河北省石家庄市第二中学复数经典例题 百度文库

合集下载

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题单选题1、已知z =2+i ,则z−i 1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z =2−i ,所以z−i 1+i =2−i−i 1+i =2(1−i )×(1−i )(1+i )×(1−i )=2×(1−2i+i 2)2=−2i .故选:D.2、设(−1+2i)x =y −1−6i ,x,y ∈R ,则|x −yi|=( )A .6B .5C .4D .3答案:B分析:根据复数实部等于实部,虚部等于虚部可得{x =−3y =4,进而求模长即可. 因为(−1+2i )x =y −1−6i ,所以{2x =−6−x =y −1,解得{x =−3y =4, 所以|x −yi |=|−3−4i|=√(−3)2+(−4)2=5.故选:B.3、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z 1和z 2的模相等,例如z 1=1+i ,z 2=√2i ,则z 1和z 2是共轭复数是错误的;对于②z 1和z 2都是复数,若z 1+z 2是虚数,则其实部互为相反数,则z 1不是z 2的共轭复数,所以②是正确的;对于③复数z 是实数,令z =a ,则z =a 所以z =z ,反之当z =z 时,亦有复数z 是实数,故复数z 是实数的充要条件是z =z 是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.4、在复平面内,复数z =1+i 1−i +1−i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:由复数的运算求出z ,则可得其对应的点的坐标,从而得出结论.z =(1+i)2(1−i)(1+i)+1−i 2=2i 2+1−i 2=12+12i , 则z 在复平面内对应的点为(12,12),在第一象限,故选:A .5、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i ,满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi11z =11z =|z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.6、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解.根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.7、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D8、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC.-3-iD.-3+i答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn+2=02n+2=0,解得{m=3,n=−1,∴z=3−i故选:B多选题9、已知复数z=21+i,则正确的是()A.z的实部为﹣1B.z在复平面内对应的点位于第四象限C.z的虚部为﹣iD.z的共轭复数为1+i答案:BD分析:根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可.因为z=21+i =2(1−i)(1+i)(1−i)=1−i,所以z的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限,共轭复数为z=1+i,故AC错误,BD正确.故选:BD10、复数z=1−i,则()A.z在复平面内对应的点的坐标为(1,−1)B.z在复平面内对应的点的坐标为(1,1)C.|z|=2D.|z|=√2答案:AD分析:利用复数的几何意义,求出复数对应的点坐标为(1,−1),即可得答案;z=1−i在复平面内对应的点的坐标为(1,−1),|z|=√2.故选:AD.11、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.12、已知复数z1=−2+i(i为虚数单位),复数z2满足|z2−1+2i|=2,z2在复平面内对应的点为,则()A.复数z1在复平面内对应的点位于第二象限B.1z1=−25−15iC.(x+1)2+(y−2)2=4D.|z2−z1|的最大值为3√2+2答案:ABD分析:利用复数的几何意义可判断A选项;利用复数的除法运算可判断B选项;利用复数的模长公式可判断C选项;利用复数模长的三角不等式可判断D选项.对于A选项,复数z1在复平面内对应的点的坐标为(−2,1),该点位于第二象限,A对;对于B选项,1z1=1−2+i=−2−i(−2+i)(−2−i)=−25−15i,B对;对于C选项,由题意可得z2−1+2i=(x−1)+(y+2)i,因为|z2−1+2i|=2,则(x−1)2+(y+2)2=4,C错;对于D选项,z1−1+2i=−3+3i,则|z1−1+2i|=√(−3)2+32=3√2,所以,|z2−z1|=|(z2−1+2i)−(z1−1+2i)|≤|z2−1+2i|+|z1−1+2i|=2+3√2,D对.(), M x y故选:ABD.13、若复数z 满足:z (z +2i )=8+6i ,则( )A .z 的实部为3B .z 的虚部为1C .zz =√10D .z 在复平面上对应的点位于第一象限答案:ABD分析:根据待定系数法,将z =a +bi (a,b ∈R )代入条件即可求解a =3,b =1,进而即可根据选项逐一求解. 设z =a +bi (a,b ∈R ),因为z (z +2i )=8+6i ,所以zz +2iz =8+6i ,所以(a 2+b 2−2b )+2ai =8+6i ,所以a 2+b 2−2b =8,2a =6,所以a =3,b =1,所以z =3+i ,所以z 的实部为3,虚部为1,故A ,B 正确;zz =|z |2=10,故C 不正确;z 在复平面上对应的点(3,1)位于第一象限,故D 正确.故选:ABD .填空题14、i 2 021=________.答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i15、设复数z ,满足|z 1|=1,|z 2|=2,z 1+z 2=√3−i ,则|z 1−z 2|=____________.答案:√6解析:根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出|z 1−z 2|的值.设z 1,z 2在复平面中对应的向量为OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,z 1+z 2对应的向量为OZ 3⃗⃗⃗⃗⃗⃗⃗ ,如下图所示:因为z 1+z 2=√3−i ,所以|z 1+z 2|=√3+1=2,所以cos∠OZ 1Z 3=12+22−221×2×2=14, 又因为∠OZ 1Z 3+∠Z 1OZ 2=180°,所以cos∠Z 1OZ 2=−cos∠OZ 1Z 3=−14,所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=OZ 12+OZ 22−2OZ 1⋅OZ 2⋅cos∠Z 1OZ 2=1+4+1=6, 所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,又|z 1−z 2|=|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,所以答案是:√6.小提示:名师点评复数的几何意义:(1)复数z =a +bi (a,b ∈R )一一对应↔复平面内的点Z (a,b )(a,b ∈R ); (2)复数z =a +bi (a,b ∈R ) 一一对应↔平面向量OZ ⃗⃗⃗⃗⃗ . 16、在复平面内,复数z 对应的点的坐标是(3,−5).则(1−i)z =___________.答案:−2−8i ##−8i −2分析:根据给定条件求出复数,再利用复数的乘法运算计算作答.在复平面内,复数z 对应的点的坐标是(3,−5),则z =3−5i ,所以(1−i)z =(1−i)(3−5i)=−2−8i .所以答案是:−2−8i解答题17、已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i (其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m <0,解得m >1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m −4i|,解得m =3.综上可得:m =−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。

(完整版)复数经典例题

(完整版)复数经典例题

经典例题透析类型一:复数的有关概念例1.已知复数22276(56)()1a az a a i a Ra-+=+--∈-,试求实数a分别取什么值时,z分别为:(1)实数;(2)虚数;(3)纯虚数.思路点拨:根据复数z为实数、虚数及纯虚数的概念,判断实部与虚部取值情况.利用它们的充要条件可分别求出相应的a值.解析:(1)当z为实数时,有2256010a aa⎧--=⎪⎨-≠⎪⎩1661a aaa=-=⎧⇒⇒=⎨≠±⎩或,∴当6a=时,z为实数. (2)当z为虚数时,有2256010a aa⎧--≠⎪⎨-≠⎪⎩16161a aa aa≠-≠⎧⇒⇒≠±≠⎨≠±⎩且且,∴当a∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z为虚数. (3)当z为纯虚数时,有222560761a aa aa⎧--≠⎪⎨-+=⎪-⎩166a aaa≠-≠⎧⇒⇒∈∅⎨=⎩且∴不存在实数a使z为纯虚数.总结升华:由于a∈R,所以复数z的实部与虚部分为22761a aa-+-与256a a--.①求解第(1)小题时,仅注重虚部等于零是不够的,还需考虑它的实部是否有意义,否则本小题将出现增解;②求解第(2)小题时,同样要注意实部有意义的问题;③求解第(3)小题时,既要考虑实数为0(当然也要考虑分母不为0),还需虚部不为0,两者缺一不可.举一反三:【变式1】设复数z=a+bi (a 、b ∈R ),则z 为纯虚数的必要不充分条件是( )A .a=0B .a=0且b ≠0C .a ≠0且b=0D .a ≠0且b ≠0【答案】A ;由纯虚数概念可知:a=0且b ≠0是复数z=a+bi (a 、b ∈R )为纯虚数的充要条件.而题中要选择的是必要不充分条件,对照各选择支的情况,应选择A.【变式2】若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A.1B.2C.1或2D.-1【答案】B ;∵2(32)(1)a a a i -++-是纯虚数,∴2320a a -+=且10a -≠,即2a =.【变式3】如果复数2()(1)m i mi ++是实数,则实数m=( )A .1B .-1 CD.【答案】B ;【变式4】求当实数m 取何值时,复数22(2)(32)z m m m m i =--+-+分别是:(1)实数; (2)虚数; (3)纯虚数.【答案】(1)当2320m m -+=即1m =或2m =时,复数z 为实数;(2)当2320m m -+≠即1m ≠且2m ≠时,复数z 为虚数;(3)当⎪⎩⎪⎨⎧≠+-=--0230222m m m m 即1m =-时,复数z 为纯虚数. 类型二:复数的代数形式的四则运算例2. 计算:(1)()n i n N +∈; (2)8(1)i +(3)(12)(12)i i +÷-; (4)ii i i 4342)1)(41(++++- 解析:(1)∵21i =-,∴32i i i i =⋅=-,4221i i i =⋅=,同理可得:当41()n k k N +=+∈时,4144()k k k i i i i i i +=⋅=⋅=当42()n k k N +=+∈时,42421k k i i i +=⋅=-,当43()n k k N +=+∈时,4343k k ii i i +=⋅=- 当44()n k k N +=+∈时,4444()1k k k i i i i =⋅==,∴4114243144n i n k k N n k k N i i n k k N n k k N =+∈⎧⎪-=+∈⎪=⎨-=+∈⎪⎪=+∈⎩(,)(,)(,)(,)()n N +∈ (2)8(1)i +24444[(1)](2)216i i i =+=== (3)(12)(12)i i +÷-1212i i+=-2222(12)(12)1(2)43434(12)(12)1(2)555i i i i i i i i i ++++-+====-+-+- (4)i i i i 4342)1)(41(++++-1432434i i i +-++=+227(7)(34)3434i i i i ++-==++ 21432825251.2525i i i i ++--===- 总结升华:熟练运用常见结论: 1)ni 的“周期性”(n N +∈)2)2(1)2i i ±=±3)22()()a bi a bi a b +-=+ 举一反三:【变式1】计算:(1)(5―6i)+(―2―i)―(3+4i)(2)(12)(34)(2)i i i +--(3)23100i i i i ⋅⋅⋅⋅L(4)3322(1)(1)(1)(1)i i i i +--+-- ; 【答案】(1)(5―6i)+(―2―i)―(3+4i)=[(5―2)+(―6―1)i]―(3+4i)=(3―7i)―(3+4i)=(3―3)+(―7―4)i=―11i.(2)(12)(34)(2)(112)(2)247i i i i i i +--=+-=-(3)231001210050504126222()1i i i i i i i i i +++⋅⋅⋅⋅===⋅==-L L(4)332222(1)(1)(1)(1)(1)(1)2(1)2(1)(1)(1)2(2)4i i i i i i i i i i i i i i i +--+⋅+---++-==+----2214i i⋅== 【变式2】复数()221i i +=( )A.4-B.4C.4i -D.4i【答案】A ;()()222121212244i i i i i i i +=+-=⨯==-【变式3等于( )i +i 【答案】A1-i i ===,故选A 【变式4】复数31()i i -等于( )A.8B.-8C.8iD.-8i【答案】D ;333311()()(2)88i i i i i i i--=+===-. 类型三:复数相等的充要条件例3、已知x 是实数,y 是纯虚数,且满足(2x ―1)+(3―y)i=y ―i ,求x 、y.思路点拨:因x ∈R ,y 是纯虚数,所以可设y=bi (b ∈R 且b ≠0),代入原式,由复数相等的充要条件可得方程组,解之即得所求结果.解析:∵y 是纯虚数,可设y=bi (b ∈R ,且b ≠0),则(2x ―1)+(3―y)i =(2x ―1)+(3―bi )i =(2x -1+b )+3i ,y ―i =bi -i=(b -1)i由(2x ―1)+(3―y)i=y ―i 得(2x ―1+b )+3i=(b ―1)i , 由复数相等的充要条件得42103132b x b b x =⎧-+=⎧⎪⇒⎨⎨-==-⎩⎪⎩, ∴32x =-,4y i =. 总结升华:1. 复数定义:“形如z a bi =+(,a b R ∈)的数叫复数”就意味凡是复数都能写成这一形式,求一个复数,使用一个复数都可通过这一形式将问题化虚为实,把复数问题转化为实数问题来研究.这是解决复数问题的常用方法.2.复数相等是复数问题实数化的有效途径之一,由两复数a+bi 与c+di (a ,b ,c ,d ∈R )相等的充要条件是a=c 且b=d ,可得到两个实数等式.3.注意左式中的3―y 并非是(2x ―1)+(3―y)i 的虚部,同样,在右边的y ―i 中y 也并非是实部.举一反三:【变式1】设x 、y 为实数,且5______1-1-21-3x y x y i i i+=+=,则 【答案】由51-1-21-3x y i i i +=得5(1)(12)(13)2510x y i i i +++=+ 即5x(1+i)+2y(1+2i)=5(1+3i),即(5x+2y-5)+(5x+4y-15)i=0,故52-50-154-1505x y x x y y +==⎧⎧⎨⎨+==⎩⎩,解得 ∴4x y +=【变式2】若z ∈C 且(3+z)i=1(i 为虚数单位),则z=____.【答案】设z=a+bi(a,b ∈R),则(3+z)i=-b+(3+a)i=1由复数相等的充要条件得 b=-1且a=-3,即z=-3-i.【变式3】设复数z 满足12i i z+=,则z =( ) A .2i -+ B .2i -- C .2i - D .2i + 【答案】12(12)2211i i i i z i i ++-====---,故选C. 类型四:共轭复数例4:求证:复数z 为实数的充要条件是z z =思路点拨:需要明确两个复数相等的条件以及共轭复数的概念解析:设z a bi =+(a ,b ∈R ),则z a bi =- 充分性:--0;z z a bi a bi b b b z R =⇒+=⇒=⇒=⇒∈Q 必要性:,0-z R b a bi a bi z z ∈=⇒+=⇒=Q综上,复数z 为实数的充要条件为z z =举一反三:【变式1】,x y R ∈,复数(32)5x y xi ++与复数(2)18y i -+的共轭复数相等,求x ,y. 【答案】(2)1818(2)y i y i -+=+-3218-218-(-2)(32)52-512x y x y i x y xi y x y +==⎧⎧∴=++⇒⇒⎨⎨==⎩⎩ 【变式2】若复数z 同时满足2z z i -=,z iz =(i 为虚数单位),则z=________.【答案】―1+i【变式3】已知复数z=1+i ,求实数a 、b 使22(2)az bz a z +=+.【答案】∵z=1+i ,∴2(2)(2)az bz a b a b i +=++-,22(2)(2)44(2)a z a a i +=+-++2(4)4(2)a a a i =+++∵a 、b 都是实数,∴由22(2)az bz a z +=+得224,24(2).a b a a a b a ⎧+=+⎨-=+⎩ 两式相加,整理得a 2+6a+8=0解得a 1=―2,a 2=―4,对应得b 1=-1,b 2=2.∴所求实数为a=―2,b=―1或a=-4,b=2.类型五:复数的模的概念例5、已知数z 满足z+|z|=2+8i ,求复数z.法一:设z=a+bi (a ,b ∈R),则||z =代入方程得28a bi i +=+.∴28a b ⎧⎪=⎨=⎪⎩,解得158a b =-⎧⎨=⎩∴z=-15+8i法二:原式可化为:z=2-|z|+8i ,∵|z|∈R ,∴2-|z|是z 的实部.于是||z =|z|2=68-4|z|+|z|2,∴|z|=17,代入z=2-|z|+8i得z=-15+8i.举一反三:【变式】已知z=1+i ,a ,b 为实数.(1)若234z z ω=+-,求||ω; (2)若2211z az b i z z ++=--+,求a ,b 的值. 【答案】(1)2(1)3(1)4i i ω=++--2341i i i =+--=-∴||ω=(2)∵2222(1)(1)1(1)(1)1z az b i i a b z z i i ++++++=-++-++(2)(2)()a i b a a b a i i+++==+-+ ∴(2)()1a a b i i +-+=-∴21112a a ab b +==-⎧⎧⇒⎨⎨+==⎩⎩ 类型六:复数的几何意义例6、已知复数22(23)(43)z m m m m i =--+-+(m ∈R )在复平面上对应的点为Z ,求实数m 取什么值时,点Z (1)在实轴上;(2)在虚轴上;(3)在第一象限.思路点拨:根据点Z 的位置确定复数z 实部与虚部取值情况.解析:(1)点Z 在实轴上,即复数z 为实数,由2-43031m m m m +=⇒==或∴当31m m ==或时,点Z 在实轴上.(2)点Z 在虚轴上,即复数z 为纯虚数或0,故2230m m --=-13m m ⇒==或∴当-13m m ==或时,点Z 在虚轴上.3)点Z 在第一象限,即复数z 的实部虚部均大于0由22230430m m m m ⎧-->⎪⎨-+>⎪⎩ ,解得m <―1或m >3∴当m <―1或m >3时,点Z 在第一象限.终结升华:复平面上的点与复数是一一对应的,点的坐标的特点即为复数实部、虚部的特征.举一反三:【变式1】在复平面内,复数sin 2cos2z i =+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】∵22ππ<<,∴sin 20>,cos20<,故相应的点在第四象限,选D.【变式2】已知复数2(352)(1)z m m m i =-++-(m R ∈),若z 所对应的点在第四象限,求m 的取值范围.【答案】∵2(352)(1)z m m m i =-+-- ∴⎩⎨⎧<-->+-0)1(02532m m m ,解得1m >.∴m 的取值范围为(1,)m ∈+∞.【变式3】已知z 是复数,2z i +和i-z z 均为实数,且复数2()z ai +对应的点在第一象限,求实数a 的取值范围.【答案】设z x yi =+(,x y R ∈),∴2(2)z i z x y i +==++,由题意得2y =-, 2111(2)(2)(22)(4)22555z x i x i i x x i i i -==--=++---, 由题意得4x =,∴42z i =-∵22()(124)8(2)z ai a a a i +=+-+-, 根据已知条件有212408(2)0a a a ⎧+->⎨->⎩,解得26a <<, ∴实数a 的取值范围是(2,6)a ∈.【变式4】已知复数z 对应的点在第一象限的角平分线上,求复数1z zω=+在复平面上对应的点的轨迹方程.【答案】设z=a+ai(a>0)则1111()()22 z a ai a a i z a ai a a ω=+=++=++-+令1212x aay aa⎧=+⎪⎪⎨⎪=-⎪⎩,消a得x2-y2=2(x≥.。

