大,充型能力越强2)铸件的复杂程度越大,充型能力差5. 提高充型能力的措施1)铸型性质方面金属铸型、熔模铸型:提高铸型温度,填涂料增加铸型热阻,提高铸型排气量,减少铸型在金属充填期间的发气速度等。
铸造成型技术
五砂 型
• 强度:指型芯砂在制造.搬运及浇注时, 不至于破坏的能力。
• 透气性:紧实后的型芯砂透过气体的 能力。
• 耐火性:型芯砂在高温液体金属作用 下,不软化、不熔融的性能。
具有五绝:
一绝:铸造年代最久; 二绝:铸成经种最多; 三绝:钟声传播最远; 四绝:力学结构最佳; 五绝:铸造工艺最高。
4.1.砂型铸造的生产工艺流程图
手工造型工艺流程
模样
砂箱准备
扎气孔、打定位孔或 做合型线
砂箱
安放模样
填砂
紧实
平板
开型
合型
修型
开设浇注系统
起模
永乐大钟
经
文
磨床床身
柴油机机身
压缩机缸体
暖气片
阀
体
柴油机机身
泵
盖
气缸套
阀体
柴油机机身
型 (芯)砂 组 成 示 意 图
浇注系统类型示意图
熔模铸造生产过程
木型模样
金属型模样
三通模样
三通铸件、芯盒、模样
明成祖朱棣下令铸造的永乐大钟,重约46.5吨,钟 高6.75米,直径3.3米,经文字数22.7万字,钟声 持续时间2分钟,传播距离20千米。
要求,各种新的造型法(如高压造型. 射压造型.气充造型等)和造芯方法得 到了进一步开发和推广。
七 铸造成型技术发展趋势
7.2.特种铸造工艺的发展。 随着现代工业对铸件的要求的增
加,以及少无切削加工的发展,特种 铸造工艺向大型铸件方向发展。复合 铸造技术和一些全新的工艺方法逐步 进入应用。
材料成形技术--第2章 铸造成形
2)设备投资大,生产准备周期长,只适于大量生产。
压力铸造主要用于生产铝、锌、镁等有色合金铸件, 如发动机缸体、缸盖、箱体、支架等。
4. 低压铸造
低压铸造:用较低压力将金属液由铸型底部注入型腔, 并在压力下凝固以获得铸件的方法。 (1).低压铸造的工艺过程 : 低压铸造的工艺过程如图2-26所示,包括如下过程:
续
刮板造型 用刮板代替模样造型。节约木材, 用于等截面或回转体大中 缩短生产周期,生产率低,技术水 型铸件的单件、小批生产 平高,精度较差 两箱造型 最基本的造型方法。各种 铸型由上型和下型构成,各类模样, 铸型,各种批量 操作方便
三箱造型
铸件两端截面尺寸比中间大,必须 主要用于手工造型,具有 有两个分型面 两个分型面的铸件的单件、 小批生产
5. 离心铸造
离心铸造:将金属液浇入高速旋转的铸型中,使其在离心 力作用下成形并凝固的铸造方法。可用金属型也可用砂型
(1).离心铸造的类型 根据铸型旋转轴的空间位置,离心铸造可分为立式 和卧式两大类。 1)立式离心铸造:铸型绕垂直轴旋转,如图2-27a,b所 示。在离心力和重力的共同作用下,内表面为回转抛物 面,因此用于高度小于直径的圆环类或成形铸件。
主要特点如下:
R 1) 铸件 的 精 度 和 表 面质量高 ;尺寸公差 IT11∼IT14, a 12.5∼ Ra 1.6;
2)可制造形状较复杂的铸件; 3)适用于各种合金铸件,尤其是高熔点和难以加工的高 合金钢,如耐热合金、不锈钢、磁钢等。 4)工艺过程较复杂,生产周期长,使加工费和消耗的材 料费较贵,多用于小型零件。 熔模铸造适用于制造形状复杂,难以加工的高熔点合 金及有特殊要求的精密铸件;主要用于汽轮机、燃汽轮机 叶片、切削刀具、仪表元件、汽车、拖拉机及机床等零件 的生产。
轻量化材料一体化压铸成型技术方案(二)
轻量化材料一体化压铸成型技术方案一、实施背景随着全球能源短缺和环境污染问题的日益严重,汽车制造业正在寻求更加环保、高效的制造方式。
轻量化材料一体化压铸成型技术应运而生,成为汽车产业转型升级的关键技术之一。
