声发射
声发射技术的原理及其应用
声发射技术的原理及其应用1. 引言声发射技术是一种非破坏性检测方法,广泛应用于工程结构、材料以及地下管线等领域。
本文将介绍声发射技术的原理及其在各领域中的应用。
2. 声发射技术的原理声发射技术是通过检测材料或结构在负载下释放的声音信号来评估它们的状态和可靠性。
其原理可简述如下:•声发射源:当结构或材料发生变形或损伤时,会释放大量的弹性能量。
这些释放的能量以形式各异的声波传播出来,形成声发射信号。
声发射源可以是材料的微小裂纹、构件的变形或断裂等。
•传感器:声发射技术通常使用传感器来接收由声发射源发出的声波信号。
传感器可以是压电传感器、麦克风或加速度计等。
•数据采集:传感器将接收到的声波信号转换为电信号,并通过数据采集系统进行记录和处理。
采集到的数据可以用于进一步的分析和评估。
•分析和评估:通过对采集到的声发射信号进行分析和评估,可以确定结构或材料的状态、位置和类型等信息。
常用的分析方法包括时间域分析、频域分析和能量分析等。
3. 声发射技术的应用声发射技术在各个领域都有广泛的应用,下面将介绍其中一些主要应用。
3.1 工程结构监测声发射技术可以用于工程结构的监测和评估,例如:•桥梁:声发射技术可用于检测桥梁中的裂缝、腐蚀和变形等问题,帮助工程师及时采取维修措施,确保桥梁的安全性。
•建筑物:声发射技术可用于监测建筑物中的结构损伤,例如裂缝、脱落和变形等,以保证建筑物的结构完整性。
•输电线路:声发射技术可以感知输电线路的杆塔和绝缘子的电弧放电,提前发现线路的故障和潜在故障。
3.2 材料缺陷检测声发射技术可以用于材料缺陷的检测和评估,例如:•金属材料:声发射技术可用于检测金属材料中的裂纹、腐蚀和疲劳等问题,对于工业生产中的质量控制和安全评估非常重要。
•复合材料:声发射技术可以检测复合材料中的纤维断裂、层间剥离和断裂等问题,用于评估材料的可靠性和耐久性。
3.3 地下管线检测声发射技术可以用于地下管线的检测和监测,例如:•燃气管线:声发射技术可以用于监测燃气管线中的泄漏,通过分析声发射信号的频率和能量等特征,可以定位管线泄漏的位置。
声发射技术的基础原理PPT课件
复合材料的声发射检测
总结词
复合材料的声发射检测是评估复合材料结构完整性和性能的重要手段。
详细描述
复合材料由多种材料组成,其结构复杂,传统的无损检测方法难以有效评估其完整性。声发射技术能够检测复合 材料在受力过程中产生的声波信号,通过分析这些信号可以判断复合材料的损伤程度、界面脱粘等缺陷,为复合 材料的安全使用提供保障。
近年来,随着计算机技术和数字信号处理技术的进步,声发射技术得到了进一步的 发展和完善,提高了其检测精度和可靠性。
声发射技术的应用领域
航空航天
声发射技术用于检测飞机和航 天器的关键部件,如发动机、 机身和机翼等,以确保其安全
可靠。
石油化工
声发射技术用于检测石油和化 工管道、压力容器等设备的裂 纹和缺陷,提高设备的安全性 能。
声发射信号的预处理
01
02
03
去噪
去除声发射信号中的噪声, 提高信号的信噪比。
滤波
根据需要将信号中的特定 频率成分进行提取或滤除。
放大
将微弱的声发射信号进行 放大,以便后续处理和分 析。
声发射信号的特征提取
时域特征
提取信号的幅度、持续时 间、上升时间等时域参数。
频域特征
对信号进行频谱分析,提 取频率、带宽等频域参数。
等,这些成果为声发射技术的应用提供 了重要的技术支持。
声发射技术的发展趋势与未来展望
01
02
03
04
05
随着科技的不断发展, 声发射技术也在不断进 步和完善。未来,声发 射技术将朝着高精度、 高可靠性和智能化的方 向发展。
在高精度方面,通过改 进信号处理技术和算法, 提高声发射检测的分辨 率和准确性,实现对微 小缺陷和损伤的准确检 测。