复数经典例题百度文库

复数经典例题百度文库

一、复数选择题1.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )A .2B .1C .0D .1-2.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-3.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.复数312i z i =-的虚部是( ) A .65i - B .35i C .35 D .65- 5.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A B C .3 D .5 6.已知复数5i 5i 2i z =+-,则z =( )A B .C .D .7.若1m i i+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1 D8.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )A .1B C .2 D .4 9.若1i i z,则2z z i ⋅-=( )A .B .4C .D .8 10.复数12i z i =+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i - 12.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( )A .68i +B .68i -C .68i --D .68i -+13.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( )A .17i -B .16i -C .16i --D .17i -- 14.复数22(1)1i i -+=-( ) A .1+i B .-1+i C .1-i D .-1-i15.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -18.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =20.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z = 21.设复数z 满足1z iz +=,则下列说法错误的是( ) A .z 为纯虚数 B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 22.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点 23.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 24.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限25.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 26.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z27.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于128.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z29.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】,它为纯虚数,则,解得.故选:D .解析:D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .2.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.3.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D.4.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z 的虚部是.故选:C .解析:C【分析】由复数除法法则计算出z 后可得其虚部.【详解】 因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C .5.D【分析】求出复数,然后由乘法法则计算.【详解】由题意,.故选:D .解析:D【分析】求出复数z ,然后由乘法法则计算z z ⋅.【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .6.B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得,所以.故选:B.解析:B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得()()()5i 2+i 5i 5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B. 7.C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】 由题1m i i+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.8.B【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为的实部为,所以可设复数,则其共轭复数为,又,所以由,可得,即,因此.故选:B.解析:B【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B. 9.A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A解析:A【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --.【详解】 因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-=故选:A10.A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果.【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限, 故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.11.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A12.D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈,则复数z 对应的向量(),OZ a b =,因为向量OZ 与(3,4)a =共线,所以43a b =, 又10z =,所以22100+=a b ,解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩, 所以68z i =--,68z i =-+,故选:D13.A【分析】根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数.【详解】由题意,设,∵是平行四边形,AC 中点和BO 中点相同,∴,即,∴点对应是,共轭复数为.解析:A【分析】根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数.【详解】由题意(2,5),(3,2)A C -,设(,)B x y ,∵OABC 是平行四边形,AC 中点和BO 中点相同,∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -. 故选:A .14.C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C15.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.20.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+,221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.21.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.22.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.23.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.24.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.25.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.26.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误;对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.27.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

2023年高考数学二轮复习第一部分专题攻略专题一小题专攻第二讲复数、平面向量

2023年高考数学二轮复习第一部分专题攻略专题一小题专攻第二讲复数、平面向量

第二讲 复数、平面向量微专题1 复数常考常用结论1.已知复数z =a +b i(a ,b ∈R ),则(1)当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数. (2)z 的共轭复数z ̅=a -b i. (3)z 的模|z |=√a 2+b 2. 2.已知i 是虚数单位,则 (1)(1±i)2=±2i ,1+i 1−i =i ,1−i1+i =-i.(2)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.保 分 题1.[2022·新高考Ⅱ卷](2+2i)(1-2i)=( ) A .-2+4i B .-2-4i C .6+2i D .6-2i 2.[2022·全国甲卷]若z =1+i ,则|i z +3z ̅|=( ) A .4√5 B .4√2 C .2√5D .2√23.[2022·全国乙卷]已知z =1-2i ,且z +a z ̅+b =0,其中a ,b 为实数,则( ) A .a =1,b =-2 B .a =-1,b =2 C .a =1,b =2 D .a =-1,b =-2提 分 题例1 (1)[2022·福建漳州一模]已知z =|√3i -1|+11+i,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限(2)[2022·山东潍坊二模](多选)若复数z 1=2+3i ,z 2=-1+i ,其中i 是虚数单位,则下列说法正确的是( )A .z1z 2∈RB.z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅C .若z 1+m (m ∈R )是纯虚数,那么m =-2D .若z 1,z 2在复平面内对应的向量分别为OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ (O 为坐标原点),则|AB⃗⃗⃗⃗⃗ |=5 听课笔记:【技法领悟】复数的代数运算的基本方法是运用运算法则,可以通过对代数式结构特征的分析,灵活运用i 的幂的性质、运算法则来优化运算过程.巩固训练11.[2022·山东泰安二模]已知复数z =3−i 1−2i,i 是虚数单位,则复数z ̅-4在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.[2022·河北保定二模](多选)已知复数z 满足方程(z 2-4)(z 2-4z +5)=0,则( )A .z 可能为纯虚数B .方程各根之和为4C .z 可能为2-iD .方程各根之积为-20微专题2 平面向量常考常用结论1.平面向量的两个定理 (1)向量共线定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.2.平面向量的坐标运算设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,θ为a 与b 的夹角. (1)a ∥b ⇔x 1y 2-x 2y 1=0.(2)a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (3)a ⊥b ⇔x 1x 2+y 1y 2=0.(4)|a |=√a ·a =√x 12+y 12.(5)cos θ=a·b|a ||b |=1212√x 1+y 1 √x 2+y 2.保 分 题1.△ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE⃗⃗⃗⃗⃗ =( ) A .13AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ B .13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ C .23AB⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ D .23AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ 2.[2022·全国乙卷]已知向量a ,b 满足|a |=1,|b |=√3,|a -2b |=3,则a ·b =( ) A .-2 B .-1 C .1 D .2 3.[2022·全国甲卷]已知向量a =(m ,3),b =(1,m +1),若a ⊥b ,则m =________.提 分 题例2 (1)[2022·河北石家庄二模]在平行四边形ABCD 中,M ,N 分别是AD ,CD 的中点,若BM⃗⃗⃗⃗⃗⃗ =a ,BN ⃗⃗⃗⃗⃗ =b ,则BD ⃗⃗⃗⃗⃗ =( ) A .34a +23b B .23a +23bC .34a +34bD .23a +34b(2)[2022·山东济宁一模]等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为( ) A .4 B .7 C .8 D .11 听课笔记:【技法领悟】求解向量数量积最值问题的两种思路1.直接利用数量积公式得出代数式,依据代数式求最值.2.建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.巩固训练21.[2022·山东济南二模]在等腰梯形ABCD 中,AB ⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,M 为BC 的中点,则AM ⃗⃗⃗⃗⃗⃗ =( )A .12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ B .34AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ C .34AB ⃗⃗⃗⃗⃗ +14AD⃗⃗⃗⃗⃗ D .12AB ⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗ 2.[2022·福建漳州二模]已知△ABC 是边长为2的正三角形,P 为线段AB 上一点(包含端点),则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为( ) A .[-14,2] B .[-14,4] C .[0,2]D .[0,4]第二讲 复数、平面向量微专题1 复数保分题1.解析:(2+2i)(1-2i)=2-4i +2i -4i 2=2-2i +4=6-2i.故选D. 答案:D2.解析:因为z =1+i ,所以z ̅=1-i ,所以i z +3z ̅=i(1+i)+3(1-i)=2-2i ,所以|i z +3z ̅|=|2-2i|=√22+(−2)2=2√2.故选D. 答案:D3.解析:由z =1-2i 可知z ̅=1+2i.由z +a z ̅+b =0,得1-2i +a (1+2i)+b =1+a +b +(2a -2)i =0.根据复数相等,得{1+a +b =0,2a −2=0,解得{a =1,b =−2.故选A.答案:A提分题[例1] 解析:(1)∵z =|√3i -1|+11+i = √(√3)2+(−1)2+1−i1−i 2=2+1−i 2=52−12i ,∴复平面内z 对应的点(52,-12)位于第四象限. (2)对于A ,z1z 2=2+3i −1+i=(2+3i )(−1−i )(−1+i )(−1−i )=1−5i 2=12−52i ,A 错误;对于B ,∵z 1·z 2=(2+3i)(-1+i)=-5-i ,∴z 1·z 2̅̅̅̅̅̅̅̅=-5+i ;又z 1̅·z 2̅=(2-3i)(-1-i)=-5+i ,∴z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅,B 正确;对于C ,∵z 1+m =2+m +3i 为纯虚数,∴m +2=0,解得:m =-2,C 正确; 对于D ,由题意得:OA ⃗⃗⃗⃗⃗ =(2,3),OB ⃗⃗⃗⃗⃗ =(-1,-1),∴AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(-3,-4),∴|AB ⃗⃗⃗⃗⃗ |=√9+16=5,D 正确.答案:(1)D (2)BCD [巩固训练1]1.解析:z =3−i1−2i =(3−i )(1+2i )(1−2i )(1+2i )=5+5i 5=1+i ,则z ̅-4=1-i -4=-3-i ,对应的点位于第三象限.故选C.答案:C2.解析:由(z 2-4)(z 2-4z +5)=0,得z 2-4=0或z 2-4z +5=0, 即z 2=4或(z -2)2=-1,解得:z =±2或z =2±i ,显然A 错误,C 正确; 各根之和为-2+2+(2+i)+(2-i)=4,B 正确; 各根之积为-2×2×(2+i)(2-i)=-20,D 正确. 答案:BCD微专题2 平面向量保分题1.解析:因为点E 是BC 边上靠近B 的三等分点,所以BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ , 所以AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ .故选C. 答案:C2.解析:将|a -2b |=3两边平方,得a 2-4a ·b +4b 2=9.因为|a |=1,|b |=√3,所以1-4a ·b +12=9,解得a ·b =1.故选C.答案:C3.解析:由a ⊥b ,可得a ·b =(m ,3)·(1,m +1)=m +3m +3=0,所以m =-34. 答案:-34提分题[例2] 解析:(1)如图所示,设AB ⃗⃗⃗⃗⃗ =m ,AD⃗⃗⃗⃗⃗ =n ,且BD ⃗⃗⃗⃗⃗ =x a +y b ,则BD ⃗⃗⃗⃗⃗ =x a +y b =x (12n -m )+y (n -12m )=(12x +y )n -(x +12y )m , 又因为BD⃗⃗⃗⃗⃗ =n -m , 所以{12x +y =1x +12y =1,解得x =23,y =23,所以BD ⃗⃗⃗⃗⃗ =23a +23b . 故选B.(2)如图,等边三角形ABC ,O 为等边三角形ABC 的外接圆的圆心,以O 为原点,AO 所在直线为y 轴,建立直角坐标系.因为AO =2,所以A (0,2),设等边三角形ABC 的边长为a ,则asin A =asin 60°=2R =4,所以a =2√3,则B (-√3,-1),C (√3,-1).又因为P 是该圆上的动点,所以设P (2cos θ,2sin θ),θ∈[0,2π), PA ⃗⃗⃗⃗ =(-2cos θ,2-2sin θ),PB⃗⃗⃗⃗⃗ =(-√3-2cos θ,-1-2sin θ),PC ⃗⃗⃗⃗ =(√3-2cos θ,-1-2sin θ),PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =-2cos θ(-√3-2cos θ)+(2-2sin θ)(-1-2sin θ)+(-√3-2cos θ)(√3-2cos θ)+(-1-2sin θ)(-1-2sin θ)=3+1+2sin θ+2√3cos θ=4+4sin (θ+π3),因为θ∈[0,2π),θ+π3∈[π3,7π3),sin (θ+π3)∈[-1,1],所以当sin (θ+π3)=1时,PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为8.故选C.答案:(1)B (2)C [巩固训练2]1.解析:取AD 中点N ,连接MN ,∵AB⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,∴AB ∥CD ,|AB |=2|CD |, 又M 是BC 中点,∴MN ∥AB ,且|MN |=12(|AB |+|CD |)=34|AB |, ∴AM ⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗ +NM ⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +34AB ⃗⃗⃗⃗⃗ ,故选B. 答案:B 2.解析:以AB 中点O 为坐标原点,OB ⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗⃗ 正方向为x ,y 轴可建立如图所示平面直角坐标系,则A (-1,0),B (1,0),C (0,√3),设P (m ,0)(-1≤m ≤1),∴PB⃗⃗⃗⃗⃗ =(1-m ,0),PC ⃗⃗⃗⃗ =(-m ,√3), ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =m 2-m =(m -12)2-14, 则当m =12时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )min =-14;当m =-1时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )max =2; ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为[-14,2].故选A. 答案:A。

河北省石家庄市第二中学复数经典例题 百度文库

河北省石家庄市第二中学复数经典例题 百度文库

一、复数选择题1.已知复数1z i =+,则21z +=( )A .2B C .4 D .5 2.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i + 3.已知复数1=-i z i ,其中i 为虚数单位,则||z =( )A .12BCD .24.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )A .2B .1C .0D .1-5.复数()1z i i =⋅+在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.i =( )A .i -B .iC i -D i 7.212i i+=-( ) A .1B .−1C .i -D .i 8.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )A .1B .0C .-1D .1+i 9.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知复数()211i z i-=+,则z =( ) A .1i -- B .1i -+C .1i +D .1i -12.若复数()41i 34i z +=+,则z =( )A .45B .35C .25D .513.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1B .-1C .iD .i - 14.122i i-=+( ) A .1B .-1C .iD .-i15.3( )A .i -B .iC .iD .i -二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 18.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 19.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1-20.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =21.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限24.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >25.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z26.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =27.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数28.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限29.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 30.下面四个命题,其中错误的命题是( ) A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】先求出,再计算出模.【详解】,,.故选:B.解析:B【分析】 先求出21z+,再计算出模. 【详解】 1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C3.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】 先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B4.D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】,它为纯虚数,则,解得.故选:D .解析:D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .5.B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数,所以在复数z 复平面上对应的点位于第二象限故选:B解析:B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限故选:B6.B【分析】由复数除法运算直接计算即可.【详解】.故选:B.解析:B【分析】由复数除法运算直接计算即可.【详解】()21i i i+==-. 故选:B. 7.D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D8.C利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知i e π=cos sin 101i ππ+=-+=-,故选C9.A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚部1>0∴复数Z 在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.10.B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计【分析】先求解出复数z ,然后根据复数的几何意义判断.【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.故选:B.【点睛】 本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.11.B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B 12.A【分析】首先化简复数,再计算求模.【详解】,.故选:A解析:A【分析】首先化简复数z ,再计算求模.【详解】()()()2242112434343434i i i z i i i i ⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==. 故选:A13.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A14.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D15.B【分析】首先,再利用复数的除法运算,计算结果. 【详解】复数.故选:B解析:B【分析】首先3i i=-,再利用复数的除法运算,计算结果.【详解】3133i ii+====.故选:B二、多选题16.AD【分析】A选项,设出复数,根据共轭复数的相关计算,即可求出结果;B选项,举出反例,根据复数模的计算公式,即可判断出结果;C选项,根据纯虚数的定义,可判断出结果;D选项,设出复数,根据题解析:AD【分析】A选项,设出复数,根据共轭复数的相关计算,即可求出结果;B选项,举出反例,根据复数模的计算公式,即可判断出结果;C选项,根据纯虚数的定义,可判断出结果;D选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A选项,设(),z a bi a b R=+∈,则其共轭复数为(),z a bi a b R=-∈,则220z z a b⋅=+=,所以0a b,即0z=;A正确;B选项,若11z=,2z i=,满足1212z z z z+=-,但12z z i=不为0;B错;C选项,若复数()z a ai a R=+∈表示纯虚数,需要实部为0,即0a=,但此时复数0z=表示实数,故C错;D选项,设(),z a bi a b R=+∈,则()2222234z a bi a abi b i=+=+-=+,所以22324a bab⎧-=⎨=⎩,解得21ab=⎧⎨=⎩或21ab=-⎧⎨=-⎩,则2z i=+或2z i=--,所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确;对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.20.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题21.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.22.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.23.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.24.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.25.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 26.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.27.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +,故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.28.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确; 2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+=⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C选项错误;22111122212222ω---====-⎛⎛⎫-+⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫--⎪⎪⎝⎭,在第三象限,故D选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.29.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD.【解析:ACD【分析】先利用题目条件可求得z,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i=+可得,11iz ii+==-,所以12z i+=-==,z虚部为1-;因为2422,2z i z=-=-,所以()5052020410102z z==-,2211z z i i i z+=-++=-=.故选:ACD.【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.30.ABC【分析】根据虚数不能比大小可判断A选项的正误;利用特殊值法可判断B选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.。

