高考数学复数习题及答案
高考数学《复数》专项练习(含答案)
【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
2022年山东新高考数学专项练习试题(含解析)——复数
一、单选题1.已知是虚数单位,复数,为z的共轭复数,则()A. B. C. D.2.复数()A. B. C. D.3.设复数,其中为虚数单位,则的虚部为()A. B. C. D.4.设复数满足,则()A. 1B.C.D.5.当时,复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.若复数(为虚数单位),则复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下列四个命题中是假命题的是()A. 若复数z满足,则z是虚数B. 若直线的倾斜率为,则直线的倾斜角为C. 若,,事件A,B相互独立和A,B相互互斥不能同时成立D. 若,,,为锐角,则实数m的取值范围是8.已知复数(i为虚数单位,),若,从M中任取一个元素,其模为1的概率为()A. B. C. D.9.已知复数,则()A. B. C. D.10.已知是虚数单位,则复数的虚部是()A.B.C.D.11.若z(1+i)=2i,则z=()A. -1-iB. -1+iC. 1-iD. 1+i12.设z= ,则|z|=()A. 2B.C.D. 113.设,则=()A. 0B.C. 1D.14.复数 (i为虚数单位)的共轭复数是()A. 1+iB. 1−iC. −1+iD. −1−i15.设z=-3+2i,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限16.设z=i(2+i),则=()A. 1+2iB. -1+2iC. 1-2iD. -1-2i17.设复数z满足,z在复平面内对应的点为(x,y),则()A. B. C. D.18.若,则z=()A. 1–iB. 1+iC. –iD. i19.在复平面内,复数的共轭复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限20.复平面内表示复数z=i(﹣2+i)的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限21.( )A. B. C. D.22.设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1= ;p4:若复数z∈R,则∈R.其中的真命题为()A. p1,p3B. p1,p4C. p2,p3D. p2,p423.i(2+3i)=()A. 3-2iB. 3+2iC. -3-2iD. -3+2i24.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A. ﹣5B. 5C. ﹣4+iD. ﹣4﹣i25.复数的虚部是()A. B. C. D.26.已知复数z=2+i,则=()A. B. C. 3 D. 527.设复数z满足(1+i)z=2i,则|z|=()A. B. C. D. 228.=()A. -3-iB. -3+iC. 3-iD. 3+i29.已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件30.已知复数z的模为2,则|z-i|的最大值为( )A. 1B. 2C.D. 331.下面是关于复数的四个命题:其中的真命题为()的共轭复数为的虚部为-1A.B.C.D.32.复数的共轭复数是()A.B.iC.D.33.若复数z满足,则z的共轭复数在复平面内对应的点在第()象限A.一B.二C.三D.四34.若虚数z满足,则()A.B.2C.4D.0或235.已知,则()A.B.C.D.36.复数(i为虚数单位)的共轭复数()A.B.C.D.37.已知复数满足,则复数的虚部为()A.1B.C.D.-138.已知为虚数单位,复数满足,则()A.B.C.D.39.复数,则()A.B.4C.D.40.已知复数(为虚数单位),则()A.1B.C.D.241.复数在复平面内对应点的坐标为()A.B.C.D.42.复平面内表示复数的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限43.设i为虚数单位,则()A. B. C. D.44.已知是关于x的方程()的一个根,则()A. -1B. 1C. -3D. 345.设是虚数单位,若复数满足,则复数对应的点位于复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限46.=()A. ﹣1B. ﹣iC. 1D. i47.已知复数,是z的共轭复数,,在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限48.设复数、在复平面内对应的点关于实轴对称,若,则()A. B. C. D.49.设i为虚数单位,则()A. B. C. D.答案解析部分一、单选题1.【答案】 D【解析】【解答】由题得,所以,故答案为:D【分析】首先由复数代数形式的运算性质整理,再由共轭复数的概念即可得出答案。
高考数学《复数》专项练习(含答案)
《复数》专项练习参考答案1.(2016全国Ⅰ卷,文2,5分)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a =( )(A )−3 (B )−2 (C)2 (D )3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由已知,得a a 212+=-,解得3-=a ,选A .2.(2016全国Ⅰ卷,理2,5分)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B)2 (C )3 (D )2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |2,x x y x y x x y +==+=所以故故选B .3.(2016全国Ⅱ卷,文2,5分)设复数z 满足i 3i z +=-,则z =( ) (A )12i -+ (B )12i - (C)32i + (D )32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,故选C . 4.(2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B)(13)-, (C )(1,)∞+ (D )(3)∞--,5.(2016全国Ⅲ卷,文2,5分)若43i z =+,则||zz =( )(A)1 (B)1- (C )43i 55+ (D )43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.则2243i 43i ||5543z z -==-+,故选D .6.(2016全国Ⅲ卷,理2,5分)若z =1+2i ,则4i1zz =-( ) (A )1 (B )−1 (C)i (D)−i【答案】C【解析】∵z =1+2i ,∴z =1-2i ,则4i 4ii (12i)(12i)11zz ==+---,故选C . 7.(2015全国Ⅰ卷,文3,5分)已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i 【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z ===2-i .故选C .【解析二】(z -1)i =1+i ⇒ z -1=⇒ z =+1 ⇒z =+1=2-i .故选C.8.(2015全国Ⅰ卷,理1,5分)设复数z满足1+z1z-=i,则|z|=()(A)1(B)2(C)3(D)2 【答案】A【解析一】1+z1z-=i⇒1+z=i(1-z)⇒1+z=i-zi⇒z+zi=-1+i ⇒(1+i)z=-1+i⇒9.(2015全国Ⅱ卷,文2,5分)若a为实数,且=3+i,则a=()A.-4B.-3C.3D.4【答案】D【解析】由已知得2+ai=(1+i)(3+i)=2+4i,所以a=4,故选D.10.(2015全国Ⅱ卷,理2,5分)若a为实数,且(2+ai)(a-2i)=-4i,则a=()A.-1B.0C.1D.2【答案】B【解析】(2+ai)(a-2i)=-4i⇒2a-4i+a2i+2a=-4i⇒2a-4i+a2i+2a+4i =0⇒4a+a2i=0⇒a=0.11.(2014全国Ⅰ卷,文3,5分)设z=+i,则|z|=()A.B.C.D.2【答案】B【解析】z=+i=+i=i,因此|z|=,故选B.12.=()A.1+i B.1-i C.-1+i D.-1-i【答案】D【解析】·====-(1+i)=-1-i,故选D.13.(2014全国Ⅱ卷,文2,5分)=()A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】B【解析】==-1+2i,故选B.14.(2014全国Ⅱ卷,理2,5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A .-5B .5C .-4+iD .-4-i 【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i )=-5,故选A .15.(2013全国Ⅰ卷,文2,5分)=( )A .-1-B .-1+C .1+D .1-i【答案】B 【解析】=-1+i ,故选B .16.(2013全国Ⅰ卷,理2,5分)若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A .-4B .-C .4D . 【答案】D【解析】∵|4+3i |==5,∴(3-4i )z =5,∴z =i ,虚部为,故选D .17.(2013全国Ⅱ卷,文2,5分)=( )A .2B .2C .D .1 【答案】C【解析】=|1-i|=22)1(1-+=.选C .18(2013全国Ⅱ卷,理2,5分)设复数z 满足(1-i )z =2i,则z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =====-1+i ,故选A .19.(2012全国卷,文2,5分)复数z =的共轭复数是( ) A .2+i B .2-I C .-1+i D .-1-i【答案】D【解析】z ==-1+i ,∴=-1-i ,故选D .20.(2011全国卷,文2,5分)复数=( )A .2-iB .1-2iC .-2+iD .-1+2i 【答案】C【解析】=-2+i ,故选C .21.(2016北京,文2,5分)复数12i=2i+-( )(A)i (B )1+i (C )i - (D )1i - 【答案】A 【解析】12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+,故选A .22.(2016北京,理9,5分)设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_____________. 【答案】-1【解析】(1+i )(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a )=0,解得a =-1. 23.(2016江苏,文/理2,5分)复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是____.【答案】524.(2016山东,文2,5分)若复数21i z =-,其中i 为虚数单位,则z =( ) (A )1+i(B )1−i(C )−1+i (D )−1−i【答案】B25.(2016山东,理1,5分)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =( )(A)1+2i (B)1-2i (C )12i -+ (D )12i -- 【答案】B26.(2016上海,文/理2,5分)设32iiz +=,其中i 为虚数单位,则z 的虚部等于_______. 【答案】-3【解析】32i 23i,iz +==-故z 的虚部等于−3.27.(2016四川,文1,5分)设i 为虚数单位,则复数(1+i)2=( )(A) 0 (B )2 (C)2i (D )2+2i 【答案】C 【解析】22(1i)12i i 2i +=++=,故选C .28.(2016天津,文9,5分)i 是虚数单位,复数z 满足(1i)2z +=,则z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.(2016天津,理9,5分)已知,a b ∈R ,i 是虚数单位,若(1+i)(1-b i )=a ,则ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)