二、工作原理轻量化材料一体化压铸成型技术结合了材料科学、机械工程、模具设计等多个学科领域的知识,采用高压铸造的方式,将多个零部件一次压铸成型,从而减少了生产过程中的繁琐工艺和模具成本。
具体工作原理如下:1.材料选择:选用轻量化材料,如铝合金、镁合金等,具有高强度、低密度的特点,可有效降低车身重量。
2.高压铸造:利用高压铸造机,将熔融状态的金属液体快速压入模具,填充模具的各个部分,形成复杂的零部件结构。
3.冷却定型:通过冷却系统将压铸件冷却定型,保证其尺寸稳定性。
4.取出清理:将压铸件从模具中取出,进行表面清理和修整。
三、实施计划步骤1.材料研发:与材料供应商合作,研发适用于一体化压铸成型的轻量化材料。
2.模具设计:根据产品需求,设计合理的模具结构,确定各部分的尺寸和形状。
3.设备选型:根据生产需求,选择合适的压铸机和辅助设备。
4.工艺调试:进行试制和调试,确定最佳的工艺参数,如压力、温度、时间等。
5.生产实施:按照调试好的工艺参数进行批量生产。
6.质量控制:建立完善的质量控制体系,确保产品质量符合要求。
四、适用范围轻量化材料一体化压铸成型技术适用于汽车制造业中的多个领域,如车身结构件、底盘零部件、发动机零部件等。
同时,也可应用于航空航天、电子设备等领域。
五、创新要点1.材料创新:研发新型轻量化材料,提高材料的综合性能,以满足一体化压铸成型的需求。
2.工艺创新:优化压铸工艺参数,提高生产效率和质量稳定性。
3.技术集成:将多个学科领域的技术进行集成,实现轻量化材料一体化压铸成型技术的整体优化。
4.生产管理创新:引入先进的生产管理理念和技术手段,提高生产效率和成本控制水平。
六、预期效果1.重量减轻:采用轻量化材料和一体化压铸成型技术,可有效降低产品重量,从而提高燃油经济性和减少碳排放。
一体压铸成型技术
一体压铸成型技术
一体压铸成型技术是一种将多个零部件通过压力将其连接在一起成为一个整体的技术。
它是在压铸过程中通过调整铸造工艺参数和模具结构,将多个零部件一起铸造成一个整体。
该技术可以减少零部件的连接点,提高产品的整体性能和质量,并且可以简化生产工艺和装配过程,降低成本。
一体压铸成型技术主要应用于汽车、摩托车、航空航天、电子设备等领域,常见的应用包括发动机缸体、汽车座椅座架、摩托车车架等。
这些产品一体压铸后可以提高产品的强度、刚度和密封性,并且能够减少零部件的数量,简化装配工艺,提高产品的安全性和可靠性。
一体压铸成型技术的关键工艺包括合理设计模具,选择合适的铸造材料,优化浇注系统和冷却系统,控制铸造工艺参数等。
此外,还需要进行模具的设计和制造、铸造工艺的优化和控制、产品的检验和测试等工作。
总之,一体压铸成型技术可以提高产品的整体性能和质量,简化生产工艺和装配过程,降低成本,是一种重要的先进制造技术。
铸造成型技术
通常灰铸铁浇注温度为1200~1380℃;铸钢为1520~ 1620℃;铝合金为680~780℃。薄壁复杂件取上限温 度值,厚件则取下限。
(2) 充型压力 液态合金在流动方向上所受压力愈大,其充型能力 愈好。砂型铸造时,是由直浇道高度提供静压力作 为充型压力,所以直浇道的高度应适当。
(3)铸型的充型条件 在铸型凡能增大液态合金流动阻力、降低流速和加 快其冷却的因素,均会降低其充型能力。如铸型型 腔过窄、预热温度过低、排气能力太差及铸型导热 过快等,均使液态合金的充型能力降低。 (4)铸件的结构 铸件的壁愈薄、结构形状愈复杂,液态合金的充型 能力愈差。应采取适当提高浇注温度、提高充型压 力和预热铸型等措施来改善其充型能力。