河北石家庄二中2019-2020学年第二学期高二期中考试数学试题

河北石家庄二中2019-2020学年第二学期高二期中考试数学试题

石家庄二中2019~2020学年度高二年级下学期线上期中考试数学试卷(考试时间为120分钟总分150分)一、选择题(本大题共12个小题,每题5分,其中1-10为单选题,只有一个选项符合题意;11-12为多选题,每道题都至少有两个选项符合题意)1.已知集合{}220P x x x =-≥,{}224xQ x =<≤,则P Q = ()A .[0,1)B .[1,2]C .(1,2)D .{2}2.设复数z 满足(1i)2i z -=,其中i 为虚数单位,则z =()A .B .1i-C .1i+D .i 1-3.若函数y =f (x )的定义域为{x |-3≤x ≤8,x ≠5},值域为{y |-1≤y ≤2,y ≠0},则y =f (x )的图象可能是()4.设f (x )是可导函数,且满足lim Δx →0f (2Δx +1)-f (1)2Δx=-2,则y =f (x )在点(1,f (1))处的切线的斜率为()A .-4B .4C .2D .-25.()f x =的定义域为[1,1]a a -+,0.22b =,2log 0.2c =,则()A .c a b<<B .b c a<<C .a b c<<D .b a c<<6.设函数()x f y =在R 上有意义,对给定实数N ,定义函数(),()(),,()N f x f x N f x N f x N ≤⎧=⎨>⎩则称函数()N f x 为()x f 的“孪生函数”,若给定函数2()2,1f x x N =-=-,则()N y f x =的值域为()A .[1,2]B .[-1,2]C .]1,(-∞D .(,1]-∞-7.若函数()33+1f x x ax b =-+的极大值为7,极小值为3,则()f x 的单调递减区间是()A .()0,2B .()1,1-C .()1,0-D .()2,1--8.函数f (x )=sin xx 2+1的图象大致为()9.定义在R 上的可导函数()f x ,其导函数为()f x '满足()2f x x '>恒成立,则不等式()22(2)()2f x x f x x -+<+-的解集为()A .()2,+∞B .()1,+∞C .(),2-∞D .(),1-∞10.已知函数()f x 是定义域为R 的奇函数,且满足2()log (),0f x x x =--<,若函数()y f x a =-有两个零点,其中01a <<,分别记为()1212,x x x x <,则124x x +的取值范围是()A .[)4,5B .()4,5C .5(2,]2D .5(2,211.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是()A .(3)(2019)2f f -+=-B .()f x 在区间[]4,5上是增函数C .若方程()1f x kx =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则61ii x =∑为612.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x x R =∈,()()()10,2ln g x x h x e x x =<=,下列命题为真命题的是()A.()()()F x f x g x =-在32⎛⎫⎪⎝⎭内单调递减;B.()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;C.()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]4,0-;D.()f x 和()h x 之间存在唯一的“隔离直线”y ex e =-.二、填空题(本大题共4个小题,每小题5分,共20分)13.若复数z 满足243z i i -=+,其中i 为虚数单位,则z =14.已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则=A B 15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若()()22f a f a -<,则实数a 的取值范围是________.16.设f (x )=|ln x |,若函数h (x )=f (x )-ax 在区间(0,8)上有三个零点,则实数a 的取值范围三、解答题(本大题共6小题,共70分.请写出必要的文字说明、证明过程或演算步骤)17.(10分)已知集合(){}2|log 33A x x =+≤,{}|213B x m x m =-<≤+.(1)若2m =-,求A B ;(2)若A B A = ,求实数m 的取值范围.18.(12分)已知函数()3255f x x ax x =--+(a 为常数)在点()()1,1f 处的切线斜率为4-.(1)求实数a 的值以及此切线方程;(2)求()f x 在区间[]3,3-上的最大值.19.(12分)已知函数241()(log 2)(log 2f x x x =--.(1)当[1,4]x ∈时,求函数()f x 的值域;(2)若2()log f x m x ≤对于[4,16]x ∈恒成立,求实数m 的取值范围.20.(12分)已知函数12()2x x bf x a+-+=+是定义域为R 的奇函数.(1)求,a b 的值;(2)若对任意的t R ∈,不等式22()(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.(12分)已知函数()21ln 2f x a x x =-,a R ∈.(1)讨论()f x 的单调性;(2)若函数()f x 在[]1,e 上恒小于0,求a 的取值范围.22.(12分)已知函数()2ln f x x a x =++,其中0a >.(1)若()f x 的图象与直线22y x =+有唯一交点,求a 的值;(2)若对任意(]12,0,1x x ∈,且12x x ≠,都有()()1212112020f x f x x x -<-,求a 的取值范围.。

2023年人教版高中数学第七章复数经典大题例题

2023年人教版高中数学第七章复数经典大题例题

(名师选题)2023年人教版高中数学第七章复数经典大题例题单选题1、已知复数z 满足z −z =2i ,则z 的虚部是( )A .−1B .1C .−iD .i答案:A分析:设z =a +bi (a,b ∈R ),根据z −z =2i ,求得b =−1,即可求得复数z 的虚部,得到答案. 设z =a +bi (a,b ∈R ),因为z −z =2i ,可得z −z =a −bi −(a +bi )=−2bi =2i ,则−2b =2,可得b =−1,所以复数z 的虚部是−1.故选:A小提示:关键点点睛:本题主要考查了复数的运算,共轭复数的概念,以及复数相等的应用,其中解答中熟记复数相等的条件是解答的关键,属于基础题.2、复数z =|√3+i |的虚部是( ) A .−12B .12C .−12i D .12i 答案:A分析:先根据模的定义计算,并化简得到z =12−12i ,再根据虚部的定义作出判定.∵z =|√3+i |=√(√3)+12=1−i 2=12−12i , ∴z 的虚部为−12,故选:A.3、已知复数z =2−3i ,若z̅⋅(a +i )是纯虚数,则实数a =( )A .−23B .23C .−32D .32 答案:D分析:根据共轭复数的定义及复数的乘法运算结合纯虚数的定义即可得出答案.解:z̅⋅(a +i )=(2+3i )(a +i )=2a −3+(3a +2)i 是纯虚数,则{2a −3=03a +2≠0,解得a =32. 故选:D.4、2−i1+2i =( )A .1B .−1C .iD .−i答案:D分析:根据复数除法法则进行计算.2−i 1+2i =(2−i)(1−2i)(1+2i)(1−2i)=−5i 5=−i 故选:D小提示:本题考查复数除法,考查基本分析求解能力,属基础题.5、已知z(1−2i)=i ,则下列说法正确的是( )A .复数z 的虚部为i 5B .复数z 对应的点在复平面的第二象限C .复数z 的共轭复数z =25−i 5D .|z |=15 答案:B分析:由复数除法求出复数z ,然后可判断各选项.由已知得z =i 1−2i =1(1+21)(1−2i)(1+2i)=−25+i 5,所以复数z 的虚部为15,而不是i 5,A 错误;在复平面内,复数z 对应的点为(−25,15),在第二象限,B 正确.z =−25−i 5,C 错误; |z|=√(−25)2+(15)2=√55,D 错误;故选:B . 小提示:本题考查复数的除法,考查复数的几何意义,共轭复数的概念及模的定义,属于基础题.6、下列命题正确的是( )A .复数1+i 是关于x 的方程x 2−mx +2=0的一个根,则实数m =1B .设复数z 1,z 2在复平面内对应的点分别为Z 1,Z 2,若|z 1|=|z 2|,则OZ 1⃑⃑⃑⃑⃑⃑⃑ 与OZ 2⃑⃑⃑⃑⃑⃑⃑ 重合C .若|z −1|=|z +1|,则复数z 对应的点Z 在复平面的虚轴上(包括原点)D .已知复数−1+2i ,1−i ,3−2i 在复平面内对应的点分别为A ,B ,C ,若OC⃑⃑⃑⃑⃑ =xOA ⃑⃑⃑⃑⃑ +yOB ⃑⃑⃑⃑⃑ (i 是虚数单位,O 为复平面坐标原点,x ,y ∈R ),则x +y =1答案:C分析:结合一元二次方程的复数根、复数模、复数对应点、向量运算等知识对选项逐一分析,由此确定正确选项.对于A :复数1+i 是关于x 的方程x 2−mx +2=0的一个根,所以:(1+i )2−m (1+i )+2=0,2i −m −m i +2=2−m +(2−m )i =0,2−m =0,m =2,故A 错误;对于B :设复数z 1,z 2在复平面内对应的点分别为Z 1,Z 2,若|z 1|=|z 2|,即这两个向量的模长相等,但是OZ 1⃑⃑⃑⃑⃑⃑⃑ 与OZ 2⃑⃑⃑⃑⃑⃑⃑ 不一定重合,故B 错误;对于C :若|z −1|=|z +1|,设z =x +y i (x,y ∈R ),故:√(x −1)2+y 2=√(x +1)2+y 2,整理得:x =0,故z =y i ,故C 正确;对于D :已知复数−1+2i ,1−i ,3−2i 在复平面内对应的点分别为A ,B ,C ,若OC⃑⃑⃑⃑⃑ =xOA ⃑⃑⃑⃑⃑ +yOB ⃑⃑⃑⃑⃑ ,所以(3,−2)=x (−1,2)+y (1,−1), (3,−2)=(−x,2x )+(y,−y )=(y −x,2x −y ),{y −x =32x −y =−2, 解得:x =1,y =4,故x +y =5,故D 错误.故选:C .7、已知复数z =(a −2i )(1+3i )(a ∈R)的实部与虚部的和为12,则|z −5|=( )A .3B .4C .5D .6答案:C分析:先把已知z =(a −2i )(1+3i )(a ∈R)化简,整理出复数z 的实部与虚部,接下来去求|z −5|即可解决. z =(a −2i )(1+3i )=(a +6)+(3a −2)i ,则有,a +6+3a −2=12,解得a =2,则z =8+4i ,z −5=3+4i ,故|z −5|=√32+42=5.故选:C8、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃑⃑⃑⃑⃑ |=x ,x ∈[0,4] 因为AP⃑⃑⃑⃑⃑ =BP ⃑⃑⃑⃑⃑ −BA ⃑⃑⃑⃑⃑ , 所以AP⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =BP ⃑⃑⃑⃑⃑ 2−BA ⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =|BP ⃑⃑⃑⃑⃑ |2−2|BP ⃑⃑⃑⃑⃑ |=x 2−2x =(x −1)2−1≥−1. 故选:D9、复数z=1a−1+(a2−1)i是实数,则实数a的值为()A.1或-1B.1C.-1D.0或-1答案:C分析:利用复数是实数的充要条件,列式计算作答.因复数z=1a−1+(a2−1)i是实数,则{a−1≠0a2−1=0,解得a=−1,所以实数a的值为-1.故选:C10、如果复数z满足|z+1−i|=2,那么|z−2+i|的最大值是()A.√13+2B.2+√3C.√13+√2D.√13+4答案:A分析:复数z满足|z+1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z−2+i|表示圆上的点与点M(2,−1)的距离,求出|CM|即可得出.复数z满足|z+1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z−2+i|表示圆上的点与点M(2,−1)的距离.∵|CM|=√32+22=√13.∴|z−2+i|的最大值是√13+2.故选:A.小提示:本题考查复数的几何意义、圆的方程,求解时注意方程|z+1−i|=2表示的圆的半径为2,而不是√2.11、设m∈R,则“m=2”是“复数z=(m+2i)(1+i)为纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:C分析:求出z=(m+2i)(1+i)为纯虚数时m的值,与m=2比较,判断出结果z=(m+2i)(1+i)=m−2+(m+2)i,复数z=(m+2i)(1+i)为纯虚数,则m−2=0,解得:m=2,所以则“m=2”是“复数z=(m+2i)(1+i)为纯虚数”的充要条件故选:C12、已知i为虚数单位,则i+i2+i3+⋅⋅⋅+i2021=()A.i B.−i C.1D.-1答案:A分析:根据虚数的运算性质,得到i4n+i4n+1+i4n+2+i4n+3=0,得到i+i2+i3+⋅⋅⋅+i2021=i2021,即可求解. 根据虚数的性质知i4n+i4n+1+i4n+2+i4n+3=1+i−1−i=0,所以i+i2+i3+⋅⋅⋅+i2021=505×0+i2021=i.故选:A.双空题13、已知a,b∈R,i是虚数单位.若z=(a−2i)(1+bi)为实数,则ab=___________,|z|的最小值为___________.答案: 2 4分析:由题设条件计算出复数z,再由复数是实数的条件即可得ab值;计算出|z|,配方即可得解.a,b∈R,则z=(a+2b)+(ab−2)i,而z∈R,所以ab−2=0,即ab=2;z=a+2b,|z|=|a+2b|=√(a+2b)2=√(a−2b)2+8ab=√(a−2b)2+16≥4,当且仅当a=2b,即a=2,b=1时取“=”,所以|z|的最小值为4.所以答案是:2;414、已知x,y∈R,i是虚数单位,x−i+y+x i=3+y i,则x=_______;y=______.答案: 2 1 .分析:利用复数相等的知识列方程组,解方程组求得x,y 的值.依题意x +y +(x −1)i =3+y i ,所以{x +y =3x −1=y⇒{x =2y =1 . 所以答案是:2;115、复数z =2+i (i 为虚数单位),则复数z̅对应的点在第_______象限,|z|=_______.答案: 四 √5分析:由复数模的概念可求|z|,再由共轭复数的概念及复数的坐标表示可得复数z̅对应的点所在的象限. 因为z =2+i ,所以|z|=√22+1=√5,所以z̅=2−i ,在复平面内对应的点的坐标为(2,−1),在第四象限.所以答案是:四;√5.16、已知复数z =lg (m 2−2m )+(m 2+2m −3)i 若复数z 是实数,则实数m =________;若复数z 对应的点位于复平面的第二象限,则实数的取值范围为________.答案: −3 2<m <1+√2解析:根据复数的定义和复数的几何意义解答.z 为实数,则m 2+2m −3=0,解得m =1或−3,又m 2−2m >0,所以m =−3.z 对应点在第二象限,则{lg(m 2−2m)<0m 2+2m −3>0,解得2<m <1+√2. 所以答案是:−3;2<m <1+√2.小提示:易错点睛:本题在利用复数的定义求出m 的值时:m 2+2m −3=0,必须注意实部的表示法,它是由对数给出的,因此求出的结论必须使对数式有意义,即通常所说的定义域.否则易出错.17、瑞士数学家欧拉于1777年在《微分公式》一书中,第一次用i 来表示-1的平方根,首创了用符号i 作为虚数的单位.若复数z =5−i 1+i (i 为虚数单位),则复数z 的虚部为________;|z |=_____.答案: −3 √13分析:利用复数的除法可计算z ,从而可求其虚部和模.z =5−i 1+i =(5−i )(1−i )(1+i )(1−i )=4−6i 2=2−3i ,故z 的虚部为−3,模为√4+9=13,故分别填−3,√13.小提示:本题考查复数的概念、复数的除法,属于基础题.解答题18、计算:(1)(1−√3i )6−(1−√3i )152i (1−i )12(12+12i )2;(2)i 2002+(√2+√2i )8−(√21−i )50+√3+1+2√3i (1−√3i)8. 答案:(1)513;(2)247+8√3i . 分析:(1)借助(12−√32i )3=−1,(1−i )2=−2i 以及复数的四则运算,即得解;(2)借助(1+i )2=2i ,(1−i )2=−2i ,i 4=1,(12−√32i )3=−1以及复数的四则运算,即得解. (1)由于(12−√32i )3=(12−√32i )2×(12−√32i )=(−12−√32i )×(12−√32i )=−1(1−i )2=−2i故(1−√3i )6−(1−√3i )152i (1−i )12(12+12i )2=26×(−1)2−215×(−1)52i ×(−2i )6×12i =26+21526=1+29=513(2)由于(1+i )2=2i ,(1−i )2=−2i ,i 4=1,(12−√32i )3=−1 故i 2002+(√2+√2i )8−(√21−i )50+√3+1+2√3i +(1−√3i )8 =i 500×4+2+24(1+i )8−225(1−i )50+(−2√3+i )(1−2√3i )(1+2√3i )(1−2√3i )28(1+i )828(12−√32i )8 =−1+24(2i )4−225(−2i )25+i 28(2i )428×(−1)2×(12−√32i )2=−1+24×2−4i +i +24(−12+√32i )=247+8√3i 19、计算:(1)(13+12i)+(2−i)−(43−32i);(2)已知z1=2+3i,z2=−1+2i,求z1+z2,z1−z2.答案:(1)1+i(2)1+5i,3+i分析:(1)根据复数的加减法法则,实部与实部对应加减,虚部与虚部对应加减,即可运算得到结果;(2)根据复数的加法、减法法则运算即可.(1)(13+12i)+(2−i)−(43−32i)=(13+2−43)+(12−1+32)i=1+i;(2)∵z1=2+3i,z2=−1+2i,∴z1+z2=2+3i+(−1+2i)=1+5i,z1−z2=2+3i−(−1+2i)=3+i 20、化简:(1)16(cosπ4+i sinπ4)⋅2(cosπ12+i sinπ12);(2)8(cos240°+i sin240°)÷2(cos210°−i sin210°).答案:(1)8+8√3i;(2)4i.分析:(1)利用复数三角形式的乘法法则直接进行计算作答.(2)利用复数三角形式的除法法则直接进行计算作答.(1)8(cosπ4+i sinπ4)⋅2(cosπ12+i sinπ12)=16(cosπ3+i sinπ3)=16(12+√32i)=8+8√3i.(2)8(cos240°+i sin240°)÷2(cos150°−i sin150°)=4(cos240°+i sin240°) cos(−210°)+i sin(−210°)=4(cos450°+i sin450°)=4(cos90°+i sin90°)=4i.。