2023届高考复习数学专项(复数及推理与证明)好题练习1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()A.二的实部是2B.=的虚部是2iC.乞=1-2i2.已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD.z在复平而上对应点在第四象限3.下面四个命题中的真命题为()1A.若复数z满足-ER,则zERB.若复数z满足/ER,则zERC.若复数Z1,Z2满足z亿2ER,则z1=D.若复数zE R,则豆ER Z2D.lzl=✓S4.已知复数二满足i2k+1z=2+i,-(kE z), 则z在复平面内对应的点可能位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设z是复数,则下列命题中的真命题是()A.若z2�o.则z是实数B.若z2<o,则z是虚数C.若z是虚数,则z2�oo.若z是纯虚数,则z2<o6.已知Z1与Z-2是共枙虚数,以下四个命题一定正确的是()2 2A. Z l <i z2B. zi z2=z Z2C.z1+z2E Rz+l.7设复数z满足——=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为一-i2C.在复平而内,z对应的点位千第二象限D.z=-—ZtD .• —ERZ28.某大学进行自主招生测试,盂要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 9.在0,0a b >>的条件下,下列四个结论正确的是( ) A .22a b aba b+≥+B .2a b +≤C .22a b a b b a+≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快参考答案1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()D.lzl=✓S A. 二的实部是2 B.=的虚部是2i C.乞=1-2i【参考答案】CD3 +i(3 +i)(l +i) 2 + 4i—= = = 1+2i,【答宋解析】z=l—1 2 2即二的实部是1,虚部是2'故A错误,B铅误,又亏=1—2i,121 =✓1三了-= Js'故C,D均正确故选CD2. 已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD. z在复平面上对应点在第四象限【参考答案】ABD【答案解析】:;=3-4i, 则仁l=F五二正=5.故A正确;�=3+4i, 故B正确;二的虚部为4,故C铅误;二在复平面上对应点的坐标为(3,-4), 在第四象限,故D正确.:.命题中正确的个数为3.故选ABD.3.下而四个命题中的真命题为()1A. 若复数z满足-E R,则zE RB.若复数z满足/E R,则zE RC. 若复数Z1,Z2满足z亿2R,则z=22D.若复数zE R,则�E R【参考答案】AD1【答案解析】若复数二满足-E R,则二E R,故命题A为真命题;复数z =i 满足z 2=﹣1∈R ,则z ∉R ,故命题B 为假命题; 若复数z 1=i ,z 2=2i 满足z 1z 2∈R ,但z 1≠,故命题C 为假命题;若复数z ∈R ,则=z ∈R ,故命题D 为真命题. 故选:AD .4.已知复数z 满足212k i z i +=+,()k z ∈,则z 在复平面内对应的点可能位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【参考答案】BD【答案解析】212k i z i +=+ ,212k iz i ++∴=15i i i === ,37i i i ===-当k 为奇数时 ()2122212k i ii i z i i i i i++++∴====-+--⨯ 在复平面上对应的点为()1,2-位于第二象限; 当k 为偶数时 ()2122212k i ii i z i i i i i++++∴====-⨯ 在复平面上对应的点为()1,2-位于第四象限;故复数z 在复平面内对应的点位于第二象限或第四象限. 故选BD5.设z 是复数,则下列命题中的真命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【参考答案】ABD【答案解析】设z =a +bi ,a ,b ∈R ,z 2=a 2﹣b 2+2abi , 对于A ,z 2≥0,则b =0,所以z 是实数,真命题;对于B ,z 2<0,则a =0,且b ≠0,⇒z 是虚数;所以B 为真命题; 对于C ,z 是虚数,则b ≠0,所以z 2≥0是假命题.对于D ,z 是纯虚数,则a =0,b ≠0,所以z 2<0是真命题;故选ABD.6.已知z1与z2是共轭虚数,以下四个命题一定正确的是( )A.z12<|z2|2B.z1z2=|z1z2| C.z1+z2∈R D.∈R【参考答案】BC【答案解析】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此A不正确;z1z2=|z1z2|=a2+b2,B正确;z1+z2=2a∈R,C正确;===+i不一定是实数,因此D不一定正确.故选:BC.7.设复数z满足,则下列说法错误的是( )A.z为纯虚数B.z的虚部为C.在复平面内,z对应的点位于第二象限D.|z|=【参考答案】ABC【答案解析】∵z+1=zi,设z=a+bi,则(a+1)+bi=﹣b+ai,∴,解得.∴z=.∴|z|=,复数z的虚部为,8.某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【参考答案】AC【答案解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后.故选AC.9.在0,0a b >>的条件下,下列四个结论正确的是( )A .22a b aba b+≥+ B .2a b +≤C .22a b a b b a +≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 【参考答案】ABD 【答案解析】选项A:222()4()22022()2()220,0a b ab a b ab a b a b ab a b aba b a b a b a b a b a b++--++-==∴-≥∴≥+++>+>+ ,故本选项是正确的;选项B:因为0,0a b >>,22222222()()02244a b a b a b ab a b ++++--=-=≥,所以2a b +≤,因此本选项是正确的; 选项C:222233222()()()()()a b a b ab a b a b a b a b a b b a a b b a ab ab ab +---+-+-+-+===-,因为0,0a b >>,所以22222()()()0a b b a b a a b a b a b b a ab b a+-+-+=-≤⇒+≥+,因此本选项是不正确的;选项D:根据本选项特征,用反证法来解答.假设三个数111,,a b c b c a+++至少有一个不小于2不成立,则三个数111,,a b c b c a+++都小于2,所以这三个数的和小于6,而111111()(()6a b c a b cb c a a b c+++++=+++++≥++=(当且仅当1a b c===时取等号),显然与这三个数的和小于6矛盾,故假设不成立,即三个数111,,a b cb c a+++至少有一个不小于2,故本选项是正确的.故选:ABD10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【参考答案】ABD【答案解析】对于选项A,从图可以看出同比涨跌幅均为正数,故A正确;对于选项B,从图可以看出环比涨跌幅有正数有负数,故B正确;对于选项C,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C错误;对于选项D,从图可以看出2019年3月全国居民消费价格环比变化最快,故D正确.故选ABD.。
高考数学专题《复数》习题含答案解析
专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。
2024年高考数学高频考点题型总结一轮复习 复数(精练:基础+重难点)
2024年高考数学高频考点题型归纳与方法总结第26练复数(精练)一、单选题1.(2022·全国·统考高考真题)(22i)(12i)+-=()A .24i -+B .24i --C .62i+D .62i-【答案】D【分析】利用复数的乘法可求()()22i 12i +-.【详解】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.2.(2021·全国·统考高考真题)已知2i z =-,则()i z z +=()A .62i -B .42i -C .62i+D .42i+【答案】C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.3.(2021·全国·高考真题)已知()21i 32i z -=+,则z =()A .31i2--B .31i2-+C .3i2-+D .3i2--【答案】B【分析】由已知得32i2iz +=-,根据复数除法运算法则,即可求解.【详解】()21i 2i 32i z z -=-=+,()32i i 32i 23i 31i 2i 2i i 22z +⋅+-+====-+--⋅.故选:B.4.(2022·全国·统考高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-【答案】A【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可【详解】12z i=-【A组在基础中考查功底】一、单选题根据复数模的几何意义可知,如图可知,i z +的最小值是点故选:B.26.(2022·全国·高三专题练习)设A .13i22-C .31i 22--【答案】C【分析】首先利用诱导公式将复数出其共轭复数;【详解】解:因为sin15z =+ 所以()22sin15i cos15z =+= 22sin 15cos 152sin15cos15=-+ cos30sin 30i =-+ 31i 22=-+所以2z 的共轭复数是3122--故选:C【B 组在综合中考查能力】一、单选题1.(2023春·安徽亳州·高三校考阶段练习)已知A .3±B .3【答案】C。
(完整版)高考数学复数习题及答案