声发射检测
声发射检测原理
声发射检测的基本原理是由外部条件(力、热、电、磁 等)的作用而使物体产生并发射声信号,接收这些信号, 加以处理,分析和研究,推断材料内部状态或缺陷性质和 状态变化的信息。声发射检测属于动态无损检测方法。 声发射技术与其他无损检测技术相比,具有两个基本 差别:1.检测动态缺陷,如缺陷扩展;2.缺陷本身发出缺 陷信息,而不是外部输入对缺陷进行扫查。 声发射检测技术的原理:
费利西蒂比大于1表示凯塞效应成立,而小于1则表示费利 西蒂效应成立。
费利西蒂比作为一种定量参数,较好地反映材料中原先所 受损伤或结构缺陷的严重程度,已成为缺陷严重性的重要 评定判据。
一般情况下,费利西蒂比越小,表示原先所受损伤或结 构缺陷越严重。树脂基复合材料等粘弹性材料,由于具有 应变对应力的迟后效应而使其应用更为有效。 在一些复合材料构件中,费利西蒂比小于0.95作为声发射 源超标的重要判据。
亚临界裂纹扩展
凯赛尔效应与费利西蒂效应
凯赛尔效应是德国学者凯赛尔在1963年研究金属声发 射特性时发现的。材料被重新加载期间,在应力值达到上 次加载最大应力之前不产生声发射信号。多数金属材料和 岩石中,可观察到明显的凯赛尔效应。 在重复加载前,如产生新裂纹或其它可逆声发射机制,凯 赛尔效应则会消失。 材料重复加载时,重复载荷到达原先所加最大载荷前发生 明显声发射的现象,称为费利西蒂效应,也可以认为是反 凯赛尔效应。 重复加载时的声发射起始载荷P1对原先最大载荷P2之比 P1/P2,称为费利西蒂比。
为啥复合材料中要取 0.95作为声发射源超标 判据?
声发射源 声电转换 信号放大 信号处理 材料局部变化成为声发射事件,而声发 射源是指声发射事件的物理源点或发生发射波的机制源。 常见的声发射源:
声发射.
声发射声发射声发射的英文全称:Acoustic Emission声发射的英文简称:AE什么是声发射?声发射就是材料中局域源快速释放能量产生瞬态弹性波的现象,有时也称为应力波发射。
材料在应力作用下的变形与裂纹扩展,是结构失效的重要机制。
这种直接与变形和断裂机制有关的源,被称为声发射源。
近年来,流体泄漏、摩擦、撞击、燃烧等与变形和断裂机制无直接关系的另一类弹性波源,被称为其它或二次声发射源。
声发射是一种常见的物理现象,各种材料声发射信号的频率范围很宽,从几Hz 的次声频、20 Hz~20K Hz的声频到数MHz的超声频;声发射信号幅度的变化范围也很大,从10m的微观位错运动到1m量级的地震波。
如果声发射释放的应变能足够大,就可产生人耳听得见的声音。
大多数材料变形和断裂时有声发射发生,但许多材料的声发射信号强度很弱,人耳不能直接听见,需要藉助灵敏的声发射的来源及发展声发射和微震动都是自然界中随时发生的自然现象,尽管无法考证人们何时首次听到声发射,但逐如折断树技、岩石破碎和折断骨头等的断裂过程无疑是人们最早听到的声发射信号。
可以十分肯定地推断“锡呜”是人们首次观察到的金属中的声发射现象,因为纯锡在塑性形变期间现代的声发射技术的开始以Kaiser五十年代初在德国所作的研究工作为标志。
他观察到铜、锌、铝、铅、锡、黄铜、铸铁和钢等金属和合金在形变过程中都有声发射现象。
他最有意义的发现是材料形变声发射的不可逆效应即:“材料被重新加载期间,在应力值达到上次加载最大应力之前不产生声发射信号”。
现在人们称材料的这种不可逆现象为“Kaiser效应”。
Kaiser同时提出了连续型和突发型声发射信号的概念。
二十世纪五十年代末,美国人Schofield和Tatro经大量研究发现金属塑性形变的声发射主要由大量位错的运动所引起[5], 而且还得到一个重要的结论, 即声发射主要是体积效应而不是表面效应。