高中数学第七章复数典型例题(带答案)

高中数学第七章复数典型例题(带答案)

高中数学第七章复数典型例题单选题1、已知复数z 1﹑z 2满足|z 1−z 2|=r (r >0),复数ωi (1≤i ≤n,n ∈N ∗)满足|ωi −z 1|=r 或者|ωi −z 2|=r ,且|ωi −ωj |≥r 对任意1≤i <j ≤n 成立,则正整数n 的最大值为( )A .6B .8C .10D .12答案:C解析:用向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 表示z 1⃗⃗⃗ ,z 2⃗⃗⃗ ,根据题意,可得|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |=r ,因为|ωi −z 1|=r 或者|ωi −z 2|=r ,根据其几何意义可得ωi 的终点的轨迹,且满足条件的终点个数即为n ,数形结合,即可得答案.用向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 表示z 1⃗⃗⃗ ,z 2⃗⃗⃗ ,因为|z 1−z 2|=r (r >0),所以|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ |=|BA⃗⃗⃗⃗⃗ |=r , 又ωi (1≤i ≤n,n ∈N ∗)满足|ωi −z 1|=r 或者|ωi −z 2|=r ,则ωi 可表示以O 为起点,终点在以A 为圆心,半径为r 的圆上的向量,或终点在以B 为圆心,半径为r 的圆上的向量,则终点可能的个数即为n ,因为|ωi −ωj |≥r ,所以在同一个圆上的两个点,形成的最小圆心角为60°,如图所示,则最多有10个可能的终点,即n =10.故选:C小提示:解题的关键是根据所给条件的几何意义,得到ωi 的终点轨迹,根据条件,数形结合,即可得答案,考查分析理解,数形结合的能力,属中档题.2、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D3、复平面中的下列哪个向量对应的复数是纯虚数( )A .OA ⃗⃗⃗⃗⃗ =(1,2)B .OB ⃗⃗⃗⃗⃗ =(-3,0)C .OC ⃗⃗⃗⃗⃗ =(0,23)D .OD ⃗⃗⃗⃗⃗⃗ =(-1,-2) 答案:C分析:结合纯虚数概念判断即可向量OC ⃗⃗⃗⃗⃗ =(0,23)对应的复数为23i ,是纯虚数. 故选:C4、已知a,b ∈R ,a 1+i +b 1−i =1,则a +2b =( )A .3B .√3C .√2D .1答案:A分析:等式两边同乘(1+i)(1−i),整理化简后利用复数相等的条件可求得a +2b 的值因为a 1+i +b 1−i =1 ,所以a(1−i)+b(1+i)=(1+i)(1−i)=1−i 2=2即(a +b)+(b −a)i =2所以{a +b =2b −a =0 解得{a =1b =1 ,所以a +2b =3故选:A5、设π<θ<5π4,则复数cos2θ+isin2θcosθ−isinθ的辐角主值为( )A .2π−3θB .3θ−2πC .3θD .3θ−π答案:B分析:根据复数三角形式下的乘除运算及辐角的定义即可求解.解:cos2θ+isin2θcosθ−isinθ=cos2θ+isin2θcos(−θ)+isin(−θ)=cos3θ+isin3θ,因为π<θ<5π4,所以3π<3θ<15π4,所以π<3θ−2π<7π4,所以该复数的辐角主值为3θ−2π.故选:B.6、复数z =−2+i 2049的共轭复数z =( )A .12+i 2B .12−i 2C .−2−iD .−2+i答案:C分析:先由复数的运算可得z =−2+i ,然后求其共轭复数即可.解:因为z =−2+i 2049=−2+(i 4)512⋅i =−2+i ,则z =−2−i ,故选:C.7、设(1+i)x =1+yi ,其中i 为虚数单位,x,y 是实数,则|x +yi |=()A .1B .√2C .√3D .2答案:B分析:先利用复数相等求得x ,y ,再利用复数的模公式求解.因为(1+i)x =1+yi ,所以{x =1y =x ,解得{x =1y =1,所以|x+yi|=√x2+y2=√2.故选:B.8、已知i是虚数单位,则复数z=2−i20202+i2021对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:D分析:先化简i2020,i2021,再利用复数的除法化简得解.z=2−i20202+i2021=12+i=2−i(2+i)(2−i)=2−i5.所以复数对应的点(25,−15)在第四象限,故选:D小提示:名师点评复数z=x+yi(x,y∈R)对应的点为(x,y),点(x,y)在第几象限,复数对应的点就在第几象限.多选题9、下列说法中正确的有()A.若a∈R,则(a+1)i是纯虚数B.若x2−1+(x2+3x+2)i是纯虚数,则实数x=±1C.若a≤0,则z=a2−b2+(a+|a|)i(a,b∈R)为实数D.若a,b∈R,且a>b,则bi2>ai2答案:CD分析:根据复数的基本概念与分类,逐项判定,即可求解.对于A中,当a=−1,可得的(a+1)i=0不是纯虚数,故A错误;对于B中,当x=−1,可得x2+3x+2=0,此时x2−1+(x2+3x+2)i=0不是纯虚数,所以B错误;对于C中,当a≤0时,可得|a|+a=0,所以z=a2−b2为实数,所以C正确;对于D中,由i2=−1,且a>b,所以bi2>ai2,所以D正确.故选:CD10、设复数z=1a+2i(a∈R),当a变化时,下列结论正确的是()A .|z |=|z |恒成立B .z 可能是纯虚数C .z +1z 可能是实数D .|z |的最大值为12 答案:ABD分析:首先根据题意得到z =a a 2+4−2a 2+4i ,再结合复数的定义和运算性质依次判断选项即可.z =1a+2i =a−2i (a+2i )(a−2i )=a a 2+4−2a 2+4i , 对选项A ,z =a a 2+4+2a 2+4i ,|z |=|z |=√a 2(a 2+4)2+4(a 2+4)2,故A 正确.对选项B ,z =aa 2+4−2a 2+4i , 当a =0时,z =−12i 为纯虚数,故B 正确.对选项C ,z +1z =a a 2+4−2a 2+4i +a +2i =(a a 2+4+a)+(2−2a 2+4)i令2−2a 2+4=0,即a 2+3=0无解,故C 错误.对选项D ,|z |2=a 2(a 2+4)2+4(a 2+4)2=1a 2+4≤14,当且仅当a =0时取等号.所以|z |的最大值为12,故D 正确.故选:ABD11、下列命题中正确的有( )A .若复数z 满足1z ∈R ,则z ∈R ;B .若复数z 满足z 2∈R ,则z ∈R ;C .若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;D .若复数z ∈R ,则z ∈R .答案:AD分析:根据复数的运算性质,即可判定A 正确;取z =i ,可判定B 不正确;取z 1=1+i,z 2=2−2i ,可判断C 不正确;根据复数的运算法则,可判定D 正确.对于A 中,设复数z =a +bi,(a,b ∈R),可得1z=a−bi (a+bi )(a−bi )=a a 2+b 2−b a 2+b 2i , 因为1z ∈R ,可得b =0,所以z =a ∈R ,所以A 正确;对于B中,取z=i,可得z2=−1,所以B不正确;对于C中,例如:z1=1+i,z2=2−2i,则z1z2=(1+i)×2(1−i)=4∈R,此时z1≠z2,所以C不正确;对于D中,设z=a+bi,(a,b∈R),由z∈R,可得b=0,即z=a,可得z=a∈R,所以D正确.故选:AD12、已知复数z1=6a+2+(a2−2)i,z2=1−ai(a∈R),若z1+z2为实数,则()A.a=1B.z1z1=√5C.z26为纯虚数D.z1z2对应的点位于第二象限答案:AC分析:先求出z1+z2,再由其为实数可求出a的值,然后逐个分析判断即可因为z1=6a+2+(a2−2)i,z2=1−ai(a∈R),所以z1+z2=6a+2+(a2−2)i+1+ai=a+8a+2+(a2+a−2)i,因为z1+z2为实数,所以{a 2+a−2=0a+2≠0,解得a=1,所以A正确,z1=2−i,z2=1−i,所以z1z1=(2−i)(2+i)=5,所以B错误,z26=(1−i)6=[(1−i)2]3=(−2i)3=8i为纯虚数,所以C正确,z1 z2=2−i1−i=(2−i)(1+i)(1−i)(1+i)=2+2i−i−i22=32+12i,其在复平面内对应的点在第一象限,所以D错误,故选:AC13、若z−z=−14i,|z|=5√2,则z可能为()A.1−7i B.1+7i C.−1−7i D.−1+7i答案:AC分析:待定系数法设复数,列方程组后求解设z=a+bi(a,b∈R),则z=a−bi,由题意可得{z−z=2bi=−14i, |z|=√a2+b2=5√2,解得{b =−7,a =1或{b =−7,a =−1,所以z =1−7i 或−1−7i . 故选:AC填空题14、已知|z −1−i |=1,则|z +i |的取值范围是_____________;答案:[√5−1,√5+1]分析:利用复数的几何意义求解,|z −1−i |=1表示复平面内到点(1,1)距离为1的所有复数对应的点,|z +i |表示复平面内到点(0,−1)的距离,结合两点间距离公式可求范围.因为在复平面内,|z −1−i |=1表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;|z +i |表示复平面内的点到点(0,−1)的距离,最小值为√(0−1)2+(−1−1)2−1=√5−1,最大值为√(0−1)2+(−1−1)2+1=√5+1,所以|z +i |的取值范围是[√5−1,√5+1].所以答案是:[√5−1,√5+1].小提示:名师点评本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z =x +yi ,则|z −a −bi |表示复平面内点(x,y)与点(a,b)之间的距离,|z −a −bi |=r 表示以(a,b)为圆心,以r 为半径的圆上的点.15、复数z 1,z 2满足:|z 1|=3,|z 2|=4,|z 1+z 2|=5,则|z 1−z 2|=______.答案:5分析:根据给定条件,结合复数模公式计算作答.设复数z 1=a +bi,z 2=c +di,a,b,c,d ∈R ,z 1+z 2=(a +c)+(b +d)i ,z 1−z 2=(a −c)+(b −d)i , 由|z 1|=3得a 2+b 2=9,由|z 2|=4得c 2+d 2=16,由|z 1+z 2|=5得(a +c)2+(b +d)2=25,因此ac +bd =0,所以|z 1−z 2|=√(a −c)2+(b −d)2=√a 2+b 2−2(ac +bd)+c 2+d 2=5所以答案是:516、已知a 为实数,若复数z =(a 2−3a −4)+(a −4)i 为纯虚数,则a =________.答案:−1分析:根据纯虚数的定义列出方程,解得,即可得出答案.解:若复数z =(a 2−3a −4)+(a −4)i 是纯虚数,则{a 2−3a −4=0a −4≠0,解得a =−1. 所以答案是:−1.解答题17、已知复数z 1=2−5i ,z 2=1+(2cosθ)i .(1)求z 1⋅z 1;(2)复数z 1,z 2对应的向量分别是OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,其中O 为坐标原点,当θ=π3时,求OZ 1⃗⃗⃗⃗⃗⃗⃗ ⋅OZ 2⃗⃗⃗⃗⃗⃗⃗ 的值.答案:(1)29;(2)-3.分析:(1)求出z 1,再利用复数乘法运算计算作答.(2)根据给定条件,求出OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ 的坐标,再利用向量数量积的坐标表示计算作答.(1)因复数z 1=2−5i ,则z 1=2+5i ,所以z 1⋅z 1=(2−5i)(2+5i)=29.(2)依题意,OZ 1⃗⃗⃗⃗⃗⃗⃗ =(2,−5),当θ=π3时,OZ 2⃗⃗⃗⃗⃗⃗⃗ =(1,2cosθ)=(1,1), 所以OZ 1⃗⃗⃗⃗⃗⃗⃗ ⋅OZ 2⃗⃗⃗⃗⃗⃗⃗ =2×1+(−5)×1=−3.18、对任意的复数z =x +yi(x 、y ∈R),定义运算P (z )=x 2[cos (yπ)+isin (yπ)].则直线l :x −y −9=0上是否存在整点(x,y )(x 、y 均为整数的点),使得复数z =x +yi(x 、y ∈R)经运算P 后,P (z )对应的点也在直线l 上?若存在,求出所有的点;若不存在,请说明理由.答案:存在满足条件的整点(3,−6)、(−3,−12).分析:写出P(z)对应点坐标为(x 2cos(yπ),x 2sin(yπ)),根据所给的条件得到关系式,根据三角函数的值讨论出对应的复数.解:P(z)对应点坐标为(x 2cos(yπ),x 2sin(yπ))由题意{y=x−9x2sinyπ=x2cosyπ−9x,y∈Z,得x2sin(xπ−9π)=x2cos(xπ−9π)−9∴x2sinxπ=x2cosxπ+9,∵x∈Z,∴①当x=2k,k∈Z时,得x2+9=0不成立;②当x=2k+1,k∈Z时,得x2−9=0,∴x=±3成立,此时{x=3y=−6或{x=−3y=−12,故存在满足条件的整点(3,−6)、(−3,−12).。