(完好版)高考数学复数习题及答案高考复数训练题3- i(C )1. (2013 ·东山 )复数 1- i 等于A .1+ 2iB . 1-2iC . 2+ iD . 2-i3+ 2i - 3- 2i = ( D )2. (2013 宁·夏、海南 )复数 2- 3i 2+ 3iA .0B . 2C .- 2iD .2i3. (2013 陕·西 )已知 z 是纯虚数, z + 2是实数,那么 z 等于 (D) 1- i A .2i B . iC .- iD .- 2i4. (2013 武·汉市高三年级 2 月调研考试 )若 f(x)= x 3- x 2+ x - 1,则 f(i) = (B)A .2iB . 0C .- 2iD .-22- i5. (2013 北·京旭日 4 月 )复数 z = 1+ i (i 是虚数单位 )在复平面内对应的点位于 ( D ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. (2013 北·京东城3 月 )若将复数 2+i 表示为 a + bi(a , b ∈ R , i 是虚数单位 )的形式,则 b的值为 ia( A ) ,°则 z 2等于 ( B ) 7. (2013 北·京西城 4 月 )设 i 是虚数单位,复数 z = tan45 -° i sin60· A. 7- 3i B. 1- 3i 44C. 7+ 3i D. 1+ 3i 4 48. (2013 黄·冈中学一模 )过原点和 3- i 在复平面内对应的直线的倾斜角为(D)π π A. 6B .- 6 25 C.3πD.6πa + bi为实数,则(C )9.设 a 、b 、 c 、 d ∈R ,若 c + diA .bc + ad ≠ 0B . bc - ad ≠0C . bc - ad = 0D . bc + ad = 010.已知复数 z = 1-2i ,那么1=(D)z5+ 255- 2 5A. 55 iB. 55 iC. 1+2iD. 1- 2i555511.已知复数12z 1是实数,则实数 b 的值为(A)z =3- bi , z = 1- 2i ,若 z 21A .6B .- 6C . 0D.612. (2013 广·东 )设 z 是复数, α(z)表示知足 z n = 1 的最小正整数 n ,则对虚数单位 i , α(i)=( B )A .2B . 4C . 6D . 813.若 z = 1+ 3 4= a 4+ a 3+ a 2+ a( B )2 2 i ,且 (x - z) 0x 1x 2x 3x + a 4,则 a 2 等于A .- 1+ 3iB .- 3+ 3 3i2 2 C . 6+3 3i D .- 3-3 3i 14.若△ ABC 是锐角三角形,则复数 z = (cosB - sinA)+ i(sinB - cosA)对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2- bi15.假如复数 1+ 2i (此中 i 为虚数单位, b 为实数 )的实部和虚部互为相反数,那么b 等于( C )(完好版)高考数学复数习题及答案2 2A.2B. 3C .- 3D . 21 + 3( C)16.设函数 f(x)=- x 5+5x 4- 10x 3+ 10x 2- 5x +1,则 f(2i )的值为2A .-1 + 3iB.312 22- i2 1 +3 iD .-3 1C. 22+ i2217.若 i 是虚数单位,则知足 (p +qi )2= q + pi 的实数 p , q 一共有( D)A .1 对B .2 对C .3对D .4 对18.已知 2 - x 6的睁开式中,不含 x 的项是 20,那么正数 p 的值是( C)( 2) 27 x pA .1B . 2C . 3D . 419.复数 z =- lg(x 2+2) -(2x + 2-x -1)i(x ∈ R)在复平面内对应的点位于( C )A .第一象限B .第二象限C .第三象限D .第四象限 20.设复数 z + i(z ∈C )在映照 f 下的象为复数为A .2B . 2- 2iC .- 2+ i1+ ai 21. (2013 海·淀 4 月 )在复平面内,复数 iz 的共轭复数与 i 的积,若复数( A ) D . 2+ i(a ∈ R)对应的点位于虚轴上,则ω 在映照 f 下的象为- 1+ 2i ,则相应的 ωa =____0____.1 2 2 3 3 4 4 5 56 6 = _-8i_______.22. (2013 安·徽宿州二中模拟考三)i 是虚数单位,则6 6 + C 6 + C 6 i + C 6i+ C 61+ C i + C i ii1 i 201123. i 为虚数单位,则1 iA. iB.1C.iD.124. 若 ( x i)iy 2i, x, y R ,则复数 x yi =( ) A.2 iB.2 iC.12i D.1 2iai25.设 i 是虚数单位,复数 i 为纯虚数,则实数 a为(A )2(B ) 2( C )(D )26.设复数z知足 i (z1)3 2i (i 是虚数单位),则 z 的实部是 _________27.复数 15 ( i 是虚数单位)的模等于 .2 i.已知 < < ,复数 z a i i 是虚数单位 ) ,则 | z 的取值范围是 28 0 a 2 = + ( | A . (1, 3 ) B . (1, 5 ) C .(1,3) D. (1,5)2 29.下边是对于复数 z的四个命题:此中的真命题为()1 ip 1 : z 2p 2 : z 2 2ip 3 : z 的共轭复数为 1 ip 4 : z 的虚部为 1( A) p 2, p 3(B) p 1, p 2(C ) p , p( D ) p , p。
高考数学复数典型例题附答案
1, 已知复数求k的值。
的值。
解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。
均为实数。
比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。
2, 若方程有实根,求实数m的值,并求出此实根。
的值,并求出此实根。
解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。
点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。
充要条件求解。
3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。
的取值范围。
解:设,。
由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。
此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。
4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。
(2)z的实部与虚部都是整数。
,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。
此时①式无解。
(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。
的值。
(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。
特征。
解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。
高考数学复数习题及答案
高考数学复数习题及答案决战高考高考复试卷含答案一、选择题1.(2017·山东) 复数3-i等于( )。
A。
1+2i B。
1-2i C。
2+i D。
2-i答案:C解析:(3-i)(3-i)(1+i) = 4+2i = 2+i。
故选C。
2.(2017·宁夏、海南) 复数(2-3i)/(2+3i) = ( )。
A。
-2i B。
2 C。
-1/2 D。
2i答案:D解析:(2-3i)/(2+3i) = [(2-3i)(2-3i*)]/(2^2+3^2) = 13i/13 = i。
故选D。
3.(2017·陕西) 已知z是纯虚数,|z|=1是实数,那么z等于( )。
A。
2i B。
i C。
-i D。
-2i答案:D解析:由题意得z=ai(a∈R且a≠0)。
则|z|=|ai|=a=1.故a=1,z=-i。
故选D。
4.(2017·武汉市高三年级2月调研考试) 若f(x)=x^3-x^2+x-1,则f(i)=( )。
A。
2i B。
-i+2 C。
-2i D。
-2答案:B解析:f(i) = i^3-i^2+i-1 = -i+1+i-1 = -2.故选B。
5.(2017·北京朝阳4月) 复数z=i/(2-i)在复平面内对应的点位于( )。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限答案:D解析:z=i/(2-i) = (2+i)/(5-2i)。
由此可知,z对应的点位于第四象限。
故选D。
6.(2017·北京东城3月) 若将复数(2+ib)/(1+i)表示为a+bi(a,b∈R,i是虚数单位)的形式,则a的值为( )。
A。
-2 B。
-1 C。
2 D。
1答案:A解析:(2+ib)/(1+i) = [(2+ib)(1-i)]/2 = 1-b+i(2-b)/2.由此可知,a=-2.故选A。
7.(2017·北京西城4月) 设i是虚数单位,复数z=tan45°-i·sin60°,则z^2等于( )。
高中数学《复数》高考真题汇总(详解)——精品文档
高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
高考文科数学复数 (答案详解)
1.(2012浙江卷)已知i 是虚数单位,则31i i+-= A .1-2i B.2-i C.2+i D.1+2i2.(2012湖北)若3i i 1ib a b +=+-(a ,b 为实数,为虚数单位),则a b +=. 3.(2012山东)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为()A.3+5iB.3-5iC.-3+5iD.-3-5i4.(2012江苏)设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________5.(2012福建)复数2)2(i +等于()A .i 43+B .i 45+C .i 23+D .i 25+6.(2012安徽)复数z 满足:()2z i i i -=+;则z =()A.1i --B.1i -C.i -1+3D.i 1-27.(2012北京)在复平面内,复数103i i +对应的点坐标为() A .(1,3)B .(3,1) C .(1,3-) D .31-(,)8.(2012广东)设i 为虚数单位,则复数34i i+=( ) A.43i -- B.43i -+ C.i 4+3 D.i 4-3 9.(2012湖南)复数(1)z i i =+(i 为虚数单位)的共轭复数是()A .1i --B .1i -+C .1i -D .1i +10.(2012江西)若复数z=1+i (i 为虚数单位) z -是z 的共轭复数,则2z +z -²的虚部为A.0B.-1C.1D.-211.(2012辽宁)复数11i =+ A.1122i - B.1122i + C.1i - D.1i + 12.(2012陕西)设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i +为纯虚数”的() A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 13.(2012上海)计算:ii +-13=(i 为虚数单位). 14.(2012天津)i 是虚数单位,复数534ii +-=A.1-iB.-1+iC.1+iD.-1-i15.(2012新课标)复数z =32i i-++的共轭复数是 A.2i + B.2i - C.1i -+ D.1i --答案1.【答案】D【命题意图】本题主要考查了复数的四则运算法则,通过利用分母实数化运算求解。
高考数学复数习题及答案 百度文库