Tatro进行了导致声发射现象的物理机制方面的研究工作, 首次提出声发射可以作为研究工程材料行为疑难问题的工具, 并预言声发射在无损检测方面具有独特的潜在优势。
声发射技术的应用原理
声发射技术的应用原理概述声发射技术是一种利用声波信号进行数据传输的技术。
该技术通过发射特定频率和振幅的声波,以达到传输数据的目的。
本文将介绍声发射技术的应用原理及其相关应用领域。
应用原理声发射技术的应用原理基于声波的特性。
通过在特定环境中产生声波并监听其传播过程中的变化,我们可以得到有关环境的信息。
声发射技术的应用原理主要包括以下两个方面:1.声波特性分析:–声波传播速度:不同介质中声波的传播速度不同,通过测量声波在不同介质中的传播速度可以获得有关介质的信息。
–声波衰减:声波在传播过程中会受到衰减,通过测量声波的衰减情况可以了解介质的特性。
–声波反射:声波在遇到障碍物时会发生反射,通过测量反射的声波可以了解障碍物的位置和形状。
–声波干扰:声波传播过程中可能会受到其他声源的干扰,通过分析干扰的声波可以了解干扰源的位置。
2.数据传输:–通过改变声波的频率、幅度等参数来表示不同的数据。
–接收端通过解码接收到的声波信号,将其转换为对应的数据。
应用领域声发射技术在许多领域中得到了广泛应用,下面列举了几个典型的应用领域:1.石油勘探:–利用声发射技术可以测量地下岩层中的声波传播速度,以分析岩层的密度、孔隙度等参数,从而判断地下是否存在油气资源。
–声发射技术还可用于检测地震活动,及时预警地震灾害并进行防护措施。
2.建筑结构健康监测:–利用声发射技术可以监测建筑结构中的裂纹、腐蚀等缺陷,提前预警潜在安全隐患。
–声发射技术还可用于检测建筑物中的渗漏问题,为修缮提供指导。
3.铁路轨道检测:–利用声发射技术可以检测铁轨的裂纹、疲劳等问题,及早修补和维护轨道,确保列车行驶的安全。
–声发射技术还可用于检测列车车轮的磨损情况,合理规划车轮的更换周期。
4.航空航天:–在航天器发射升空过程中,声发射技术可用于监测发射载具的结构健康情况,确保发射过程安全可靠。
–在航空器飞行过程中,声发射技术可用于监测发动机的工作状态,发现异常情况及时修复。
声发射及其基本原理
声发射是材料受外力或内力作用产生变形或断 裂时,以弹性波的形式释放出应变能的现象。 声发射也指固体内部的缺陷或潜在缺陷,在外 部条件作用下改变状态而自动发声。
声发射检验的基本原理就是由外部条件(如力、 温度等)的作用而使物体发声,根据物体的发 声推断物体的状态或内部结构变化。
声发射信号单参数分析方法
经历图分析方法:声发射信号经历分析 方法通过对声发射信号参数随时间或外 变量变化的情况进行分析,从而得到声 发射源的活动情况和发展趋势。最常用 和最直观的方法是图形分析。经历图分 析方法可用于进行声发射源的活动性评 价 ,如凯赛尔(Kaiser)效应评价 。
声发射信号单参数分析方法
声发射特点
声发射检测是一种动态无损检测方法。可获得关于缺陷的动态 信息,从而评价缺陷的严重性和危险性,还可连续长期监视大 型构件在使用过程中的安全性。
声发射不需移动传感器,操作简便。可以大面积检查和监视缺 陷的活动情况,确定缺陷所在位置。灵敏度高,在用声发射获 得缺陷的动态信息后,常需用超声、X射线和磁粉等方法验证, 有时需微观分析方法补充。
其他分析方法
谱分析 谱分析是工程信号处理中广泛使用的一 种方法,是通过对信号进行短时傅立叶变换, 把时域信号转换到频域中,用频谱特性去分析 和表现时域信号的特性。
小波分析 主要是小波基的选择、小波分析尺度 的选择以及特征提取的方法。
神经网络的训练与局部决策 神经网络的训练过 程的目标误差精度和最大迭代次数可根据实际 应用由用户自己设置。
声发射信号有两种基本类型
连续型:声发射信号的幅度低,仪器测试系统 的放大倍数要高(通常大于104)