为了实现顺序凝固,除在铸件 的厚大部位安放冒口外,还可 以采用其它一些辅助措施,如: i)安放冷铁 由于铸件上容易产生缩孔的 厚大部位即热节不止一个,仅 靠铸件顶部的冒口补缩,难以 保证铸件底部厚大部位不出现 缩孔。为此,在该处设置冷铁, 以加快其冷却速度,使其最先 凝固,以实现自下而上的顺序 凝固。由此可知,冷铁的作用 是加快铸件某处的冷却速度, 以控制或改变铸件的凝固顺序。 冷铁通常采用钢、铸铁或铜等 制成。
以上两个阶段的收缩是铸件产生缩孔和缩松的基本原因。 固态收缩:自固相线温度至室温间的收缩为固态收缩
总之,以上三个阶段收缩之和为铸造合金总收缩。 由于液态收缩和凝固收缩主要表现为合金体积的缩 减,常用体收缩率,即单位体积的收缩量来表示。 而合金的固态收缩主要表现铸件各方向上尺寸的缩 小,常用线收缩率,即单位长度上的收缩量来表示。
注意:安放冒口、增设冷铁和补贴,使铸件实现顺 序凝固,可有效地防止铸件产生缩孔和缩松,但由 于顺序凝固扩大了铸件各部分的温度差,增大了铸 件产生变形和裂纹的倾向。因此顺序凝固主要应用 于必须补缩的场合,如铝青铜件和铸钢件的生产上。 而结晶温度范围很宽的合金,倾向于糊状凝固,发 达的树枝晶布满了整个截面,使冒口的补缩通道严 重受阻,即使采用顺序凝固也很难避免显微缩松的 产生,因此应尽量采用近共晶成分或窄结晶温度范 围的合金来生产铸件。
铸造成型工艺过程
铸造成型工艺过程铸造是一种常见的金属成型工艺,广泛应用于各个行业,如汽车、航空航天、机械制造等。
铸造成型工艺通过将金属融化,倒入铸型中,经过冷却固化后,得到所需的零件或产品。
下面将详细介绍铸造成型工艺的步骤和注意事项,以便帮助读者了解和运用该工艺。
首先,铸造成型工艺的第一步是设计和制作铸模。
铸模是铸造的重要工具,它决定了最终产品的形状和尺寸。
在设计铸模时,要考虑材料的流动性、收缩率、气孔等因素,以确保最终产品的质量。
制作铸模可以采用传统的木模、石膏模,也可以使用更高精度的金属模具。
接下来是准备材料和设备。
根据所需产品的要求,选择适当的金属材料,并将其加热到熔点。
常用的金属包括铝合金、铜合金、铸铁等。
同时,将制作好的铸模放置在铸造设备中,通常是砂型或金属型。
然后进行金属融化和熔炼。
将选定的金属材料放入熔炉中,加热至熔点以上,使其融化成液态。
在熔炉中加入剂和合金,以调整材料的化学成分和性质。
熔炼是铸造过程中非常重要的一步,需要稳定的温度控制和适当的搅拌,以保证金属液的均匀性和纯度。
接下来就是铸注,也就是将融化的金属倒入铸模中。
在倒注过程中,要注意控制倒注速度和温度,以免形成气孔或裂纹。
同时,要避免气泡和杂质的混入,可采用真空铸造或压力铸造等方法提高产品质量。
倒注完成后,待金属冷却固化,即可取出铸件。
冷却时间取决于金属的类型和厚度。
通常,较大的铸件需要更长的冷却时间。
一旦铸件冷却完全,可以从铸模中取出,并进行后续的加工处理,如修整、研磨、清洁等。
最后,进行产品的检验和质量控制。
铸造成型工艺中,检验是非常重要的一环,可以采用金相分析、物理性能测试等方法检测产品的性能和质量。
通过合格的质检,可以确保产品符合设计要求并达到客户的需求。
总结来说,铸造成型工艺是一种重要的金属加工工艺,具有广泛的应用前景。
在应用该工艺时,需要注意设计和制作铸模、准备材料和设备、金属融化和熔炼、倒注和铸件冷却、产品检验和质量控制等多个步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 铸造概述
•引子 •铸造成形的原理 •铸造工艺特点及应用
•砂型铸造生产过程
引 子
我国有辉煌的传统冶铸历史,在殷商时 期就有灿烂的青铜器铸造技术。如北京 明朝永乐青铜大钟,重达46.5t,钟高 6.75m,钟唇厚22cm,外径3.3m,钟体 内遍铸经文22.7万字,击钟时尾音长达2 分钟以上,传距20km。外形和内腔如此 复杂、重量如此巨大、质量要求如此高 的青铜大钟,正说明我国早已掌握冶炼 和铸造技术。