一、复数选择题1.设复数1iz i=+,则z 的虚部是( )A .12B .12iC .12-D .12i -2.212ii+=-( ) A .1B .−1C .i -D .i3.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C .z =D .复数z 在复平面内对应的点在第四象限4.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.已知复数21iz i=-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若复数1z i =-,则1zz=-( )A B .2C .D .47.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i8.若1m ii+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D9.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2C .10D11.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( )A .6πB .3π C .23πD .43π 12.若复数z 满足213z z i -=+,则z =( ) A .1i + B .1i - C .1i -+D .1i --13.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1 B .1C .i -D .i14.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .1二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 18.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-19.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-20.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈ D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =21.设复数z 满足1z i z+=,则下列说法错误的是( )A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z =22.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 23.复数z 满足233232iz i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =24.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限25.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 26.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =27.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=28.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++=29.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=30.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:. 解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .2.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i ii i i i i +++++====--+-, 故选:D3.C 【分析】利用复数的除法运算求出,即可判断各选项. 【详解】 , ,则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.4.A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚解析:A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚部1>0 ∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.5.B 【分析】对复数进行化简,再得到在复平面内对应点所在的象限. 【详解】,在复平面内对应点为,在第二象限. 故选:B.解析:B 【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限. 【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.6.A 【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由,得, 则, 故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.7.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为,故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.8.C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.9.C 【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果. 【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限, 故选:C .解析:C 【分析】由已知得到2021(2)(2)i i iz -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果. 【详解】由题可得,2021(2)(2)5i z i ii -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限, 故选:C .10.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.11.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为,故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )3322Z i O OZ ππ=+=+2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.12.A 【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果. 【详解】 设,则, ,,解得:, . 故选:A.解析:A 【分析】采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果. 【详解】设(),z a bi a b R =+∈,则z a bi =-,()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:11a b =⎧⎨=⎩,1z i ∴=+. 故选:A. 13.B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由, 得, ,则的虚部是1. 故选:.解析:B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求. 【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i iz i i i i ++--====-++-, ∴2z i =+,则z 的虚部是1. 故选:B .14.C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C15.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC.18.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.20.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB 【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.21.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.22.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.23.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.24.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.25.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.26.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.27.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 28.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m=时,1z =-,则1z =-,故A 错误;对于B ,若复数2z=,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z 为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.29.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。
高考数学《复数》真题练习含答案
高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
高中复数练习题及讲解及答案
高中复数练习题及讲解及答案### 高中复数练习题及讲解及答案#### 练习题1. 复数的加减法- 计算以下复数的和:\(3 + 4i\) 和 \(1 - 2i\)。
2. 复数的乘法- 求 \((2 + 3i)(1 - i)\) 的乘积。
3. 复数的除法- 计算 \(\frac{2 + i}{1 + i}\)。
4. 复数的共轭- 找出 \(3 - 4i\) 的共轭复数。
5. 复数的模- 求 \(5 + 12i\) 的模。
6. 复数的幂运算- 计算 \((2 + i)^2\)。
7. 复数的指数形式- 将 \(8\) 表示为 \(2\) 的幂次形式。
8. 复数的极坐标形式- 将 \(-3 - 4i\) 转换为极坐标形式。
9. 复数的三角函数- 求 \(\sin(3 + 4i)\)。
10. 复数的对数- 计算 \(\log(-8 + 0i)\)。
#### 讲解复数是实数和虚数的组合,形如 \(a + bi\),其中 \(a\) 和 \(b\)是实数,\(i\) 是虚数单位,满足 \(i^2 = -1\)。
1. 加减法:直接对实部和虚部分别进行加减。
2. 乘法:使用分配律,然后合并同类项。
3. 除法:将分母的实部和虚部合并,然后乘以共轭复数,简化表达式。
4. 共轭复数:改变虚部的符号。
5. 模:计算 \(\sqrt{a^2 + b^2}\)。
6. 幂运算:使用二项式定理或幂的性质。
7. 指数形式:使用欧拉公式 \(e^{ix} = \cos(x) + i\sin(x)\)。
8. 极坐标形式:表示为 \(r(\cos(\theta) + i\sin(\theta))\),其中 \(r\) 是模,\(\theta\) 是辐角。
9. 三角函数:使用复数的指数形式和欧拉公式。
10. 对数:首先将复数转换为极坐标形式,然后应用对数的性质。
#### 答案1. \(4 + 2i\)2. \(2 + 5i\)3. \(3 - i\)4. \(3 + 4i\)5. \(13\)6. \(3 + 4i\)7. \(2^3\)8. \(5(\cos(-\pi/4) + i\sin(-\pi/4))\)9. 无实数解,因为 \(\sin\) 函数在复数域内没有定义。
高考数学真题题型分类解析专题专题02 复数
一、复数的概念
( ) 叫虚数单位,满足 ,当 时, . 1 i
i2 = −1 k ∈ Z
i 4k = 1, i 4 k +1 = i, i 4k + 2 = −1, i 4k +3 = −i
(2)形如 a + bi(a, b∈ R) 的数叫复数,记作 a +bi∈C .
高考数学真题题型分类解析 专题 02 复数
命题解读
考向
高考对复数的考查,重点是复数的运 共轭复数、复数的除法运算
算、概念、复数的模、复数的几何意义 等,难度较低.
复数的乘法运算 复数的几何意义
复数的模
考查统计 2022·新高考Ⅰ卷,2 2023·新高考Ⅰ卷,2 2024 新高考Ⅰ卷,2 2022·新高考Ⅱ卷,2 2023 新高考Ⅱ卷,1 2024·新高考Ⅱ卷,1
综上所述,无论方程的判别式b2 −4ac 的符号如何,韦达定理都成立,于是韦达定理能被推广到复数根的
情况,即实系数一元二次方程ax2 +bx + c = 0( a 、b 、c∈ R 且a ≠ 0 )的两个根与系数满足关系
, x1
+
x2
=
−
b a
x1 x2
=
c a
4 / 11
一、单选题
1.(2024·安徽芜湖·三模)已知复数
=
(1− i)2
−2i
=
= −1− i .