河北省石家庄二中2019-2020学年高二数学下学期期中模拟试题【含解析】

河北省石家庄二中2019-2020学年高二数学下学期期中模拟试题【含解析】

河北省石家庄二中2019-2020学年高二数学下学期期中模拟试题(含解析)一、单项选择题(每题5分,共50分)1.设复数(i 为虚数单位),z 的共轭复数为则在复平面内对应的点的坐标为(21z i =-z iz )A. (-11) B. (1,1) C. (1,-1) D. (-1,-1)【答案】B 【解析】【分析】化简复数为的形式,即可得到复数对应当点的坐标.a bi +iz【详解】复数,()()()2122211112i iz i i i i ++====+-+-所以,()11iz i i i=-=+在复平面内对应当点的坐标为.iz ()1,1故选:B .【点睛】本题考查复数代数形式的混合运算,复数对应的点的几何意义,属于容易题.2.如图所示的韦恩图中,A 、B 是非空集合,定义表示阴影部分的集合,若x ,y ∈R ,*A B ,则A *B 为(){|{|3,0}x A x y B y y x ====>A. B. 或{|04}x x <≤{|01x x ≤≤4}x >C. 或 D. 或{|01x x ≤≤2}x ≥{|01x x ≤≤2}x >【答案】B 【解析】【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将除去后剩余的元A B ⋃A B ⋂素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案.【详解】依据定义,就是指将除去后剩余的元素所构成的集合;*A B A B ⋃A B ⋂对于集合A ,求的是函数y =解得:;{|04}A x x =≤≤对于集合B ,求的是函数的值域,解得;3(0)x y x =>{}1B y y =依据定义,借助数轴得:或.*{|01A B x x =≤≤4}x >故选:B .【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.3.下列对应是从集合A 到B 的函数的是( )A. A =N ,B =N ,对应关系f :“平方根”B. A =R ,B ={-1,1},对应关系1,2:0,2x f x y x ≥⎧→=⎨<⎩C. A =R ,B =Q ,对应关系 D. A =N ,B =N ,对应关系1:3f x y x →=-:2f x y x →=-【答案】D 【解析】【分析】根据函数的定义,若A 中任一元素在B 中都有唯一元素对应,则该对应是函数;进而得到答案.【详解】对于选项A ,,,对应关系f :“平方根”,则A 中正元素在B 中都有A N =B N =两个元素对应,不是函数;A ∴对于选项B ,,B ={-1,1},对应关系,则A 中元素在B 中A R =1,20,2x f x y x ≥⎧→=⎨<⎩:2x <没有元素对应,B 不是函数;对于选项C ,,,对应关系,则A 中元素3在B 中没有元素A R =B Q =13f x y x →=-:对应,C 不是函数;对于选项D ,,,对应关系f :,则A 中任一元素在B 中都有A N =B N =2x y x →=-唯一元素对应,D 是函数;故选:D .【点睛】本题主要考查了函数的定义,理解函数概念是解题的关键,属于容易题.4.已知函数f (x )在x =x 0处的导数为12,则( )000()()lim3x f x x f x x ∆→-∆-=∆A. -4 B. 4C. -36D. 36【答案】A 【解析】【分析】根据题意,由极限的性质可得则,结合导000000()()()()1lim=lim33x x f x x f x f x f x x x x ∆→∆→-∆---∆-∆∆数的定义计算可得答案.【详解】根据题意,函数在处的导数为12,()f x 0x x =则;000000()()()()112lim=lim 4333x x f x x f x f x f x x x x ∆→∆→-∆---∆-=-=-∆∆故选:A .【点睛】本题考查极限的计算以及导数的定义,属于容易题.5.函数f (2x -1)的定义域是( )()f x =A. B. C. D. 25[,)3611[,)33-12[,]332[,)3+∞【答案】A 【解析】【分析】求出函数的定义域,用替换,求出的定义域即可.()f x 21x -x (21)f x -【详解】由,()f x =12log (23)0230x x -≥⎧⎪⎨⎪->⎩即,0231x <-≤解得,1233x ≤<即的定义域为,()f x 12{|}33x x ≤<令,122133x ≤-<解得,2536x ≤<所以的定义域为,(21)f x -25[,36故选:A【点睛】本题主要考查函数定义域的求解,根据复合函数定义域之间的关系解不等式是解决本题的关键,是中档题.6.已知函数的值域是全体实数R ,则实数m 的取值范围是( )()lg(943)x xf x m m =⋅+⋅+A. m ≤0 B. -2≤m ≤2 C. m =0 D. m >0【答案】C 【解析】【分析】由的值域是R ,可知,取遍所有正数,结合二次()lg(943)x xf x m m =⋅+⋅+943x x m m ⋅+⋅+函数的性质进行求解.【详解】由的值域是R ,可知,取遍所有正数,()lg(943)x x f x m m =⋅+⋅+943x xy m m =⋅+⋅+时,能取遍所有的正数,符合题意,0m =①304x y =⋅>当时,时,显然不能取遍所有正数,不符合题意,②0m ≠0m <2(3)43x xy m m =+⋅+当时,令,则的对称轴为,且时,0m >3x t =(0)t >24y mt t m =++20t m =-<0t =,故函数,0y m =>24y mt t m m =++>即,min y m >所以不能取遍所有的正数,不符合题意,943x xy m m =⋅+⋅+综上,0m =故选:C .【点睛】本题主要考查了对数函数的值域,二次函数的值域,分类讨论的思想,换元法,属于中档题.7.已知函数f (x )=x (lnx -ax )没有极值点,则实数a 的取值范围是( )A.B. a ≤0C.D.12a ≥12a >102a <<【答案】A 【解析】【分析】先求导函数,函数没有极值点,等价于没有变号()()f x x lnx ax =-()'21f x lnx ax =-+零点,等价于函数与的图象不相交,在同一个坐标系中作出它们的图y lnx =21y ax =-象.由图可求得实数a 的取值范围.【详解】函数,()()f x x lnx ax =-(0)x >则,()1'21f x lnx ax x a lnx ax x ⎛⎫=-+-=-+ ⎪⎝⎭令得,()'210f x lnx ax =-+=21lnx ax =-函数没有极值点,()()f x x lnx ax =-等价于没有变号零点,()'21f x lnx ax =-+等价于函数与的图象不相交或相切,y lnx =21y ax =-在同一个坐标系中作出它们的图象,当时,直线与的图象相切,12a =21y ax =-y lnx =由图可知,当时,与的图象不相交或相切.12a≤y lnx =21y ax =-则实数a 的取值范围是12a ≥.故选:A .【点睛】本题主要考查函数的导数,函数的极值,函数的零点,数形结合的思想,属于中档题.8.偶函数f (x )在(-∞,0)∪(0,+∞)上存在导数,当x <0时,且f (1)()'f x 2'()(),f x f x x <-=0,则使得成立的x 的取值范围为( )2()0x f x <A. (-∞,-1)∪(1,+∞) B. (-∞,-1)∪(0,1)C. (-1,0)∪(1,+∞) D. (-1,0)∪(0,1)【答案】D 【解析】【分析】构造函数,根据,可知时,,利用单调性及2()()g x x f x =2'()()f x f x x <-0x <()0g x '<奇偶性即可求解.【详解】当x <0时,可得:,2'()()f x f x x <-2()()0f x xf x '+>令,2()()g x x f x =则,2()2()()(2()())g x xf x x f x x f x xf x '''=+=+所以当x <0时,,()0g x '<即在上单调递减,2()()g x x f x =(,0)-∞又在(-∞,0)∪(0,+∞)上是偶函数,()f x 所以在(-∞,0)∪(0,+∞)上是偶函数2()()g x x f x =所以,(1)(1)(1=0g g f -==)所以当或时,,10x -<<01x <<()0<g x 故选:D【点睛】本题主要考查了利用导数研究函数的单调性,函数奇偶性的应用,解不等式,属于中档题.9.已知f (x )为奇函数,当x ∈[0,1]时,当,若1()12||,2f x x =--1,1],()1(x x f x e --∈-∞-=-关于x 的不等式f (x +m )>f (x )恒成立,则实数m 的取值范围为( )A. (-1,0)∪(0,+∞)B. 12,2ln ⎛⎫++∞ ⎪⎝⎭C. D. (2,+∞)11(ln 2,1)(2,22)ln ---⋃++∞【答案】B 【解析】【分析】根据函数的奇偶性求出函数的解析式,然后作出函数的图象,对进行分类讨论进行()f x m 求解即可.【详解】若,,则,,[1x ∈-0][0x -∈1]则,11()12||12||22f x x x -=---=-+是奇函数,()f x ,1()12||()2f x x f x ∴-=-+=-则,,,1()2||12f x x =+-[1x ∈-0]若,,则,,[1x ∈)+∞(x -∈-∞1]-则,1()1()xf x ef x -+-=-=-则,,,1()1xf x e -+=-[1x ∈)+∞作出函数的图象如图:()fx 当时,的图象向左平移,如图,0m >()f x m+当的图象与在相切时,,此时对应直线斜率,0()f x m +()f x 12x ≤10()x mf x m e -+'+=2k =由,即,得.12x m e-+=012x m ln -+=021x ln m =+-此时,00211ln 211211ln m m y e e +--+=-=-=-=又切点在直线上,2y x =所以切点坐标为,1(,1)2即,01212x ln m =+-=解得,01ln 22m =+所以当时,不等式恒成立.01ln 22m m ≥=+()()f x m f x +>当时,的图象向右平移,如图,0m <()f x m +显然不等式不恒成立.()()f x m f x +>综上的取值范围是,m 12,2ln ⎛⎫++∞ ⎪⎝⎭故选:.B 【点睛】本题主要考查函数奇偶性和单调性的应用,求出函数的解析式以及利用数形结合是解决本题的关键,属于难题.10.已知函数,若函数22log (2),20()2,0x x f x x x x +-<≤⎧=⎨->⎩恰有7个不同零点,则实数a 的取值范围是( 2()[())](1)(())()g x f x a f f x a a =-+⋅+∈R )A. (0,1) B. [-1,1]C. (-1,1)D. (-1,0)∪(0,1)【答案】D 【解析】【分析】利用十字相乘法法进行因式分解,然后利用换元法,作出的图象,利用数形()t f x =()f x 结合判断根的个数即可,【详解】由()()()()()()2[]10g x f f x a f f x a =-+⋅+=得:()()()(1[0,f f x f f x a ⎡⎤⎤--=⎦⎣⎦则或,()()1f f x =()()f f x a=作出的图象如图,()f x则若,则或()1f x =0x =1x =+设,由得,()t f x =()()1f f x =()1f t =此时或,0t =1t =+当时,,有两个根,当时,,有1个根,0t =()0f x t ==1t =+()1f x t ==则必须有,有4个根,()()f f x a=()1a ≠设,由得,()t f x =()()f f x a=()f t a=若,由得,或,有2个根,有1个根,0a =()0f t a ==1t =-2t =()1f x =-()2f x =此时有3个根,不满足条件.若,由得有1个根,不满足条件.1a >()f t a=1t >()f x t =若,由得,或01a <<()f t a=110t -<<221t <<+当时,,有3个根,110t -<<()1f x t =当时,,有1个根,221t <<+()2f x t =此时有个根,满足条件.314+=若,由得或,1a =-()f t a=132t =-21t =有1个根,有2个根,3()2f x =-()1f x =此时有3个根,不满足条件.若,由得,或或10a -<<()f t a =1312t -<<-201t <<312t <<当时,有1个根,1312t -<<-()1f x t =当时,有2个根, 201t <<2()f x t =当时,有1个根,312t <<()3f x t =此时有个根,满足条件.1214++=若,由得,1a <-()f t a=322t -<<-有1个根,不满足题意.()f x t =综上,a 的取值范围是.(1,0)(0,1)- 故选:D .【点睛】本题主要考查函数与方程的应用,利用换元法转化为两个函数的图象交点个数,结合数形结合以及利用分类讨论的思想是解决本题的关键.综合性较强,难度较大.二、多项选择题(每题5分,选对部分3分,共10分)11.已知定义在R 上的偶函数f (x ),满足f (x +4)=-f (x )+f (2),且在区间[0,4]上是增函数,下列命题中正确的是( )A. 函数f (x )的一个周期为4B. 直线x =-4是函数f (x )图象的一条对称轴C. 函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减D. 函数f (x )在[0,100]内有25个零点【答案】ABD 【解析】【分析】根据函数的奇偶性和条件,得到,即函数是周期为4的周期函数,结合的周期性,()20f =奇偶性以及对称性的性质分别进行判断即可.【详解】偶函数,满足,()f x ()()()42f x f x f +=+令得,∴2x =-()()()2422f f f -+=-+即,得,()()()222f f f =+()20f =则,()()4f x f x +=即函数是周期为4的周期函数,()f x 故A 正确;是偶函数,()f x 图象关于y 轴即对称,函数的周期是4,∴0x =是函数图象的一条对称轴,4x ∴=-()f x 故B 正确;在区间上是增函数,[]0,2在区间上是减函数,∴[]2,0-则在区间上是减函数,[]6,4--故C 错误;,在区间上是减函数,()20f = ()f x []2,0-在区间上是减函数,()f x ∴[]2,4即函数在一个周期内只有一个零点,[]0,4则函数在内有25个零点,故D 正确.()f x []0,100故选:ABD .【点睛】本题主要考查函数的奇偶性,周期性,对称性以及单调性的应用,根据条件求出函数的周期是解决本题的关键,为中档题.12.已知函数的图象与直线y =m 分别交于A 、B 两点,则( )1(),()122x x f x e g x n ==+A. f (x )图像上任一点与曲线g (x )上任一点连线线段的最小值为2+ln 2B. ∃m 使得曲线g (x )在B 处的切线平行于曲线f (x )在A 处的切线C. 函数f (x )-g (x )+m 不存在零点D. ∃m 使得曲线g (x )在点B 处的切线也是曲线f (x )的切线【答案】BCD 【解析】【分析】利用特值法,在f (x )与g (x )取两点求距离,即可判断出选项的正误;解方程A ,可判断出选项的正误;利用导数判断函数的单调12()(2)m f lnm g e-''=B ()()y f x g x m =-+性,结合极值的符号可判断出选项的正误;设切线与曲线相切于点,C ()y g x =(C n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出选项的())g n D 正误.进而得出结论.【详解】在函数上分别取点,则,而1(),()122x x f x e g x n ==+1(0,1),(2,2PQ ||PQ =(注),故选项不正确;2ln 2<+ln 20.7≈A ,,则,,()xf x e =Q 1()22x g x ln =+()xf x e '=1()g x x '=曲线在点处的切线斜率为,()y f x =A ()f lnm m '=曲线在点处的切线斜率为,()y g x =B 12121(2)2m m g ee--'=令,即,即,则满足方程,12()(2)m f lnm g e-''=1212m m e-=1221m me-=12m =1221m me -=使得曲线在处的切线平行于曲线在处的切线,选项正确;m ∴∃()y f x =A ()y g x =B B 构造函数,可得,1()()()22x x F x f x g x m e ln m =-+=-+-1()x F x e x '=-函数在上为增函数,由于,(1),1()x F x e x '=-(0,)+∞1(20F e '=-<F '10e =->则存在,使得,可得,1(,1)2t ∈1()0t F t e t '=-=t lnt =-当时,;当时,.0x t <<()0F x '<x t >()0F x '>∴11()()2222t t min t F x F t e ln m e lnt m ln ==-+-=-++-,11132220222t m ln m ln ln m t =+++->++-=++>函数没有零点,选项正确;∴()()()F x f x g x m =-+C 设曲线在点处的切线与曲线相切于点,,()y f x =A ()y g x =(C n ())g n 则曲线在点处的切线方程为,即,()y f x =A ()lnmy m e x lnm -=-(1)y mx m lnm =+-同理可得曲线在点处的切线方程为,()y g x =C 1122n y x ln n =+-,消去得,∴11(1)22m n n m lnm ln ⎧=⎪⎪⎨⎪-=-⎪⎩n 1(1)202m m lnm ln --++=令,则,1()(1)22G x x x lnx ln =--++11()1x G x lnx lnxx x -'=--=-函数在上为减函数,(1),,()y G x '=(0,)+∞G 'Q 10=>1(2)202G ln '=-<则存在,使得,且.(1,2)s ∈1()0G s lns s '=-=1ss e =当时,,当时,.0x s <<()0G x '>x s >()0G x '<函数在上为减函数,∴()y G x =(2,)+∞,,5(2)02G =>Q 17(8)20202G ln =-<由零点存 定理知,函数在上有零点,()y G x =(2,)+∞即方程有解.1(1)202m m lnm ln --++=使得曲线在点处的切线也是曲线的切线.m ∴∃()y f x =A ()y g x =故选:.BCD 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,考查了转化思想和数形结合思想,属难题.三、填空题(每题5分,共20分)13.已知,则A ∩B =______.2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+【答案】[3,2]-【解析】【分析】根据指数函数的单调性解不等式化简集合A ,解分式不等式化简集合B ,求交集即可.【详解】由得:,231x -+≥20x -+≥解得,2x ≤故,{|2}A x x =≤由得:,2113x x -≤+43x x -≤+解得,34x -≤≤故,{|34}B x x =-≤≤所以A ∩B = [3,2]-【点睛】本题主要考查了指数不等式,分式不等式,集合的交集运算,属于中档题.14.已知复数,若表示z 2的共轭复数,则复数的模长等于______.1234,1z i zi =-=+2z 12z iz ⋅【解析】【分析】根据复数的模的定义及性质运算即可.【详解】,1234,1z i z i =-=+Q ,1||5z ∴==2||z =,111222||||||||||z i z i z z z z ⋅⋅∴====.【点睛】本题主要考查了复数模的定义,复数模的性质,属于容易题.15.已知函数,任取x 1,x 2∈[t ,t +1],若不等式|f (x 1)-f (x 2)|<11()(2),xf x lg m m -=+∈R 对任意t ∈[-2,-1]恒成立,则实数m 的取值范围是______.【答案】169(,)-+∞【解析】【分析】由条件可得对任意,恒成立,求出的最大值和最小值代入()()1max min f x f x -<[2t ∈-1]-()f x 该式即可得到的范围.m 【详解】若任取,,,不等式对任意,恒成立,1x 2[x t ∈1]t +12|()()|1f x f x -<[2t ∈-1]-即对任意,恒成立,()()1max min f x f x -<[2t ∈-1]-因为在定义域上是单调减函数,1()(2)xf x lg m -=+所以,,1()(2)t max f x lg m -=+()(2)tmin f x lg m -=+即,21()()(()122max min t t f x f x lg m lg m -=+-+<即,即,1(2)10(2)t tm m --+<+392t m ->-所以,即,39(2)16tmax m ->-=-169m >-又有意义,需,即,1()(2)xf x lg m -=+120xm -+>22x m >-所以,,,可得.22tm >-[2t ∈-1]-4m >-所以的取值范围为,.m 16(9-)+∞故答案为:,.16(9-)+∞【点睛】本题考查了不等式恒成立问题,考查了参数分离思想和转化思想,属难题.16.已知函数若,则正数2(),x f x e ax =+()()()12121212,(0,1),2020x x x x f x f x x x ∀∈≠-<-a 的取值范围是______.【答案】2020(0,2e-【解析】【分析】由正数a 可知在上递增,不妨设,原问题转化为2()x f x e ax =+(0,1)12x x <,构造函数,利用函数单调性即可求解.2121()()2020()f x f x x x -<-()()2020g x f x x =-【详解】因为为正数,a 所以函数在上单调递增,2()x f x e ax =+(0,1)不妨设,12x x <则,()()()12121212,(0,1),2020x x x x f x f x x x ∀∈≠-<-可得,恒成立,12,(0,1)x x ∀∈2121()()2020()f x f x x x -<-令,,()()2020g x f x x =-[0,1]x ∈即在上成立,21()()g x g x <(0,1)所以函数在上是减函数,()g x (0,1),2()()20202020x g x f x x e ax x =-=+-Q 在恒成立,()220200x g x e ax '∴=+-≤当,为增函数,(0,1)x ∈()g x '即可,(1)220200g e a '∴=+-≤解得20202e a -≤又,0a <所以202002e a -<≤故答案为:2020(0,2e-【点睛】本题主要考查了函数导数的几何意义,直线的斜率,转化思想,函数的最值,属于难题.四、解答题(17题10分,18-22题每题12分,共70分)17.已知函数的定义域为集合A ,函数的值域为集合2()lg(231)f x x x =-+()2(],,2xg x x =∈-∞B ,集合.22{|430}(0)C x x mx m m =-+≤>(1)求A ∪B ;(2)若,求实数m 的取值范围.()C A B ⊆ 【答案】(1)(2)或R 106m <≤413m ≤≤【解析】【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2)或,利用,列出{|3},C x m x m =<<1{|02A B x x ⋂=<<14}x <≤()C A B ⊆ 不等式组,求出实数的取值范围.m 【详解】由可得:,2()lg(231)f x x x =-+22310x x -+>所以或,1{|2A x x =<1}x >因为,()2(],,2xg x x =∈-∞所以,{|04}B x x =<…所以.A B R = (2),或,{|3}C x m x m =<<1{|02A B x x ⋂=<<14}x <≤因为,()C A B ⊆ 所以或,0132m m <⎧⎪⎨≤⎪⎩134m m ≤⎧⎨≤⎩解得或,106m <≤413m ≤≤故实数m 的取值范围或.106m <≤413m ≤≤【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题.18.已知函数2ln 1.y x x =+(1)求这个函数的极值;(2)若过点(0,1)的直线l 与这个函数图象相切,求l 的方程.【答案】(1)极小值,无极大值(2)112e -+110x y e +-=【解析】【分析】(1)求出函数的导数,求导函数的零点,分析函数的单调性即可求出极值;(2)设切点为,可得切线的斜率,写出切线的方程,代入点(0,1),解方程可()2,1m m lnm +得m ,得到切线的斜率和切线l 的方程.【详解】(1)函数的导数为,2ln 1y x x =+2ln y x x x '=+令,2ln =0y x x x '=+解得,12x e-=当时,,当时,,120x e-<<0y '<12ex -<0y '>故函数在上单调递减,在上单调递增,12(0,)e-12(,)e -+∞所以当时,函数有极小值,无极大值.12x e -=112e -+(2)设切点为,()2,1m m lnm +则,2ln k m m m =+即切线方程为,21(2ln )()m lnm m y m m x m -=+--由于直线过点(0,1),所以,2ln (2ln )()m m m m m m -=+⋅-化简得,即,ln 1m =-1m e =所以,1k e =-所以切线l 方程为.110x y e +-=【点睛】本题主要考查了函数的极值,函数的切线方程,属于中档题.19.已知函数f (x )是定义在R 上的奇函数,当x >0时,.2()(21)xf x x log =++(1)求f (x )的解析式;(2)设x ∈[1,2]时,函数,是否存在实数m 使得g (x )的最小值为()()222f x x g x m m =+⋅-6,若存在,求m 的取值;若不存在,说明理由.【答案】(1)(2).22log (21),0()0,02log (21),0x x x x f x x x x ⎧++>⎪==⎨⎪-+<⎩5m ≥-【解析】【分析】(1)设,根据计算,利用奇偶性即可求解函数解析式;0x <0x ->()f x -(2)通过换元,问题转化为二次函数h (t )在[2, 4]上的最小值为6,再通过分类讨论得出结论.【详解】(1)设,则,0x <0x ->由当x >0时,可知,,2()1(21)xf x x og =++()2()121x f x x og --=-++又f (x )为R 上的奇函数,于是,()2()()121x f x f x x og -=--=-+故当时,,0x <()2()2log 21x f x x =-+当时,由知,0x =(0)(0)f f -=-(0)0f =综上知22log (21),0()0,02log (21),0x x x x f x x x x ⎧++>⎪==⎨⎪-+<⎩(2)由(1)知,x ∈[1,2]时,,()2log (212)()()22222222(1)22x f x x x x x x g x m m m m m m +⋅+⋅-=+⋅-=++-=令,,2[2,4]x t =∈2()(1)2h t t m t m =++-函数g (x )的最小值为6,即在上的最小值为6,2()(1)2h t t m t m =++-[2,4]①当,即m >﹣5时,函数h (t )在[2,4]上为增函数,122m +-<于是h (t )min =h (2)=6,此时存在满足条件的实数m >﹣5;②当,即﹣9≤m ≤﹣5时,,解得,此1242m +-……2min m 10m 1h(t)64---==5m =-时满足条件;5m =-③当,即m <﹣9时,函数h (t )在[2,4]上为减函数,142m +->于是h (t )min =h (4)=2m +20=6,解得,此时不存在满足条件的实数m ;7m =-综上,存在使得函数g (x )的最小值为6.5m ≥-【点睛】本题主要考查根据函数的奇偶性求解析式,考查函数能成立问题,考查分类讨论思想,属于中档题.20.已知定义域为R 的函数是奇函数.121()2x x a f x b +⋅+=+(1)求a ,b 的值;(2)若存在t ∈(1,4),不等式有解,求k 的取值范围.22(2)(2)0f t f t kt -+-<【答案】(1)(2)1,2a b =-=1k >【解析】【分析】(1)为奇函数,利用f (0) =0,解得a ,根据定义解出b ;()f x(2)根据函数为奇函数及函数的单调性可转化为t ∈(1,4)时,有解,分离2222t kt t -<-参数得在t ∈(1,4)时有解,求的最小值即可.23k t t >-23t t -【详解】(1)为奇函数,()f x ,1(0)02a f b +∴==+解得,1a =-,112()2xx f x b +-∴=+由,1122121()()22222x x x x x x f x f x b b b --+----===-=++⋅⋅+可得.2b =(2)由(1)知,11211()22221x x x f x +-==-++故函数在上为增函数,()f x R ,是奇函数,22(2)(2)0f t f t kt -+-<Q ()f x ,22(2)(2)f t f kt t ∴-<-又函数在上为增函数,()f x R 存在t ∈(1,4)时,有解,∴2222t kt t -<-即在t ∈(1,4)时有解,23k t t >-令,则在t ∈(1,4)上是增函数,2()3h t t t =-2()3h t t t =-所以,min ()(1)1h t h >=故当时,不等式有解.1k >k 的取值范围为.1k >【点睛】本题主要考查了函数的奇偶性的应用,函数的单调性,利用函数单调性求最值,转化思想,属于中档题.21.设.()(1)1x f x k e x k =---+(1)讨论f (x )的单调性;(2)当x >0时,f (x )>0恒成立,求k 的取值范围.【答案】(1)答案见解析(2)2k ≥【解析】【分析】(1)求函数导数,根据的取值范围分类讨论即可求出函数的单调性;1k -(2)由(1)求函数在时的最小值,问题转化为函数的最小值大于0恒成立,根据函0x >数单调性,分类讨论求函数的最小值,并判定最小值与0的大小关系即可求解.【详解】(1),()(1)1x f x k e x k =---+Q ,()(1)1x f x k e ∴=--'①当时,即时,,10k -≤1k ≤()0f x '<在上是减函数;()f x ∴R ②当时,即时,10k ->1k >由,()(1)10x f x k e '=--=解得,1ln1x k =-当时,,当时,,1ln1x k <-()0f x '<1ln 1x k >-()0f x '>在单调递减,在上单调递增,()f x ∴1(,ln )1k -∞-1(ln ,)1k +∞-综上,时,函数在上是减函数,无单调增区间;1k ≤R 时,函数在单调递减,在上单调递增.1k >1(,ln 1k -∞-1(ln ,)1k +∞-(2)由(1)知,若时,在无最小值,所以f (x )>0不恒成立;1k ≤()f x (0,)x ∈+∞若时,1k >①当时,,2k ≥1ln 01k ≤-所以函数在上单调递增,()f x (0,)x ∈+∞所以,()(0)0f x f >=即当x >0时,f (x )>0恒成立;②当时,,12k <<1ln 01k >-函数在递减,在上递增,1(0,ln1k -1(ln ,)1k +∞-所以当时,1ln 1x k =-,min 11()(ln2ln 2ln(1)11f x f k k k k k ==--=-+---只需即可,2ln(1)0k k -+->令,,()2ln(1)g x x x =-+-12x <<则,12()1011x g x x x -'=-+=>--所以在上是增函数,()g x (1,2)故,()(2)0g x g <=即无解,2ln(1)0k k -+->所以时,f (x )>0不恒成立。