突发型:幅度高的单个应力波脉冲 这种分类不是绝对的,当突发型信号的频度大
声发射原理的应用
声发射原理的应用声发射原理简介声发射原理是指声音在空气或其他介质中传播的过程。
声音是由物体振动产生的机械波,通过振动传递给周围的空气分子或其他介质分子,以波动的形式传播。
声音的传播速度取决于介质的性质,一般在空气中的传播速度为约343米/秒。
声发射原理的应用声发射原理在现实生活中有着广泛的应用,以下是几个常见的应用例子:1. 声波通信声波可以通过空气传播,因此在无线通信方面有着重要的应用。
例如,在海洋中,声波的传播速度要比无线电波的传播速度快得多。
因此,在海洋中,声波常常被用于声纳和水声通信。
声纳是一种利用水中声波传播的技术,可以用于探测水下的物体,如鱼群、潜艇等。
此外,声波还可用于水下通信,如水下电话、水下传输数据等。
2. 声音放大器声发射原理也被广泛应用于音响设备中。
声音放大器是一种将音频信号增强并输出到扬声器的设备,它利用声发射原理中的声波传播过程,将微弱的音频信号放大成可以听到的声音。
一般的音响设备由音频源、音频功放和扬声器组成,其中音频功放起到放大信号的作用。
通过声波传播,音响设备可以使音乐、对话等声音传达到听众的耳朵中。
3. 声波清洗器声波清洗器是利用声发射原理进行清洁的设备。
它通过声波的振荡和压缩,产生局部高压和低压,从而实现对物体表面的清洗。
声波清洗器广泛应用于家庭和工业清洁,如清洗眼镜、餐具、机械零件等。
通过超声波的振动作用,声波清洗器可以有效去除物体表面的污垢和细菌。
4. 声波测距仪声波测距仪是一种利用声波传播延迟时间来测量距离的设备。
它通过发送声波信号,测量声波从发射器发出到接收器接收到的时间差,进而计算出距离。
声波测距仪在工程测量、地质勘探等领域有着重要的应用。
例如,当工程师需要测量一个建筑物或地下隧道的长度时,可以使用声波测距仪来实现非接触测量。
5. 声波成像声发射原理还可以用于声波成像,这在医学领域中有着广泛的应用。
声波成像技术是一种无创性的检查方法,可以用来观察人体内部的结构和器官。
声发射技术原理
声发射技术原理声发射技术原理是一种利用声波进行通信和定位的技术。
声发射技术可以用于水下通信、地震监测、声呐定位、声纳探测等领域,具有广泛的应用前景。
声发射技术的原理主要包括声波的产生、传播和接收三个方面,下面将对这几个方面进行详细的阐述。
声波的产生是声发射技术的基础。
声波是由物体振动产生的,振动的物体会使周围的介质产生压力变化,从而形成声波。
声发射技术中常用的声源包括压电换能器、磁致伸缩换能器、电动换能器等。
这些声源可以将电能或机械能转化为声能,产生可控的声波信号。
声波的频率、幅度和波形对声发射技术的性能和应用具有重要影响,因此声源的设计和选择是声发射技术中的关键技术之一。
声波的传播是实现声发射技术的基础。
声波是一种机械波,需要介质传播。
在空气中,声波是通过空气分子的运动传播的;在水中,声波是通过水分子的振动传播的。
声波的频率、波长和传播速度由介质的性质决定,不同介质的声波传播特性也会有所不同。
声波的传播在声发射技术中需要考虑介质的声学特性、传播路径和传播损耗等因素,以实现准确的声信号传输和定位。
声波的接收是实现声发射技术应用的关键环节。
声波到达接收器时,会引起接收器内部的物理变化,如振动、压力变化等。
接收器将这些物理变化转化为电信号,经过放大、滤波、数字化等处理后,最终得到声波的相关信息。
声波的接收器和信号处理技术对声发射技术的灵敏度、分辨率和定位精度起着至关重要的作用。
声发射技术的原理涉及到声波的产生、传播和接收三个方面。
在声发射技术的研发和应用过程中,需要充分理解声波的物理特性、声源和接收器的设计原理、声波传播的特性等,以实现声发射技术在通信、定位、探测等方面的应用。