−2i
故选:D
5.(2024·山东德州·三模)已知复数 z 满足: z − i(2 + z) = 0 ,则 z = ( )
. . . . A −1− i B −1+ i C 1+ i D 1− i 【答案】B
历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
高考数学专题02 复数(解析版)
专题02 复数一、单选题1.(2022·河北深州市中学高三期末)已知复数()()2i 1i z a =++(其中i 为虚数单位,a R ∈)在复平面内对应的点为()1,3,则实数a 的值为( ) A .1 B .2C .1-D .0【答案】A 【解析】 【分析】先利用复数的乘法化简,再利用复数的几何意义求解. 【详解】因为()()()2i 1i 22i z a a a =++=-++, 又因为复数在复平面内对应的点为()1,3,所以2123a a -=⎧⎨+=⎩,解得1a = 故选:A2.(2022·河北保定·高三期末)()()2212i 1i --+=( ) A .32i -- B .36i -- C .32i - D .36i -【答案】B 【解析】 【分析】根据复数的四则运算计算即可. 【详解】22(12i)(1i)34i 2i 36i --+=---=--.故选:B3.(2022·河北张家口·高三期末)已知12z i =-,则5iz=( ) A .2i -+ B .2i - C .105i -D .105i -+【答案】A 【解析】 【分析】利用复数的除法化简可得结果. 【详解】()()()5i 12i 5i 5i2i 12i 12i 12i z +===-+--+, 故选:A.4.(2021·福建·莆田二中高三期末)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10C .11D .无数【答案】C 【解析】 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4kZ ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C5.(2022·山东省淄博实验中学高三期末)设复数z 满足()23i 32i z -=+,则z =( )A.12 B C .1 D 【答案】C 【解析】 【分析】根据给定条件结合复数除法计算复数z ,进而计算z 的模作答. 【详解】因复数z 满足()23i 32i z -=+,则32i (32i)(23i)13ii 23i (23i)(23i)13z +++====--+, 所以1z =. 故选:C6.(2022·山东枣庄·高三期末)已知i 为虚数单位,则2022i =( ). A .1 B .1- C .I D .i -【答案】B 【解析】 【分析】由于41i =,故2022i 可以化简为2i ,即可得到答案. 【详解】20224505+22i i ==i ⨯=1-.故选:B.7.(2022·山东德州·高三期末)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】根据复数的模长公式以及四则运算得出z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】21i 22|2i |i i +=+=-=z =则复数z 在复平面内所对应的点坐标为⎝⎭,在第一象限.故选:A8.(2022·山东淄博·高三期末)已知复数z 是纯虚数,11iz+-是实数,则z =( ) A .-i B .iC .-2iD .2i【答案】B 【解析】 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B9.(2022·山东临沂·高三期末)已知复数26i1iz +=-,i 为虚数单位,则z =( )A.B .C .D .【答案】C 【解析】 【分析】利用复数除法运算求得z ,然后求得z . 【详解】 ()()()()()()()()26i 1i 26i 1i 13i 1i 24i1i 1i 2z ++++===++=-+-+,z =故选:C10.(2022·湖北武昌·高三期末)已知复数1i z =-,则2iz=-( ) A .13i 55-B .13i 55--C .13i 55-+D .1355i +【答案】D 【解析】 【分析】先得出z ,由复数的乘法运算可得答案. 【详解】复数1i z =-,则1i z =+则()()()()1i 2i 1i 13i 2i 2i 2i 2i 5z ++++===---+ 故选:D11.(2022·湖北·黄石市有色第一中学高三期末)已知复数数列{}n a 满足12i a =,1i i 1n n a a +=++,N n *∈,(i 为虚数单位),则10a =( ) A .2i B .2i - C .1i + D .1i -+【答案】D 【解析】 【分析】推导出数列{}i n a -是等比数列,确定该数列的首项和公比,即可求得10a 的值. 【详解】由已知可得()1i i i n n a a +-=-,因此,数列{}i n a -是以1i i a -=为首项,以i 为公比的等比数列,所以,91010i i i i 1a -=⋅==-,故101i a =-+.故选:D.12.(2022·湖北江岸·高三期末)已知()12i 43i z -=-,则z =( ) A .10i +B .2i +C .2i -D .25i +【解析】 【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果. 【详解】 由已知可得()()()()43i 12i 43i 105i2i 12i 12i 12i 5z -+-+====+--+,因此,2i z =-. 故选:C.13.(2022·湖北襄阳·高三期末)下面是关于复数22i 1i z =-(i 为虚数单位)的命题,其中真命题为( )A .2z =B .复数z 在复平面内对应点在直线y x =上C .z 的共轭复数为11i 22-D .z 的虚部为1i 2-【答案】B 【解析】 【分析】化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项即得. 【详解】∵22i 11i 1i 1i 2z ---===--,所以z =A 错误;所以复数z 在复平面内对应点坐标为11(,)22--,在直线y x =上,B 正确;所以z 的共轭复数为11i 22-+,C 错误;所以z 的虚部为12-,D 错误.故选:B .14.(2022·湖北省鄂州高中高三期末)复数4i1iz =+,则z =( ) A .22i -- B .22i -+C .22i +D .22i -【答案】D 【解析】先计算z ,再根据共轭复数的概念即可求解. 【详解】根据复数除法的运算法则可得41i z i =+()()()414422112i i i i i i -+===+-+ ,所以可得其共轭复数22z i =-.故选:D.15.(2022·湖北·高三期末)已知复数121i,i z z =-=,则复数12z z 的共轭复数的模为( ) A .12 B2C .2 D【答案】D 【解析】 【分析】根据复数的除法运算得121i z z =--,再根据共轭复数的概念与模的公式计算即可. 【详解】解:因为121i,i z z =-=, 所以()121iii 1i 1i z z -==--=--, 所以复数12z z 的共轭复数为1i -+.故选:D16.(2022·湖北·恩施土家族苗族高中高三期末)若1i z =-+.设zz ω=,则ω=( ) A .2i B .2C .22i +D .22i -【答案】B 【解析】 【分析】根据1i z =-+求出1i z =--,结合复数的乘法运算即可. 【详解】由1i z =-+,得1i z =--,所以2(1i)(1i)=(i 1)=2zz ω==-+----. 故选:B17.(2022·湖南常德·高三期末)已知复数z 满足:()1i i z +=,则z z ⋅=( )A .12 B C .1D .i 2【答案】A 【解析】 【分析】首先根据复数的除法运算求出z ,然后根据复数的乘法运算即可求出结果. 【详解】 因为(1)z i i +=, 所以()()i 1i i 1i 11i 1i (1i)1i 222z -+====+++-, 因此11111i i 22222z z ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭⋅=.故选:A.18.(2022·湖南娄底·高三期末)复数()i 3i z =-⋅在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】由复数乘法法则计算出z ,然后可得其对应点的坐标,得所在象限. 【详解】∵()3i i 13i z =-=+⋅,∴z 在复平面内对应的点为()1,3,位于第一象限. 故选:A .19.(2022·湖南郴州·高三期末)已知i 为虚数单位,复数z 满足()i 123i 4z +=+,则z 的共轭复数z =( ) A .12i - B .12i +C .2i -D .2i +【答案】B 【解析】根据复数的模和除法运算,即可得到答案; 【详解】 |43i |55(12i)12i 12i 12i 5z +-====-++ ∴12i z =+,故选:B20.(2022·广东揭阳·高三期末)复数z 满足()1i 1i(i z +=-为虚数单位),则z 的模为( ) A.12-B .12C .1 D【答案】C 【解析】 【分析】先做除法运算求出复数z ,再根据复数模的计算公式求其模. 【详解】由()1i 1i z +=-得1ii 1iz -==-+,从而i 1z =-= 21.(2022·广东潮州·高三期末)已知i 为虚数单位,复数21i 1i -=+z ,则z 的虚部为( )A .0B .-1C .-iD .1【答案】B 【解析】 【分析】化简复数z 1i =-, z 的虚部为i 前面的系数,即可得到答案. 【详解】21i 22(1-i)1i 1i 1i (1i)(1-i)z -====-+++.则z 的虚部为-1.故选:B.22.