河北石家庄市第二中学高考数学压轴专题《复数》难题汇编 百度文库

河北石家庄市第二中学高考数学压轴专题《复数》难题汇编 百度文库

一、复数选择题1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知i 为虚数单位,则复数23ii-+的虚部是( ) A .35 B .35i - C .15-D .15i -3.在复平面内复数Z=i (1﹣2i )对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上 A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y5.若复数1z i =-,则1zz=-( )A B .2C .D .46.已知复数()211i z i-=+,则z =( )A .1i --B .1i -+C .1i +D .1i -7.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①② B .②④C .②③D .①③8.若1i iz ,则2z z i ⋅-=( )A .B .4C .D .89.已知复数z 的共轭复数212iz i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1B .-1C .iD .i -10.若()()324z i i =+-,则在复平面内,复数z 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.设复数z 满足41iz i=+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.已知i 是虚数单位,设复数22ia bi i-+=+,其中,a b ∈R ,则+a b 的值为( )A .75B .75-C .15D .15-13.复数21ii+的虚部为( ) A .1-B .1C .iD .i -14.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +15.设复数z 满足(1)2i z -=,则z =( )A .1BC D .2二、多选题16.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-17.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+B .11ii-+ C .11ii+- D .()21i -18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为219.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =20.已知复数122z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =21.设复数z 满足1z iz+=,则下列说法错误的是( )A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z =22.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点23.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限24.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12-25.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>26.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数27.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 28.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1B .4-C .0D .530.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z =C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B 解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B2.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.3.A试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚解析:A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚部1>0 ∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.4.C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为,所以复数对应的点是,所以在直线上. 故选:C. 【点睛】本题考查复数的乘方和除法运解析:C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C. 【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.5.A将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由,得, 则, 故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.6.B 【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B解析:B 【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+.故答案为:B7.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abiz a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.8.A 【分析】化简复数,求共轭复数,利用复数的模的定义得. 【详解】 因为,所以, 所以 故选:A解析:A 【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --. 【详解】 因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-= 故选:A9.A 【分析】先化简,由此求得,进而求得的虚部. 【详解】 ,所以,则的虚部为. 故选:A解析:A 【分析】先化简z ,由此求得z ,进而求得z 的虚部. 【详解】()()()()212251212125i i i iz i i i i ----====-++-, 所以zi ,则z 的虚部为1.故选:A10.D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】 ,则复数对应的点的坐标为,位于第四象限. 故选:D .解析:D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限. 故选:D .11.D 【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案 【详解】 解:因为, 所以,所以共轭复数在复平面内的对应点位于第四象限, 故选:D解析:D 【分析】先对41iz i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-,所以共轭复数z 在复平面内的对应点位于第四象限,12.D 【分析】先化简,求出的值即得解. 【详解】 , 所以. 故选:D解析:D 【分析】 先化简345ia bi -+=,求出,ab 的值即得解. 【详解】22(2)342(2)(2)5i i ia bi i i i ---+===++-,所以341,,555a b a b ==-∴+=-. 故选:D13.B 【分析】将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果. 【详解】 ,故虚部为1. 故选:B.解析:B 【分析】将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果. 【详解】22(1)11(1)(1)i i i i i i i -==+++-,故虚部为1. 故选:B.14.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以,故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A15.B 【分析】由复数除法求得,再由模的运算求得模. 【详解】 由题意,∴. 故选:B .解析:B 【分析】由复数除法求得z ,再由模的运算求得模. 【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .二、多选题 16.ABCD 【分析】先根据复数的除法运算计算出,再依次判断各选项. 【详解】 ,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD. 【点睛】本题考查复数的除法解析:ABCD 【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 18.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 19.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.20.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】计算出23,,,z z z z ,即可进行判断.【详解】122z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.21.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】 由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.22.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.23.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.24.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.25.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.26.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.27.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 28.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误;对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.。

石家庄二中必修第二册第二单元《复数》测试题(有答案解析)

石家庄二中必修第二册第二单元《复数》测试题(有答案解析)