声发射技术的不断发展将会为海洋勘测、水下探测、环境监测、物资运输等领域带来更多的创新和应用可能。
声发射检测原理
声发射检测原理声发射检测是一种无损检测方法,广泛应用于钢结构、物化设备等领域,用于评估材料或结构的完整性和稳定性。
在这篇文章中,我们将介绍声发射检测的原理以及如何应用该方法检测材料或结构的缺陷。
声发射检测原理声发射是指在材料或结构受到外部负荷的作用下,产生局部应力达到材料的应力临界值时,在材料内部或表面产生的声波信号。
这些声波可以通过传感器捕捉到,用于检测材料或结构的完整性和稳定性。
声发射检测最重要的原理是利用声波传播的特性来识别材料或结构中存在的缺陷。
当材料或结构受到外部作用时,缺陷处的应力集中会引起局部弹性形变。
如果这种形变足够大,它将达到材料的临界值并导致裂纹的扩展。
此时,声波会从缺陷处传播到材料的表面并通过传感器捕获到。
这些传感器可以将声波转换为电信号并将其传输到信号处理系统进行分析和识别。
声发射检测应用声发射检测在材料和结构领域的应用非常广泛。
它可以评估材料和结构中缺陷的数量、位置、大小和形态。
以下是一些常见的应用场景:管道监测声发射检测可以用于检测管道系统中的裂纹和漏洞。
在管道上设置传感器,当管道受到外部负荷时,如果存在裂纹或漏洞,声波将通过传感器传播到信号处理器中,由此可以确定管道中的缺陷位置、大小和形态。
钢结构监测声发射检测可以用于验证大型钢结构的完整性和稳定性。
在钢结构上设置传感器,当该结构受到外部负荷时,声波将通过传感器传播到信号处理器中,并可以识别出结构中的缺陷或损伤。
桥梁监测声发射检测可以用于检测桥梁的裂纹和损伤。
在桥梁上设置传感器,当桥梁受到外部负荷时,如果存在裂纹或损伤,声波将通过传感器传播到信号处理器中,从而可以检测出桥梁中的缺陷位置、大小和形态。
航空航天元器件监测声发射检测可以用于检测航空航天元器件中的裂纹和损伤。
在元器件上设置传感器,当元器件受到外部负荷时,声波将通过传感器传播到信号处理器中,并可以识别出元器件中的缺陷或损伤。
小结声发射检测是一种无损检测方法,通过利用声波传播的特性来识别材料或结构中存在的裂纹和损伤等缺陷。
声发射实验原理
声发射实验一.原理声发射是指材料在受到外载荷作用时,其内部贮存的应变能快速释放产生弹性波从而发出声响的现象。
德国物理学家Kaiser发现经过一次应力作用的磁滞材料如金属,当再次加载到先前经受过的应力水平后,其声发射活动将突然增加,这种岩石的声发射活动能够“记忆”岩石所受过的最大应力的效应成为Kaiser效应。
从很少产生声发射到大量产生声发射的转折点成为Kaiser点,该点对应的应力即为材料先前受到的最大应力。
实验理论正是利用Kaiser点的测取来得到地应力的大小。
通常认为声发射是岩石的微破裂造成的,在岩石承载大于历史最大应力条件时,岩石出现新的微破裂,产生较强的声发射信号,出现Kaiser点。
但实际情况往往会出现在最近一次应力历史中所曾受到过的最大应力处的Kaiser效应较为明显,并非遵循上面的理论解释,并且对于某些试样,声发射信号过于剧烈且频繁,Kaiser点难于确定,于是采用重复加载的方法,利用抹录不尽点来寻找Kaiser点。
二.常规声发射实验常规声发射实验指的是单轴加载条件下的声发射实验。
1.实验装置主要由声发射仪、载荷传感器、伺服增压器、控制器、液压源以及加压缸组成。
图1. 常规声发射实验装置2.实验的基本过程MTS电液伺服系统以某一加载速率均匀的给岩样施加轴向载荷,声发射探头牢固的贴在岩心侧面上,用它来接受受载过程中的声发射信号,岩样所受的载荷及声信号同时输入Locan AT—14ch声发射仪进行处理、记录,给出岩样的声发射信号随载荷变化的关系曲线。