(2022·广东罗湖·高三期末)已知复数()1i i =+⋅z (i 为虚数单位),则z 的共轭复数z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D 【解析】求出复数z,进而可得其共轭复数.【详解】()1i i=1+iz=+⋅-,则1iz=--故选:D.23.(2022·广东清远·高三期末)已知i为虚数单位,复数z的共轭复数z满足(1i)|1|+=z,则z=()A.1i-B.1i+C.22i-D.22i+【答案】B【解析】【分析】结合复数除法运算求出z,进而得出z.【详解】因为21i1i===-+z,所以1iz=+.故选:B24.(2022·广东汕尾·高三期末)若复数z满足1i12iz+=+其中(i为虚数单位),则复数z的共轭复数为()A.3i5--B.3i5-+C.3i5-D.3i5+【答案】D 【解析】【分析】化简可得3i5z-=,根据共轭复数的概念,即可得答案.【详解】因为1i(1i)(12i)3i12i(12i)(12i)5z++--===++-,所以3i5z+ =,故选:D.25.(2022·江苏通州·高三期末)20221i1i-⎛⎫=⎪+⎝⎭()A .1B .iC .-1D .-i【答案】C 【解析】 【分析】由复数的除法和复数的乘方运算计算. 【详解】21i (1i)i 1i (1i)(1i)--==-+-+, 所以2022202221i (i)i 11i -⎛⎫=-==- ⎪+⎝⎭.故选:C .26.(2022·江苏宿迁·高三期末)已知复数z 满足()1i 4i z +=,则z =( ) A.2 B C .D .【答案】C 【解析】 【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果. 【详解】由已知可得()()()()4i 1i 4i2i 1i 22i 1i 1i 1i z -===-=+++-,因此,z = 故选:C.27.(2022·江苏扬州·高三期末)若复数z =202112i +(i 为虚数单位),则它在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】 化简复数z =202112i +,得到其对应点的坐标即可解决.【详解】z 202112i ==+12i =+2i 21i 555-=-, 则z 在复平面上对应的点为21(,)55Z -,Z 位于第四象限.故选:D28.(2022·江苏海安·高三期末)已知复数z 满足(1-i)z =2+3i (i 为虚数单位),则z =( ) A .-12+52iB .12+52iC .12-52iD .-12-52i 【答案】A 【解析】 【分析】利用复数的运算法则求解. 【详解】 ∵(1-i)z =2+3i, ∴()()()()23i 1i 23i 15i 15i 1i 1i 1i 222z +++-+====-+-+-. 故选:A.29.(2022·江苏如东·高三期末)已知复数z 满足202120222023i 4i 3i z =-,则z =( ) A .4+3i B .4-3iC .3+4iD .3-4i【答案】C 【解析】 【分析】将202120222023i 4i 3i z =-中的202120222023i ,i ,i ,根据41i = 化简,即可得答案. 【详解】 因为41i =,故由202120222023i 4i 3i z =-可得:23i 4i 3i z =-,即4i 334i z =+=+, 故选:C.30.(2022·江苏苏州·高三期末)设i 为虚数单位,若复数(1i)(1i)a -+是纯虚数,则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】 【分析】用复数的乘法法则及纯虚数的定义即可. 【详解】(1i)(1i)1i i 1(1)i a a a a a -+=+-+=++-为纯虚数,10a ∴+=,1a ∴=-,故选:A .31.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【解析】 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C. 二、多选题32.(2022·河北唐山·高三期末)已知复数i z a b =+(,a b ∈R 且0b ≠),z 是z 的共扼复数,则下列命题中的真命题是( ) A .z z +∈R B .z z -∈RC .z z ⋅∈RD .zz∈R【答案】AC 【解析】 【分析】由题知i z a b =-,进而根据复数的加减乘除运算依次讨论各选项即可得答案. 【详解】解:对于A 选项,i z a b =+,i z a b =-,所以2z z a +=∈R ,故正确; 对于B 选项,i z a b =+,i z a b =-,2i z z b -=∉R ,故错误;对于C 选项,i z a b =+,i z a b =-,22z z a b ⋅=+∈R ,故正确;对于D 选项,i z a b =+,i z a b =-,()22222222i i i i z a b ab z a a b a b a b b a b --===+-+-+, 所以当0a =时,z z ∈R ,当0a ≠时,zz ∉R ,故错误.故选:AC33.(2022·山东莱西·高三期末)已知复数()21i z a a =+-,i 为虚数单位,a R ∈,则下列正确的为( )A .若z 是实数,则1a =-B .复平面内表示复数z 的点位于一条抛物线上C .zD .若21z z =+,则1a =±【答案】BC 【解析】 【分析】以实数定义求出参数a 判断选项A ;以复数z 对应点的坐标判断选项B ;求出复数z 的模判断选项C ;以复数相等求出参数a 判断选项D. 【详解】选项A :由复数()21i z a a =+-是实数可知210a -=,解之得1a =±.选项A 判断错误;选项B :复数()21i z a a =+-在复平面内对应点2(,1)Z a a -,其坐标满足方程21y x =-,即点2(,1)Z a a -位于抛物线21y x =-上. 判断正确;选项C :由()21i z a a =+-,可得z ===判断正确; 选项D :21z z =+ 即()()221i =2121i a a a a +-+--可得()2221121a a a a =+⎧⎪⎨-=--⎪⎩,解之得1a =-.选项D 判断错误. 故选:BC34.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【解析】 【分析】若i z a b =+ ,则i z a b =-,z z ==,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC35.(2022·江苏如皋·高三期末)关于复数12z =- (i 为虚数单位),下列说法正确的是( )A .|z |=1B .z +z 2=-1C .z 3=-1D .(z +1)3=i【答案】AB 【解析】 【分析】根据复数模的计算公式求得复数的模,可判断A;根据复数的乘方运算可判断B,C,D. 【详解】由复数12z =-,可得||1z == ,故A 正确;2211112222z z +=--=-- ,故B 正确;3222111()1222z z z =⋅=--+--=,故C 错误;3221111(1)(1)(1)(((12222z z z ⎛⎫+=++=+=-=- ⎪ ⎪⎝⎭,故D 错误, 故选:AB.36.(2022·江苏苏州·高三期末)下列命题正确的是( ) A .若12,z z 为复数,则1212z z z z =⋅ B .若,a b 为向量,则a b a b ⋅=⋅C .若12,z z 为复数,且1212z z z z +=-,则120z z =D .若,a b 为向量,且a b a b +=-,则0a b ⋅= 【答案】AD 【解析】 【分析】根据复数运算、向量运算的知识对选项进行分析,从而确定正确选项. 【详解】令1i z a b =+,()2i ,,,R z c d a b c d =+∈,,12()i z z ac bd ad bc =-++,12z z ===1z =2z =1212z z z z ∴=⋅,A 对;cos a b a b θ⋅=⋅⋅,cos a b a b a b θ∴⋅=⋅⋅=⋅不一定成立,B 错; 12()()i z z a c b d +=+++,12()()i z z a c b d -=-+-,1212z z z z -=+,0ac bd ∴+=,12(i)(i)()i 0z z a b c d ac bd ad bc =++=-++≠,C 错.将a b a b +=-两边平方并化简得0a b ⋅=,D 对. 故选:AD 三、填空题37.(2021·福建·莆田二中高三期末)设x ∈R ,记[]x 为不大于x 的最大整数,{}x 为不小于x 的最小整数.设集合{}|23,A z z z C =≤⎡⎤≤∈⎣⎦,{}{}|23,B z z z C =≤≤∈,则A B 在复平面内对应的点的图形面积是______ 【答案】5π 【解析】 【分析】依题意表示出集合{}|24,A z z z C =≤<∈,{}|13,B z z z C =<≤∈,从求出A B ,再根据复数的几何意义求出复数z 的轨迹,即可得解; 【详解】解:依题意由23z ≤⎡⎤≤⎣⎦,所以24z ≤<,由{}23z ≤≤,所以13z <≤,所以{}{}|23,|24,A z z z C z z z C =≤⎡⎤≤∈=≤<∈⎣⎦,{}{}{}|23,|13,B z z z C z z z C =≤≤∈=<≤∈,所以{}|23,A B z z z C =≤≤∈设()i ,z x y x y R =+∈,由23z ≤≤,所以23≤,所以2249x y ≤+≤,所以复数z 再复平面内对应的点为在复平面内到坐标原点的距离大于等于2且小于等于3的圆环部分,所以圆环的面积()22325S ππ=-=故答案为:5π38.(2022·广东佛山·高三期末)在复平面内,复数z 对应的点的坐标是(3,5)-.则(1i)z -=___________. 【答案】28i -- 【解析】 【分析】根据给定条件求出复数,再利用复数的乘法运算计算作答. 【详解】在复平面内,复数z 对应的点的坐标是(3,5)-,则35i z =-,所以(1i)(1i)(35i)28i z -=--=--. 故答案为:28i --39.(2022·江苏常州·高三期末)i 是虚数单位,已知复数z 满足等式2i0i z z+=,则z 的模z =________.【解析】 【分析】以复数运算规则和复数模的运算性质对已知条件进行变形整理,是本题的简洁方法. 【详解】 由2i 0i z z +=,可得2i i z z =- 则有2ii z z-=,即i 2i 2z z ⨯=⨯-=,故有z =。