一、选择题1.已知12,z z C ∈,121z z ==,12z z +=12z z -=( )A .0B .1C D .22.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C .z 对应的点在实轴的下方 D .z 一定为实数3.当z =时,100501z z ++=( ) A .1 B .-1 C .i D .i - 4.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)5.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .iB .i -C .2iD .2i -6.若复数z 满足()11z i i --⋅=+,则z =( )A B C .D .3 7.复数252i +i z =的共轭复数z 在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则ab的值为( ) A .32-B .23-C .23D .329.复数z 满足(12)3z i i +=+,则z =( )A .15i + B .1i - C .15i - D .1i +10.已知复数z 满足()15i z i -+=,则z =( )A .23i +B .23i -C .32i +D .32i - 11.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( )A .()sin αβ-B .()sin αβ+C .()cos αβ-D .()cos αβ+12.已知复数z 满足()12i z i -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.若z a bi =+,21zR z∈+,则实数a ,b 应满足的条件为________. 14.复数2018|(3)|z i i i =-+(i 为虚数单位),则||z =________.15.若23i -是方程()220,x px q p q R ++=∈的一个根,则p q +=______.16.计算:88112i i -⎛⎫-= ⎪ ⎪+⎝⎭⎝⎭______________. 17.复数2021111i z i +⎛⎫=-+ ⎪-⎝⎭的辐角主值为________.18.已知复数z 满足等式1i 1z --=,则3z -的最大值为______19.关于x 的不等式mx 2-nx+p>0(m ,n ,p ∈R)的解集为(-1,2),则复数m+p i 所对应的点位于复平面内的第____象限. 20.已知,则 =____.三、解答题21.已知复数z 满足2z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积.22.已知复数(,)z a bi a b =+∈R ,且2(1)430a i a b i --++=.(Ⅰ)求复数z ; (Ⅱ)若mz z+是实数,求实数m 的值. 23.(1)求复数2320191i i i i z i++++=+的值.(2)复数()213105z a i a =+-+,()22251z a i a=+--,若12z z +是在复平面内对应的点在第三象限,求实数a 的取值范围.24.在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位. (1)112z i =+,234z i =-,计算12z z ⋅与12OZ OZ ⋅;(2)设1z a bi =+,2z c di =+(,,,a b c d ∈R ),求证:1212OZ OZ z z ⋅≤⋅,并指出向量1OZ 、2OZ 满足什么条件时该不等式取等号.25.设复数z :满足432243z i z i +--=-+-,求z 的最大值和最小值. 26.已知(2x -y +1)+(y -2)i =0,求实数x ,y 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用复数加法、减法和模的运算化简已知条件,由此求得12z z -. 【详解】设12,z a bi z c di =+=+,则()()12z z a c b d i +=+++,()()12z z a c b d i -=-+-. 依题意得:22221,1a b c d +=+=,12z z +=⇒()()223a c b d +++=⇒()222223a b c d ac bd +++++=⇒()21ac bd +=.所以12z z -==1==.故选:B 【点睛】本小题主要考查复数运算,属于中档题.2.C解析:C 【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定. 【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误;z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误;21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C 【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.3.D解析:D 【分析】根据100501zz ++的结构特点,先由z =,得到()2212-==-i z i ,再代入100501z z ++求解.【详解】因为z =所以()221,2-==-i z i所以()()()2550250100,1=-=-=-=-=-z i i z i i ,所100501++=-z z i , 故选:D 【点睛】本题主要考查了复数的基本运算,还考查了周期性的应用,运算求解的能力,属于基础题.4.A解析:A 【分析】利用复数的四则运算,再由纯虚数的定义,即可求解. 【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确; 对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确; 对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题.5.A解析:A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 6.A解析:A 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】由()11z i i --⋅=+,得()()21111i i i z i i i+-+--===--,则2z i =-+,∴z ==故选:A 【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题.7.C解析:C 【解析】 【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案. 【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C . 【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B 【分析】先根据复数乘法计算,再根据复数概念求a,b 比值. 【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=, 因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi 9.D解析:D 【分析】把已知等式变形,利用复数代数形式的乘除运算化简求得1i z =-,利用共轭复数的定义可得结论. 【详解】()12i 3i z +=+,()()()()3i 12i 3i 55i 1i 12i 12i 12i 5z +-+-∴====-++-, 所以1z i =+,故选D. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10.B解析:B 【解析】 【分析】根据复数的运算法则计算即可. 【详解】()15i z i -+=,()()()()51523111i i i z i i i i +-+∴===+++-, 2 3.z i ∴=- 故选B. 【点睛】本题考查了复数的运算法则和共轭复数的概念,属于基础题11.D解析:D 【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可. 详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误.12.D解析:D 【解析】()12i z i-=+,()()()()1i1i2+i1iz∴-+=+,13213i,i,22z z=+=+13i,22z z=-的共轭复数在复平面内对应点坐标为13,22⎛⎫-⎪⎝⎭,z的共轭复数在复平面内对应的点在第四象限,故选D.二、填空题13.或【分析】根据复数的运算得出再由复数是实数的条件得出实数应满足的条件【详解】因为故有所以或即或是ab应满足的条件故答案为:或【点睛】本题考查复数的运算和复数的概念属于中档题解析:0b=或221a b+=【分析】根据复数的运算得出21+zz()()()222222222212114a ab ab b b a ia b a b+-++--=+--,再由复数是实数的条件得出实数a,b应满足的条件.【详解】()22222211()1212z a bi a bi a biz a bi a abi b a b abi+++===+++++-+-+()()222222212()14a b abia bia b a b+--=++--()()()22222222222112214a ab b a b i a bi aba b a b+-++--+=+--()()()2222322222212214a ab ab b a b b a b ia b a b+-+++--=+--()()()222222222212114a ab ab b b a ia b a b+-++--=+--因为21zRz∈+,故有()2210b b a--=,所以0b=或2210b a--=,即0b=或221a b+=是a,b应满足的条件.故答案为:0b=或221a b+=.【点睛】本题考查复数的运算和复数的概念,属于中档题.14.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题解析:1【分析】由复数模的求法及虚数单位i的性质化简求值.【详解】解:由题得2|1|1211z i=+==-=,||1z∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i的性质,是基础题.15.38;【分析】假设另外一个根为根据是实数结合韦达定理可得结果【详解】假设另外一个根为是方程的一个根则①由可知是的共轭复数所以②把②代入①可知所以故答案为:38【点睛】本题重在考查是实数掌握复数共轭复解析:38;【分析】假设另外一个根为z,根据z z是实数,结合韦达定理,可得结果.【详解】假设另外一个根为z,23i-是方程()220,x px q p q R++=∈的一个根,则()232232pi zqi z⎧-+=-⎪⎪⎨⎪-=⎪⎩①由,p q R∈,可知z是23i-的共轭复数,所以32z i=--②把②代入①可知1226pq=⎧⎨=⎩所以38p q+=故答案为:38【点睛】本题重在考查z z是实数,掌握复数共轭复数的形式,属基础题16.【分析】先利用复数的运算法则将和化简然后计算出及的值然后得出的值【详解】故答案为: 解析:0【分析】先利用复数的运算法则将11i i -+和2化简,然后计算出811i i -⎛⎫ ⎪+⎝⎭及8的值,然后得出8811i i -⎛⎫- ⎪+⎝⎭的值. 【详解】()()()()8422848811111011i i i i i i i ⎡⎤⎡⎤-=-=--=-=⎢⎥⎢⎥+-⎢-⎛⎫- ⎪+⎝⎭⎥⎥⎢⎣⎦⎣⎦. 故答案为:0.17.【分析】先化简再根据辐角主值的定义求解即可【详解】因为所以所以所以复数z 的辐角主值为故答案为:【点睛】本题主要考查了复数的基本运算与辐角主值的辨析属于基础题 解析:34π【分析】先化简2021111i z i +⎛⎫=-+ ⎪-⎝⎭再根据辐角主值的定义求解即可.【详解】因为11i i i +=-,所以2021202111i i i i +⎛⎫== ⎪-⎝⎭所以331cos sin44z i i ππ⎫=-+=+⎪⎭,所以复数z 的辐角主值为34π. 故答案为:34π【点睛】本题主要考查了复数的基本运算与辐角主值的辨析,属于基础题.18.【分析】由题意画出图形数形结合得答案【详解】|z ﹣1﹣i|=1的几何意义为复平面内动点到定点(11)距离为1的点的轨迹如图:|z ﹣3|可以看作圆上的点到点(30)的距离由图可知|z ﹣3|的最大值为故1【分析】由题意画出图形,数形结合得答案. 【详解】|z ﹣1﹣i |=1的几何意义为复平面内动点到定点(1,1)距离为1的点的轨迹, 如图:|z ﹣3|可以看作圆上的点到点(3,0)的距离.由图可知,|z ﹣3|22(31)(01)151-+-=. 51. 【点睛】本题考查复数模的求法,考查数形结合的解题思想方法,是基础题.19.二【解析】分析:先根据x 的不等式mx2-nx+p>0(mnp ∈R)的解集为(-12)得到再分析出m<0p>0再确定复数m+pi 所对应的点位于复平面内的第二象限详解:∵mx2-nx+p>0(mnp ∈R解析:二. 【解析】分析:先根据x 的不等式mx 2-nx+p>0(m,n,p ∈R)的解集为(-1,2)得到0,n -12,m p -12,m m ⎧⎪<⎪⎪+=⎨⎪⎪⨯=⎪⎩()()再分析出m<0,p>0,再确定复数m+pi 所对应的点位于复平面内的第二象限. 详解:∵mx 2-nx+p>0(m,n,p ∈R)的解集为(-1,2),0,n (-1)2,m p (-1)2,m m ⎧⎪<⎪⎪∴+=⎨⎪⎪⨯=⎪⎩即m<0,p>0.故复数m+pi 所对应的点位于复平面内的第二象限. 故答案为二.点睛:(1)本题主要考查复数的几何意义和一元二次不等式的解法,意在考查学生对这些知识的掌握水平.(2)已知一元二次不等式的解集,一般要想到韦达定理.20.-2-3i 【解析】分析:化简已知的等式即得a 的值详解:由题得(1-i)31+i-3i=a ∴a=(1-i)4(1+i)(1-i)-3i=-2i·-2i2-3i=-2-3i 故答案为-2-3i 点睛:(1)解析:-2-3i【解析】分析:化简已知的等式,即得 a 的值. 详解:由题得,故答案为-2-3i点睛:(1)本题主要考查复数的综合运算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)本题是一个易错题,已知没有说“a”是一个实数,所以它是一个复数,如果看成一个实数,解答就错了. 三、解答题21.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ), 由已知可得:22222a b ab ⎧⎪+=⎨=⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.22.(Ⅰ)33z i =-(Ⅱ)18m =【分析】(Ⅰ)根据复数相等列方程组,解得,a b (Ⅱ)先化复数为代数形式,再根据复数为实数列式,解得实数m 的值.【详解】解: (Ⅰ)由题意240{30a ab a ++=-+=,解之得3,3a b ==-. 所以33z i =-为所求(Ⅱ)由(Ⅰ)得,()133333333666m i m m m m z i i i z i +⎛⎫⎛⎫+=-+=-+=++- ⎪ ⎪-⎝⎭⎝⎭ m z z +是实数,306m ∴-=,即18m =为所求. 【点睛】 本题考查复数相等以及复数概念,考查基本分析求解能力,属中档题23.(1)1122z i =-+;(2)()1,3 【分析】(1)根据4142434,1,,1n n n n i i i i i i +++==-=-=得414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,进而得2311122i i i z i i ++==-++; (2)由题得()()()2121321551a z z a a i a a -+=++-+-,再结合题意,根据复数的几何意义得()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组即可得答案. 【详解】解:(1)由于4142434,1,,1n n n n ii i i i i +++==-=-=, 所以414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,而201945043=⨯+, 所以()232019231111111222i i i i i i i i z i i i i --++++++-=====-++++; (2)()()()()22123232102510255151z z a i a i a a i a a a a ⎛⎫⎡⎤+=+-++-=++-+- ⎪⎣⎦+-+-⎝⎭ ()()()21321551a a a i a a -=++-+-, 因为12z z +在复平面内对应的点在第三象限,所以()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组得:13a <<.故实数a 的取值范围是()1,3【点睛】本题考查复数的运算,复数的几何意义求参数,考查运算能力,是中档题.24.(1)12112z z i ⋅=+,125OZ OZ ⋅=-;(2)证明详见解析,当ab cd =时.【分析】(1)根据复数的乘法运算法则进行运算即可求出12z z ⋅,可知()11,2OZ =,()23,4OZ =-,然后进行数量积的坐标运算即可;(2)根据复数的乘法运算法则进行运算即可求出12z z ⋅,以及复数的几何意义表示出1OZ 、2OZ 计算其数量积,利用作差法比较221212,||z z OZ OZ ⋅⋅的大小,并得出何时取等号.【详解】解:(1)()()121234112z z i i i ⋅=+⋅-=+()11,2OZ =,()23,4OZ =-所以125OZ OZ ⋅=-证明(2)1z a bi =+,2z c di =+()()12ac bd ad z i z bc =-++∴⋅()()22212z z ac bd ad bc ∴⋅=-++ ()1,OZ a b =,()2,OZ c d =12OZ OZ ac bd ∴⋅=+,()2212OZ OZ ac bd ⋅=+()()()222221212||z z OZ OZ ac bd ad bc ac bd ∴-⋅-⋅=-+++()()2240ad bc ac bd ad cb =--=+⋅≥ 所以1212OZ OZ z z ⋅≤⋅,当且仅当ad cb =时取“=”,此时12OZ OZ .【点睛】本题考查了复数的乘法运算法则,向量坐标的数量积运算,复数的模长的计算公式,考查了计算能力,属于基础题.25.最大值7;最小值3.【分析】先根据绝对值定义得不等式,再根据绝对值三角不等式求最值.【详解】由已知等式得()4320z i --+-≤()|||43|4322||523||7z i z i z z∴--+≤--+≤∴-≤-≤∴≤≤所以z最大值为7;z最小值为3.【点睛】本题考查复数模、绝对值三角不等式,考查基本分析求解能力,属中档题.26.1 ,2 2【解析】【分析】根据复数相等的概念得到实部虚部均为0,即21020x yy-+=⎧⎨-=⎩求得参数值.【详解】∵(2x-y+1)+(y-2)i=0,∴21020x yy-+=⎧⎨-=⎩解得12x= ,y=2所以实数x,y的值分别为12,2.【点睛】这个题目考查了复数相等的概念,两个复数相等则需要实部等于实部,虚部等于虚部即可.。

石家庄市必修第二册第二单元《复数》测试题(答案解析)

石家庄市必修第二册第二单元《复数》测试题(答案解析)