铸造成形的原理
铸造生产是把金属加热熔化后注入铸型的型腔中,待 金属液冷却后获得铸件的一种生产工艺方法
。
铸造工艺特点及应用
可制成形状复杂、特别是具有复杂内腔的毛坯, 如箱体、床身、气缸体等。 适应范围广。工业上常用的金属材料都可铸造; 铸件大小几乎不限(铸件外形尺寸可从几毫米 到十几米,壁厚可从1mm到1m ) ;生产的批 量不限,既适用于单件小批生产,又适用于大 批量生产。 成本低。可直接利用成本低廉的废机件和切屑, 设备费用较低;在金属切削机床中,铸件占机 床总重量75%以上,而生产成本仅占15~30%。
3.挖砂造型
挖砂造型的特点及应用
特点: 模样为整体模,造型时需挖去阻碍起 模的型砂,故分型面是曲面。造型麻烦, 生产率低。 应用范围: 单件小批生产模样薄、分模后易损坏 或变形的铸件。
4.活块造型
活块造型的特点及应的部分,做成活动 的活快,便于起模。造型和制作模样都 很麻烦,生产率低。 应用范围: 单件小批生产带有突起部分的铸件。
第二章 铸造成形
主讲教师:刘胜青
学习提示
铸造是获得毛坯的主要方法之一,其基 本特点是熔融金属在铸型中冷却成形; 了解铸造生产的工艺过程; 熟悉各种基本造型方法以及选用的基本 原则; 掌握基本造型方法的特点及其应用范围; 针对不同铸件能正确判断分型面的位置, 并选择其合适的造型方法。
复习思考题
参考资料
《金属工艺学》(上册 第四版)邓文英 高教出版社 《金工实习》 刘胜青 成都科技大学出版 社 《金工实习》 孙以安 鞠鲁粤 上海交通 大学出版社
5.三箱造型
三箱造型的特点及应用
特点: 铸件两端截面尺寸比中间部分大,采 用两箱无法起模,将铸型放在三个砂箱 中,组合而成。三箱造型的关键是选配 合适的中箱。造型复杂,易错箱,生产 率低。 应用范围: 单件小批生产具有两个分型面的铸件。
第三节 造型方法的选择
分型面选择原则:
砂型铸造生产过程
小结
砂型铸造生产过程包括以下步骤:
绘制零件铸造工艺图——制造模样和芯盒—— 造型和造芯——下芯、合箱——浇注——落 砂——清理——质量检验——获得合格铸件。
第二节 基本造型方法
基本术语 基本造型方法 造型方法的选择
一、基本术语
铸 型:用型砂、金属或其他耐火材料制成;包 括形成铸件形状的空腔、型芯和浇冒系 统的组合整体。 型 腔:铸型中造型材料所包围的空腔部分。 铸 件:用铸造方法制成的金属件,一般作毛坯 用。 分型面:铸型组元间的接合面。 分模面:模样组元间的接合面。
应尽量使铸件位于同一铸型内 尽量减少分型面 尽量使分型面平直 尽量使型腔和主要型芯位于下型
实例分析及课堂讨论
请分析下列模样应该选择的正确造型方 法
手轮 油盒盖 四方小刀台 燕尾槽滑块
课堂小结
铸造是脆性材料成型的唯一方法。 人类最早的金属制品是青铜铸件。 铸造是液态成型,造型应遵循实体相反 原理。 选择造型方法应综合考虑零件的批量、 大小、形状复杂程度、材质以及经济性 等因素。
模 零 砂
芯
样:由木材、金属或其他材料制成,用来形 成铸型型腔的工艺装备。 件:铸件经切削加工制成的金属件。 芯:为获得铸件的内孔或局部外形,用芯砂 或其他材料制成的,安放在型腔内部的 铸型组元。 盒:制造砂芯或其他耐火材料所用的装备。
二、基本造型方法
整模造型、分模造型、挖砂造型、活块造型、 三箱造型
1.整模造型
整模造型的特点及应用
特点: 分型面为平面,铸型型腔全部在一 个砂箱内,造型简单,铸件不会产生错 箱缺陷。 应用范围: 铸件最大截面在一端,且为平面。
2.分模造型
分模造型的特点及应用
特点: 模样沿最大截面分为两半,型腔位 于上、下两个砂箱内。造型方便,但制 作模样较麻烦。 应用范围: 最大截面在中部,一般为对称性铸 件。