新高考数学计算题型精练 复数的四则运算(解析版)
新高考数学计算题型精练复数的四则运算1.34i i +的共轭复数为().A .1i +B .1i-C .1i-+D .1i--【答案】A【详解】因为34i i 1i +=-,则其共轭复数为1i +.故选:A 2.若22i i 1i z +=+,则z =()A .13i22+B .13i22-C .13i22-+D .13i22--【答案】B 【详解】因为2i 1(2i 1)(1i)13i 13i 1i (1i)(1i)222z ---+====+++-,所以13i 22z =-.故选:B 3.已知i i z z +=,则z =()A2B .0C .12D .1【答案】A【详解】设i z a b =+,则()21i i i i a b a b b a ++=+=-+,故1a b b a =-⎧⎨+=⎩,解之得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以2z ==.故选:A 4.已知i1i z=+(其中i 为虚数单位),若z 是z 的共轭复数,则z z -=()A .1-B .1C .i-D .i【答案】D 【详解】由i 1i z=+,则()()()i 1i i 1i 1i 1i 1i 2z -+===++-,则1i 2z -=,所以i z z -=.故选:D .5.543i=-()A .43i-+B .43i +C .43i55-+D .43i55+【答案】D【详解】()()()()543i 543i 543i 43i 43i 43i 2555++===+--+.故选:D 6.若复数z 满足i 43i z ⋅=+,则z =()A .2BC .3D .5【答案】D【详解】()43i i 43i 4i 3i 43i 34i i i i 1z z +⋅+-⋅=+∴====-⋅- ,,5z ∴=.故选:D.7.若a 为实数,且7i2i 3ia +=-+,则=a ()A .2B .1C .1-D .2-【答案】C【详解】由题意得,()()2i 3i 7i1iia -+--===-,故选:C .8.2(1=()A .2+B .2-C .2-+D .2--【答案】C【详解】22(113i 2+=++=-+;故选:C.9.已知复数3i2i 12iz +=++,则z =()A .1BC .2D .【答案】B【详解】因为()()3i 12i 3i2i 2i 1i 2i 1i 12i 5z +-+=+=+=-+=++,所以z =.故选:B10.()1i 1z -=,则z =()A .1i +B .1i -C .22i +D .22i-【答案】B【详解】()1i 12z -=-= ,()()()()21i 21i 21i 1i 1i 1i 2z ++∴====+--+,1i z ∴=-.故选:B.11.设11iz =+,则z z -=()A .i-B .iC .1D .0【详解】由题意可得11i 11i 1i 222z -===-+,则11i 22z =+,所以1111i i i 2222z z ⎛⎫⎛⎫-=--+=- ⎪ ⎪⎝⎭⎝⎭.故选:A12.已知i 为虚数单位,复数13i2iz -=+,则z =()A .2BC D【答案】C 【详解】()()()()13i 2i 13i 17i 17i 2i 2i 2i 555z -----====--++-,则z =故选:C.13.已知i 为虚数单位,复数z满足(13i)i z =,则z =()A .i -B iC 1i2D 1i 2【答案】D【详解】依题意,2i 1i422z -===-,所以1i 22z =+.故选:D 14.若复数()43i i z =-,则z =()A .25B .20C .10D .5【答案】D【详解】因为()43i i 34i z =-=+,所以5z ==,故选:D.15.设复数z 满足()1i 4z -=,则z =()A .B .1C D .2【答案】A【详解】由()1i 4z -=,得()()()41i 444i 22i 1i 1i 1i 2z ⨯++====+--⨯+,所以z ==故选:A.16.已知复数()()()1i 2i z a a =-+∈R 在复平面对应的点在实轴上,则=a ()A .12B .12-C .2D .-2【详解】依题意,()()()()1i 2i 22i z a a a =-+=++-,因为复数z 在复平面对应的点在实轴上,所以20a -=,解得2a =.故选:C.17.已知复数z 满足(1)(23i)32i z --=+,则z =()A .0B .iC .1i-+D .1i+【答案】D【详解】∵(1)(23i)32i z --=+,∴()()()()32i 23i 32i 13i1111i 23i 23i 23i 49z +++=+==+=+--++,故选:D.18.若复数z 满足i 12i z ⋅=-,则z =()A .2i --B .2i-+C .2i+D .2i-【答案】B【详解】由已知可得,12i 2i i z -==--,从而2i z =-+.故选:B.19.设i 为虚数单位,若复数z 满足3i i 1iz -=-,则z 的虚部为()A .2-B .1-C .1D .2【答案】D【详解】由()()()()3i 1i 3i 42i2i i 1i 1i 1i 2z -+-+====+--+,则2i 1z =-,所以z 的虚部为2.故选:D .20.已知复数z 满足(2i)24i z +=-,则z 的虚部为()A .2i -B .2iC .2-D .2【答案】C 【详解】()()()()24i 2i 24i 10i2i 2i 2i 2i 5z ----====-++-,故虚部为2-.故选:C 21.已知i 12iz=-,i 为虚数单位,则z =()A .2i -+B .2i-C .2i+D .2i--【答案】C 【详解】因为i 12iz=-,则()i i 122i z =-=+.故选:C.22.已知复数z 满足()()1i 2i 2i z --=,则z 的虚部为()A .1-B .i-C .3D .3i【答案】C【详解】因为()()()2i 1i 2i2i 2i i 12i 13i 1i 1i 1i z +=+=+=-+=-+--+,所以z 的虚部为3,故选:C.23.已知复数()i z a a =+∈R 满足5z z ⋅=,则a 的值为()A B .2C .D .2±【答案】D【详解】因为i z a =+,所以2(i)(i)15z z a a a ⋅=+-=+=,解得2a =±,故选:D 24.已知复数z 是方程2220x x +=-的一个根,则z =()A .1B .2C D【答案】C【详解】因为方程2220x x +=-是实系数方程,且()224240∆=--⨯=-<,所以该方程有两个互为共轭复数的两个虚数根,即22i1i 2z ±==±,所以z ==故选:C 25.若复数()2iR 2ia z a -=∈+是纯虚数,则=a ()A .-2B .2C .-1D .1【答案】D【详解】由题意设i z b =(0b ≠),2ii 2ia zb -==+,即()2i i 2i 2i a b b b -=+=-+,则22a b b =-⎧⎨=-⎩,解得:1,1a b ==-.故选:D 26.已知复数z 满足()1i 3i z +=-,则复数z =()A .2BC .D【答案】B【详解】因为()1i 3i z +=-,则()()()()3i 1i 3i 24i12i 1i 1i 1i 2z ----====-++-,因此,z ==故选:B.27.已知复数1i 22z =+,则3z =()A .34B C .1D 【答案】C【详解】法一:由复数乘法运算得231111i i i i =i 22222222z ⎫⎫⎛⎫=++=++⎪ ⎪ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,则31z =,法二:由1||12z ==,则31z =,故选:C 28.已知复数z 满足i 43i z ⋅=+,则z =___________.【答案】5【详解】由i 43i z ⋅=+得2243i 4i 3i 4i 334i i i 1z ++-====--,因为5z ==,所以5z z ==,故答案为:5.29.3ii+=______【答案】13i -【详解】()23i i3i 13i i i ++==-.故答案为:13i -30.复数z 满足26i z z +=-(i 是虚数单位),则z 的虚部为___________.【答案】-1【详解】令i z a b =+,则i z a b =-,所以()()22i i 3i=6i z z a b a b a b +=++-=+-,故z 的虚部为1-.故答案为:-1.31.设复数z 满足()1i 2i z +=(i 为虚数单位),则z =____________.【答案】1i+【详解】∵()1i 2i z +=,则()()()i 1i ii i i i 221111z -===+++-.故答案为:1i +.32.复数1z ,2z 在复平面上对应的点分别为()12,1Z ,()21,2Z -,则12z z +=________.【答案】3i -/-i+3【详解】因为复数1z ,2z 在复平面上对应的点分别为()12,1Z ,()21,2Z -,所以12i z =+,212i z =-,所以123i z z +=-,故答案为:3i -.33.若复数21iz =+(i 为虚数单位),则i z -=___________.【详解】()()()()21i 21i 21i 1i 1i 1i 2z --====-++-,所以i 12i z -=-==.故答案34.若复数z 满足(1i)12i z -=+(i 是虚数单位),则复数z =_____________.【答案】13i 22-+.【详解】由(1i)12i z -=+可得()()()()12i 1i 12i 13i 13i 1i 1i 1i 222z +++-+===--+--+.