一、选择题1.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( ) A .3 B .4 C .5 D .62.设a R ∈,则复数22121a ai z a-+=+所对应点组成的图形为( ) A .单位圆 B .单位圆除去点()1,0±C .单位圆除去点()1,0D .单位圆除去点()1,0- 3.设i 为虚数单位,复数23i z i +=,则z 的共轭复数为( ) A .32i - B .32i +C .32i --D .32i -+ 4.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .45.已知复数23i -是方程220x px q ++=的一个根,则实数p ,q 的值分别是( ) A .12,26 B .24,26 C .12,0 D .6,8 6.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i -- 8.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2i C .12i -+ D .12i -- 9.下列命题中,正确的命题是( )A .若1212,0z z C z z ∈->、,则12z z >B .若z R ∈,则2||z z z ⋅=不成立C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =10.复数51i i-的虚部是( ) A .12 B .2i C .12- D .2i -11.设3i z i +=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3 12.若11i ai ++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1 B .1- C .2 D .2-二、填空题13.若复数z 满足0z z z z ⋅++=,则复数33z i --的最大值与最小值的乘积为___________.14.复数2018|)|z i i i =+(i 为虚数单位),则||z =________.15.计算:8811i i -⎛⎫-= ⎪+⎝⎭______________. 16.若z C ∈且1z =,那么2z i +-的最小值为_______________.17.若复数z 满足0z z z z ⋅++=,则复数12z i --的最大值为______.18.若复数z 满足111,arg 23z z z z π--⎛⎫== ⎪⎝⎭,则z 的代数形式是z =_____________. 19.设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则1i ()1ia +=-________. 20.若复数214t z t i+=-+在复平面内对应的点位于第四象限,则实数t 的取值范围是____. 三、解答题21.已知方程20x x p ++=有两个根1x ,2x ,p R ∈.(1)若123x x -=,求实数p 的值;(2)若123x x +=,求实数p 的值.22.复数2(1)32z i a i =--++(α∈R ).(1)若z 为纯虚数求实数a 的值,及z 在复平面内对应的点的坐标;(2)若z 在复平面内对应的点位于第三象限,求实数a 的取值范围.23.已知复数()212(24)z a a i =--+,()221z a a i =-+,12z z z =-(i 为虚数单位,a R ∈).(1)若复数12z z z =-为纯虚数,求12z z ⋅的值;(2)若1z z i +=-,求z i +的值.24.已知复数1z mi =+(i 是虚数单位,m R ∈),且(3)z i ⋅+为纯虚数(z 是z 的共轭复数).(1)设复数121m i z i+=-,求1z ; (2)设复数20172a i z z-=,且复数2z 所对应的点在第一象限,求实数a 的取值范围. 25.已知复数()()()121z m m m i =-++- (m R ∈,i 为虚数单位)(1)若z 是纯虚数,求实数m 的值;(2)若2m =,设1z i a bi z +=+- (,a b ∈R ),试求+a b . 26.已知O 为坐标原点,向量1OZ 、2OZ 分别对应复数1z 、2z ,且()213105z a i a =+-+,()()22251z a i a R a =+-∈-.若12z z +是实数. (1)求实数a 的值; (2)求以1OZ 、2OZ 为邻边的平行四边形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值.【详解】 由()()()()11711768341112i i i i z i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由222||11z x y =⇒+=,()()2134z z x y i -=-+-= 2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离, ()3,4到圆心()0,05=,单位圆的半径为1,所以21max 516z z -=+=.故选:D【点睛】 本小题主要考查复数除法运算,考查复数模的最值的计算.2.D解析:D【分析】 根据复数222221212111a ai a a z i a a a -+-==++++,得到复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭,然后由22212,11a a x y a a -==++,利用复数的模求解. 【详解】 因为复数222221212111a ai a a z i a a a-+-==++++, 所以复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭, 即22212,11a a x y a a-==++, 所以222222212111a a x y a a ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭, 因为22212111a x a a-==-+++, 又因为a R ∈,所以211a +≥, 所以22021a <≤+, 所以221111a -<-+≤+, 即11x -<≤, 所以复数z 对应点组成的图形为单位圆除去点()1,0-.故选:D【点睛】本题主要考查复数的几何意义以及复数模的轨迹问题,还考查了运算求解的能力,属于中档题.3.B解析:B【分析】由题意首先由复数的运算法则求得z 的值,然后求解其共轭复数的值即可.【详解】22232323321i i i i z i i i ++-====--,则32z i =+, 故选B .【点睛】本题主要考查复数的运算法则,共轭复数的概念与计算等知识,意在考查学生的转化能力和计算求解能力.4.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.5.A解析:A【分析】复数23i -是方程的根,代入方程,整理后利用复数的相等即可求出p,q 的值.【详解】因为23i -是方程220x px q ++=的一个根,所以22(23)(23)0i p i q -+-+=, 即(224)3100p i p q --++=,所以22403100p p q -=⎧⎨-++=⎩,解得12,26p q ==,故选A. 【点睛】本题主要考查了复数方程及复数相等的概念,属于中档题. 6.C解析:C【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题. 7.A解析:A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A . 8.B解析:B【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一. 9.C解析:C【分析】A .根据复数虚部相同,实部不同时,举例可判断结论是否正确;B .根据实数的共轭复数还是其本身判断2||z z z ⋅=是否成立;C .根据复数乘法的运算法则可知是否正确;D .考虑特殊情况:12,1z i z ==,由此判断是否正确.【详解】A .当122,1i z z i =+=+时,1210z z -=>,此时12,z z 无法比较大小,故错误;B .当0z =时,0z z ==,所以20z z z ⋅==,所以此时2||z zz ⋅=成立,故错误;C .根据复数乘法的运算法则可知:10z =或20z =,故正确;D .当12,1z i z ==时,2212110z z +=-+=,此时10z ≠且20z ≠,故错误. 故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若z C ∈,则有2z z z ⋅=.10.A解析:A【解析】【分析】由题意首先化简所给的复数,然后确定其虚部即可.【详解】 由复数的运算法则可知:51i i -()()()1111122i i i i i +==-+-+, 则复数51i i-的虚部是12. 本题选择A 选项.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D. 12.B解析:B【分析】 设11i bi ai+=+,化简后利用复数相等列方程求解即可. 【详解】 设()1,,1i bi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩, 解得11a b =-⎧⎨=⎩, 故选:B .【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.二、填空题13.24【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆表示复数在复平面内对应点到点的距离所以最大值为最小值为 解析:24【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由33z i --的几何意义求解即可.【详解】设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=,得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,33z i =--z 在复平面内对应点到点(3,3)P 的距离所以33z i --最大值为||116PA +==.最小值为||114PA -==故最大值与最小值的乘积为2446=⨯故答案为:24【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题. 14.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题 解析:1【分析】由复数模的求法及虚数单位i 的性质化简求值.【详解】解:由题得2|1|1211z i =+==-=,||1z ∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i 的性质,是基础题.15.【分析】先利用复数的运算法则将和化简然后计算出及的值然后得出的值【详解】故答案为:解析:0【分析】先利用复数的运算法则将11i i -+和2化简,然后计算出811i i -⎛⎫ ⎪+⎝⎭及8的值,然后得出8811i i -⎛⎫- ⎪+⎝⎭的值. 【详解】()()()()8422848811111011i i i i i i i ⎡⎤⎡⎤-=-=--=-=⎢⎥⎢⎥+-⎢-⎛⎫- ⎪+⎝⎭⎥⎥⎢⎣⎦⎣⎦. 故答案为:0.16.【分析】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离求出即可得出结果【详解】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离∵∴的最小值是故答案为【点睛】本题考查了复数的运算法则复数1【分析】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离,求出1OM -即可得出结果.【详解】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离.∵OM ==∴2z i +-11.【点睛】本题考查了复数的运算法则、复数的几何意义、圆的方程,考查了推理能力与计算能力,属于中档题.17.【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】解:设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆如图:表示复数在复平面内对应点到点的距离所以最大值为故解析:1【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由12z i --的几何意义求解即可.【详解】解:设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=,得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,如图:2212(1)(2)z i a b --=-+-z 在复平面内对应点到点(1,2)P 的距离 所以12z i --最大值为22||1(11)(02)1212PA +=--+-=. 故答案为:221.【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题. 18.【分析】先写出的三角形式再进行化简整理即可【详解】设则∴∴解得故答案为:【点睛】本题考查复数三角形式的定义属基础题 解析:313+【分析】 先写出1z z-的三角形式,再进行化简整理即可. 【详解】 设01z z z -=,则001,arg 23z z π==, ∴0113cos sin 23344z i ππ⎛⎫+=+ ⎪⎝⎭=, ∴1134z z -=+,解得31z =+. 故答案为:31+. 【点睛】本题考查复数三角形式的定义,属基础题.19.4【解析】∵∴∵表示满足的最小正整数∴当时满足第一次成立∴故答案为 解析:4【解析】∵21(1)1211(1)(1)11i i i i i i i +++-===--++ ∴1()()1ia a i i+=- ∵()a z 表示满足1n z =的最小正整数n∴当4n =时满足1n i =第一次成立 ∴()4a i = 故答案为4.20.【分析】直接由复数代数形式的乘除运算化简复数再由复数在复平面内对应的点位于第四象限列出不等式组求解即可得结论【详解】在复平面内对应的点位于第四象限解得实数的取值范围是故答案为【点睛】复数是高考中的必 解析:()1,2-【分析】直接由复数代数形式的乘除运算化简复数z ,再由复数214tz t i+=-+在复平面内对应的点位于第四象限列出不等式组,求解即可得结论. 【详解】()()2222i 114441i i i t t z t t t t ⎡⎤-++=-+=-+=--+⎢⎥-⎣⎦, 在复平面内对应的点位于第四象限,24010t t ⎧->∴⎨--<⎩,解得12t -<<, ∴实数t 的取值范围是()1,2-,故答案为()1,2-.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.三、解答题21.(1)52p =或2-;(2)2p =-或94.【分析】(1)根据韦达定理,得出12121,x x x x p +=-=,22121212()4x x x x x x -=+-,则可求出实数p 的值;(2)根据题意,对两根12,x x 进行分类讨论,一是两实根,二是一对共轭虚根,分别根据韦达定理求出实数p 的值. 【详解】 解:(1)方程20x x p ++=有两个根1x ,2x ,则由韦达定理知:12121,x x x x p +=-=,22121212()4149x x x x x x p ∴-=+-=-=,52p ∴=或2-; (2)①当1x ,2x 为两个实根,140p =-≥,即14p ≤时, ()()2222121212121212222xx x x x x x x x x x x +=++=+-+,1229p p ∴-+=,则2p =-,②当1x ,2x 为一对共轭虚根,140p =-<,即14p >时, 由123x x +=,12x x =,得132x =, 由韦达定理可得2194p x ==, 综上所述,2p =-或94. 【点睛】关键点点睛:本题的关键是利用韦达定理,列出对应关系式,其中要注意对根的虚实情况进行讨论. 22.(1)23a =,(0,1)-;(2)2(,)3+∞. 【分析】(1)先化简出z 的代数形式,再根据题意求实数a 的值和z 在复平面内对应的点的坐标; (2)先化简出z 的代数形式,再根据题意建立不等式求实数a 的取值范围即可. 【详解】解:因为2(1)32z i a i =--++,所以2(1)32(23)z i a i a i =--++=--(1)若z 为纯虚数,则230a -=,解得:23a =, 此时z i =-,z 在复平面内对应的点的坐标为:(0,1)-,所以z 为纯虚数时实数23a =,z 在复平面内对应的点的坐标为:(0,1)- (2)若z 在复平面内对应的点位于三象限,则23010a -<⎧⎨-<⎩,解得23a >所以z 在复平面内对应的点位于第三象限,则实数a 的取值范围:2(,)3+∞. 【点睛】本题考查复数的代数形式、利用复数的几何意义求对应的点的坐标与求参数、利用复数的分类求参数的范围,是基础题.23.(1)123626z z i ⋅=--;(2)1. 【分析】(1)由复数12z z z =-为纯虚数,可得2220230a a a a ⎧--=⎨--≠⎩,从而可求出a 的值,进而可求出12z z ⋅的值;(2)由1z z i +=-,可得复数z 在直线y x =-上,所以22232a a a a --=-++,从而可求出a 的值,进而可得z i +的值 【详解】解:(1)()()22122241()z z a a a a i a R -=--+--++∈为纯虚数,∴2220230a a a a ⎧--=⎨--≠⎩,解得2a =,∴128z i =-,225z i =-,∴12(28)(25)3626z z i i i ⋅=-⋅-=--. (2)()()2212223z z z a a a a i =-=--+--, ∵1z z i +=-,∴复数z 对应的点22(2,23)a a a a ----在直线y x =-上, 即22232a a a a --=-++,解得1a =-或52a =. 当1a =-时,0z =,1z i +=;当52a =时,7744z i =-,73444z i i +=-=. 【点睛】此题考查复数的有关概念,考查复数的模,考查计算能力,属于中档题24.(1)1z =2)13a >【分析】(1)先根据条件得到13z i =-,进而得到15122z i =--,由复数的模的求法得到结果;(2)由第一问得到2(3)(31)10a a iz ++-=,根据复数对应的点在第一象限得到不等式30310a a +>⎧⎨->⎩,进而求解. 【详解】∵1z mi =+,∴1z mi =-.∴(3)(1)(3)(3)(13)z i mi i m m i ⋅+=-+=++-.又∵(3)z i ⋅+为纯虚数,∴30130m m +=⎧⎨-≠⎩,解得3m =-.∴13z i =-.(1)13251122i z i i -+==---,∴12z =; (2)∵13z i =-,∴2(3)(31)1310a i a a iz i -++-==-, 又∵复数2z 所对应的点在第一象限, ∴30310a a +>⎧⎨->⎩,解得:13a >.【点睛】如果Z 是复平面内表示复数z a bi =+(),a b ∈R 的点,则①当0a >,0b >时,点Z 位于第一象限;当0a <,0b >时,点Z 位于第二象限;当0a <,0b <时,点Z 位于第三象限;当0a >,0b <时,点Z 位于第四象限;②当0b >时,点Z 位于实轴上方的半平面内;当0b <时,点Z 位于实轴下方的半平面内. 25.(1)2m =-;(2)85【解析】分析:(Ⅰ)先把复数 整理成z a bi =+的形式,由虚部等于0得到实数m 的值; (Ⅱ)把复数z iz i+-整理成a bi +的形式,根据复数相等的条件得到a b 、的值进而求出a b +.详解:(Ⅰ)若z 是纯虚数,则()()m 1m 2010m ⎧-+=⎨-≠⎩,()()m 1m 20,10,m ⎧-+=⎨-≠⎩解得m 2=-.(Ⅱ)若m 2=,则z 4i =+. ∴()()()()42i 3i 4i i 42i 71a bi i 4i 13i 3i 3i 55+-++++====++-++-()()()()42i 3i 4i i 42i a bi 4i 13i 3i 3i +-++++====+-++- 71i 55+,∴7a 5=,1b 5=,∴8a b 5+=. 点睛:本题考查纯虚数和复数相等的概念,以及复数的四则运算.对于复数要掌握常规运算技巧和常规思路,其次要熟记复数 的实部、虚部、模、几何意义、共轭复数等知识点. 26.(1)3a =;(2)118. 【分析】(1)求出1z 和2z ,由复数12z z +是实数,可求得实数a 的值;(2)求出1OZ 和2OZ ,利用平面向量的数量积求出12cos Z OZ ∠,进一步求出12sin Z OZ ∠,结合三角形的面积公式可求得所求四边形的面积.【详解】(1)由题意可得()213105z a i a =--+, ()22251z a i a =+--,则()2123221551z z a a i a a+=+++-+-, 由于复数12z z +是实数,则221505010a a a a ⎧+-=⎪+≠⎨⎪-≠⎩,解得3a =;(2)由(1)可得138z i =+,21z i =-+,则点13,18Z ⎛⎫⎪⎝⎭,()21,1Z -, 因此,以1OZ 、2OZ 为邻边的平行四边形的面积为121118S Z Z =⨯=. 【点睛】本题考查利用复数类型求参数,同时也考查了四边形面积的计算,涉及平面向量数量积的应用,考查计算能力,属于中等题.。

河北省石家庄市第一中学复数单元测试题(一) 百度文库

河北省石家庄市第一中学复数单元测试题(一) 百度文库

一、复数选择题1.已知复数1z i =+,则21z+=( )A .2BC .4D .52.212ii+=-( ) A .1B .−1C .i -D .i3.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C .z =D .复数z 在复平面内对应的点在第四象限4.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B C .D .5i5.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <-C .12a -<<D .21a -<<6.已知复数21iz i=-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.设复数2i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限8.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①②B .②④C .②③D .①③9.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z +=B .22z i +=C .24z +=D .24z i +=10.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3πC .23π D .43π 11.设21iz i+=-,则z 的虚部为( )A .12B .12-C .32D .32-12.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3B .5C .6D .813.已知i 是虚数单位,设复数22ia bi i-+=+,其中,a b ∈R ,则+a b 的值为( ) A .75B .75-C .15D .15-14.若复数11iz i,i 是虚数单位,则z =( ) A .0B .12C .1D .215.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -17.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 18.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限20.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 21.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件22.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 23.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限24.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 26.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 27.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=28.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1B .4-C .0D .530.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( )A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先求出,再计算出模. 【详解】 , , . 故选:B. 解析:B 【分析】先求出21z +,再计算出模. 【详解】1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i ii i i i i +++++====--+-, 故选:D3.C 【分析】利用复数的除法运算求出,即可判断各选项. 【详解】 , ,则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.4.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B5.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.6.B 【分析】对复数进行化简,再得到在复平面内对应点所在的象限. 【详解】,在复平面内对应点为,在第二象限. 故选:B.解析:B 【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限. 【详解】21i z i=-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.7.D 【分析】先求出,再求出,直接得复数在复平面内对应的点 【详解】因为,所以,在复平面内对应点,位于第四象限. 故选:D解析:D 【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点 【详解】 因为211i z i i==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限.故选:D8.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D 【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abiz a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.9.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B10.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )3322Z i O OZ ππ=+=+2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.11.C【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为, 所以其虚部为. 故选:C.解析:C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.12.D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D解析:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D13.D 【分析】先化简,求出的值即得解. 【详解】 , 所以. 故选:D解析:D 【分析】先化简345ia bi -+=,求出,ab 的值即得解. 【详解】22(2)342(2)(2)5i i ia bi i i i ---+===++-,所以341,,555a b a b ==-∴+=-. 故选:D14.C 【分析】由复数除法求出,再由模计算. 【详解】 由已知, 所以. 故选:C .解析:C 【分析】由复数除法求出z ,再由模计算. 【详解】由已知21(1)21(1)(1)2i i iz i i i i ---====-++-, 所以1z i =-=. 故选:C .15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B 【分析】利用复数除法运算求得z ,再求得z . 【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B 二、多选题16.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.17.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.18.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.20.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.21.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(,22-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.23.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.24.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.AC利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 28.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

2020年河北省石家庄二中高考数学二模试卷(二)(有答案解析)

2020年河北省石家庄二中高考数学二模试卷(二)(有答案解析)

解析:解:由已知三视图得到几何体是一个圆锥沿 两条母线切去部分后得到的几何体,体积为
=;
故选:D. 由已知三视图得到几何体是一个圆锥沿两条母线切 去部分后得到的几何体,因此计算体积. 本题考查了几何体的三视图;要求对应的几何体体 积;关键是正确还原几何体.
7.答案:A
解析:【分析】 本题考查了利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于 中档题. 函数 f(x)=ex-1+e1-x,则 f(x-1)=ex-2+e2-x,令 g(x)=f(x-1)-(e+e-1)=ex-2+e2-x-(e+e-1), 利用导数研究其单调性即可得出. 【解答】 解:函数 f(x)=ex-1+e1-x,则 f(x-1)=ex-2+e2-x, 令 g(x)=f(x-1)-(e+e-1)=ex-2+e2-x-(e+e-1), g′(x)=ex-2-e2-x,令 g′(x)=0,解得 x=2.
3.答案:B
解析:解:∵函数 f(x)=

∴f(10)=lg10=1, f(f (10))=f(1)=101-1=1. 故选:B. 推导出 f(10)=lg10=1,从而 f(f (10))=f(1),由此能求出结果. 本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方 程思想,是基础题.
令 ex-2=t,(t>0),m(t)= ,

,则 m(t)在定义域上单调递增,
又因为函数 y=ex-2 是增函数, 则根据复合函数单调性,函数 g′(x)=ex-2-e2-x 是单调递增的, 又 g′(x)=0 时,x=2, 故有函数 g(x)在(-∞,2)上单调递减,(2,+∞)上单调递增. g(x)min=g(2)=2-(e+e-1)<0, 又 g(1)=g(3)=0. ∴1<x<3. 故选:A.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题1.设复数1i z i=+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( )A .12B .2CD .23.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .2 4.212i i+=-( ) A .1B .−1C .i -D .i 5.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.))5511--+=( )A .1B .-1C .2D .-2 7.若1m i i+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D 8.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( )A B C .3 D .5 9.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( )A .恒在实轴上B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x =-上10.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -11.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 12.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1-13.设21i z i +=-,则z 的虚部为( ) A .12 B .12- C .32D .32- 14.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i 15.复数21i i +的虚部为( ) A .1- B .1 C .i D .i -二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 17.若复数351i z i -=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限18.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 19.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限 21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12-22.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i 23.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称24.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥25.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限26.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>27.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数28.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0D .5 30.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】 由于,则. 故选:B 解析:B【分析】先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===.3.C【分析】根据复数的几何意义得.【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴,∴.故选:C .解析:C【分析】根据复数的几何意义得,a b .【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=.故选:C .4.D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D5.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D.6.D【分析】先求和的平方,再求4次方,最后求5次方,即可得结果.【详解】∵,,∴,,∴,,∴,故选:D.解析:D【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--,)()51711+=--+=-,∴))55121-+=--, 故选:D.7.C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】 由题1m i i+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.8.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】由复数()为纯虚数,则 ,则所以故选:B解析:B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】 由()()()()()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B9.A【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.【详解】由复数在复平面内对应的点为得,则,,根据得,得,.所以复数在复平面内对应的点恒在实轴上,故解析:A【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+, 根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R .所以复数z 在复平面内对应的点(),x y 恒在实轴上,故选:A .10.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i iz i i i i ----====-++-,所以z i ,则z 的虚部为1.故选:A11.C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C .解析:C【分析】 由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论.【详解】 由题意2021(2)i z ii -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限. 故选:C .12.A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A13.C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为,所以其虚部为.故选:C.解析:C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】 因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.14.C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C15.B将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果.【详解】,故虚部为1.故选:B.解析:B【分析】将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果.【详解】22(1)11(1)(1)i i i i i i i -==+++-,故虚部为1. 故选:B.二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.23.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误; 对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 25.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+, 所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.26.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.27.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.28.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

相关文档
最新文档