故答案为:13i 22-+.35.若()12i 1z +=,则()1i z +=______【答案】62i55-【详解】因为()12i 12z +===,所以()212i 224i 12i 145z --===++,故()()24i 22i 4i 4621i 1i i 5555z -+-++=⨯+==-.故答案为:62i 55-.36.若复数z 满足2136i z -=+(其中i 是虚数单位),则z =______.【答案】23i-【详解】由2136i z -=+,得246i z =+,∴23i z =+,则23i z =-.故答案为:23i -.37.已知复数i 12i 2iz=-++,则z 的虚部为______.【答案】4-【详解】解:由题意得(12i)(2i)(43i)i34i i i iz -++-+===+⋅,则34i z =-,所以z 的虚部为-4,故答案为:-438.已知复数z 满足210z z ++=,则z z ⋅=_____________.【答案】1【详解】因为22131024z z z ⎛⎫++=++= ⎪⎝⎭,即2213i 242z ⎛⎫⎛⎫+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,12z =-或1i 22z =-+,若12z =-,则122z =-+,则111312244z z ⎛⎫⎛⎫⋅=---=+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,若1i 22z =-+,则12z =-,则1113i 1222244z z ⎛⎫⎛⎫⋅=-+-=+= ⎪⎪ ⎪⎪⎝⎭⎝⎭.综上所述,1z z ⋅=.故答案为:1.39.已知复数z 满足()1i i z -=(i 为虚数单位),则z 的虚部为_____________.【答案】12/0.5【详解】由()1i i z -=得:()()()i 1i i 1i 11i 1i 1i 1i 222z +-+====-+--+,z ∴的虚部为12.故答案为:12.40.在复平面内,复数z 所对应的点为(1,1),则z z ⋅=___________.【答案】2【详解】由题意可知1i z =+,所以()()1i 1i 2z z ⋅=+-=,故答案为:241.已知复数z 满足()12i |43i |z +=-(其中i 为虚数单位),则复数z 的共轭复数为___________.【答案】12i+【详解】由()12i 43i 5z +=-==,得()()()()2512i 512i 512i 12i 12i 12i 14i z --====-++--,则复数z 的共轭复数为12i z =+;故答案为:12i +42.复数312i3i ++的值是_____________.【答案】17i 1010+【详解】解:312i 12i (12i)(3i)17i 17i 3i 3i 10101010+++++====++-.故答案为:17i 1010+.。
高考数学复数习题及答案 百度文库
10.B
【分析】
可得,即得.
【详解】
由,得a=1.
故选:B.
解析:B
【分析】
可得 ,即得 .
【详解】
由 ,得a=1.
故选:B.
11.D
【分析】
设,根据复数对应的向量与共线,得到,再结合求解.
【详解】
设,
则复数对应的向量,
因为向量与共线,
所以,
又,
所以,
解得或,
因为复数对应的点在第三象限,
所以,
故选:B
二、多选题
16.AC
【分析】
根据复数的运算及复数的概念即可求解.
【详解】
因为复数,
所以z的虚部为1,,
故AC错误,BD正确.
故选:AC
解析:AC
【分析】
根据复数的运算及复数的概念即可求解.
【详解】
因为复数 ,
所以z的虚部为1, ,
故AC错误,BD正确.
故选:AC
17.BC
【分析】
分、、三种情况讨论,可判断AB选项的正误;利用复数的模长公式可判断C选项的正误;化简复数,利用复数的概念可判断D选项的正误.
先求 和 的平方,再求4次方,最后求5次方,即可得结果.
【详解】
∵ , ,
∴ , ,
∴ ,
,
∴ ,
故选:D.
4.A
【分析】
根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得
【详解】
由复数为纯虚数,则,解得
则 ,所以,所以
故选:A
解析:A
【分析】
根据复数运算,化简后由纯虚数的概念可求得 ,.进而求得复数 ,再根据模的定义即可求得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复数训练题
1.(2013·山东)复数3-i 1-i
等于 ( C ) A .1+2i B .1-2i C .2+i D .2-i
2.(2013·宁夏、海南)复数3+2i 2-3i -3-2i 2+3i
= ( D ) A .0 B .2 C .-2i D .2i
3.(2013·陕西)已知z 是纯虚数,z +21-i
是实数,那么z 等于 ( D ) A .2i B .i C .-i D .-2i
4.(2013·武汉市高三年级2月调研考试)若f (x )=x 3-x 2+x -1,则f (i)= ( B )
A .2i
B .0
C .-2i
D .-2
5.(2013·北京朝阳4月)复数z =2-i 1+i
(i 是虚数单位)在复平面内对应的点位于 ( D ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
6.(2013·北京东城3月)若将复数2+i i 表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则b a
的值为 ( A )
7.(2013·北京西城4月)设i 是虚数单位,复数z =tan45°-i·sin60°,则z 2等于 ( B )
A.74-3i
B.14-3i
C.74+3i
D.14+3i 8.(2013·黄冈中学一模)过原点和3-i 在复平面内对应的直线的倾斜角为 ( D )
A.π6 B .-π6
C.23π
D.56
π 9.设a 、b 、c 、d ∈R ,若a +b i c +d i
为实数,则 ( C ) A .bc +ad ≠0 B .bc -ad ≠0
C .bc -ad =0
D .bc +ad =0
10.已知复数z =1-2i ,那么1z
= ( D ) A.55+255
i B.55-255i C.15+25i D.15-25
i 11.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2
是实数,则实数b 的值为 ( A ) A .6 B .-6 C .0 D.16
12.(2013·广东)设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=
( B )
A .2
B .4
C .6
D .8 13.若z =12+32
i ,且(x -z )4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 2等于 ( B ) A .-12+32
i B .-3+33i C .6+33i D .-3-33i
14.若△ABC 是锐角三角形,则复数z =(cos B -sin A )+i (sin B -cos A )对应的点位于( B )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
15.如果复数2-bi 1+2i
(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于 ( C )
A. 2
B.23 C .-23 D .2
16.设函数f (x )=-x 5+5x 4-10x 3+10x 2-5x +1,则f (12+32i )的值为 ( C ) A .-12+32i B.32-12
i C.12+32i D .-32+12
i 17.若i 是虚数单位,则满足(p +qi )2=q +pi 的实数p ,q 一共有 ( D ) A .1对 B .2对 C .3对 D .4对
18.已知(2x 2-x p )6的展开式中,不含x 的项是2027
,那么正数p 的值是 ( C ) A .1 B .2 C .3 D .4
19.复数z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )在复平面内对应的点位于 ( C )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
20.设复数z +i (z ∈C )在映射f 下的象为复数z 的共轭复数与i 的积,若复数ω在映射f 下的象为-1+2i ,则相应的ω为 ( A )
A .2
B .2-2i
C .-2+i
D .2+i
21.(2013·海淀4月)在复平面内,复数1+a i i
(a ∈R )对应的点位于虚轴上,则a =____0____. 22.(2013·安徽宿州二中模拟考三)i 是虚数单位,则1+C 16i +C 26i 2+C 36i 3+C 46i 4+C 56i 5+C 66i 6=_-8i_______.
23.i 为虚数单位,则=⎪⎭⎫ ⎝⎛-+201111i i
A.i -
B.1-
C.i
D.1
24.若()2,,x i i y i x y R -=+∈,则复数x yi +=( )
A.2i -+
B.2i +
C.12i -
D.12i +
25.设 i 是虚数单位,复数ai
i 1+2-为纯虚数,则实数a 为
(A )2 (B ) -2 (C ) 1-2 (D ) 12
26.设复数z满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________
27.复数512i
+
-(i 是虚数单位)的模等于 .
28.已知0<a <2,复数z =a +i (i 是虚数单位),则|z |的取值范围是
A .3)
B .5.(1,3) D .(1,5)
29.下面是关于复数21z i =-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-
()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34。