由上述的Kaiser效应原理,在声发射信号曲线图上找出声发射信号明显增加处,记录下此处载荷大小,即为岩石在地下该方向所受的地应力。
据此,可以求得试验岩石在深部地层所受的地应力(指主应力)。
3.实验的数据解释由于岩石在地下受三向力作用,所以要在不同方向取心进行试验,通常在室内对取自现场的岩心要在垂直方向取一块,在垂直岩心轴线平面内相隔45度取三块(如图2所示),由上述四个方向岩心进行试验测得四个方向的正应力,利用以下公式确定深部岩石地应力。
声发射技术.ppt
声发射机理
传感器
激励 (力)
信号
信号线
激励 (力)
声源
应力波
11
声发射检测基本原理
12
声发射检测的目的
确定声发射源的部位; 分析声发射源的性质; 确定声发射发生的时间或载荷; 评定声发射源的严重性。
13
声发射技术的特点(优点)
声发射是一种动力学检验方法,声发射探测到的 能量来自被测试物体本身,而不是象超声或射线 探伤方法一样由无损检测仪器提供; 声发射检测方法对线性缺陷较为敏感,它能探测 到在外加结构应力下这些缺陷的活动情况,稳定 的缺陷不产生声发射信号; 在一次试验过程中,声发射检验能够整体探测和 评价整个结构中缺陷的状态; 可提供缺陷随载荷、时间、温度等外变量而变化 的实时或连续信息,因而适用于工业过程在线监 控及早期或临近破坏预报;
22
金属加工
工具磨损和断裂的探测; 打磨轮或整形装置与工件接触的探测; 修理整形的验证; 金属加工过程的质量控制; 振动探测; 锻压测试; 加工过程的碰撞探测和预防。
23
交通运输业
长管拖车、公路和铁路槽车的检测和缺 陷定位; 铁路材料和结构的裂纹探测; 桥梁和隧道的结构完整性检测; 卡车和火车滚珠轴承和轴颈轴承的状态 监测; 火车车轮和轴承的断裂探测。
5
突发型声发射信号:如果信号由区别于背底噪
音的脉冲组成,且在时间上可以足够分开,那么这 种信号单个脉冲不可
分辨,这些信号就叫做连续型声发射信号。
7
声发射技术发展史概述
声发射和微震动都是自然界中随时发生的自然现 象; “锡呜”是人们首次观察到的金属中的声发射现 象,锡的冶炼可追朔到公元前3700年; 现代的声发射技术的开始以五十年代初Kaiser在德 国所做的工作为标志; 五十年代末:美国人大量研究发现金属塑性形变 的声发射主要由大量位错的运动所引起, 即声发射 主要是体积效应而不是表面效应; 六十年代:Green首先应用于无损检测, Dunegan 首次应用于压力容器;
声发射检测报告
声发射检测报告简介声发射检测是一种用于监测和评估结构的健康状况的非破坏性试验技术。
它通过监听和分析材料或结构在加载或变形时产生的声波信号,来探测和定位潜在的缺陷。
本报告将介绍声发射检测的原理和应用,并通过详细的分析结果,评估待测结构的可靠性和安全性。
声发射检测原理声发射检测的基本原理是在结构加载或变形时,由于内部缺陷或损伤的存在,会产生微小的应力释放,从而形成声波信号。
这些声波信号可以通过传感器进行捕捉,并通过信号处理和分析,识别和分析不同的声发射事件。
声发射事件的特征包括声发射源的位置、能量、频谱和持续时间等。
声发射检测的应用声发射检测广泛应用于各种领域和行业,包括材料科学、结构工程、航空航天等。
主要的应用包括以下几个方面:结构健康监测声发射检测可以用于监测结构的健康状况,通过实时监测和分析声发射事件,可以及时发现结构中的缺陷和损伤,从而采取相应的维修和修复措施,避免潜在的灾难性破坏。
材料评估声发射检测可以用于评估材料的质量和可靠性。
通过分析声发射事件,可以判断材料中是否存在内部缺陷、裂纹或疲劳等问题,为生产和工程质量提供依据。
构件性能测试声发射检测可以用于测试结构构件的性能。
通过加载结构构件,并监听和分析声发射事件,可以评估构件的强度、刚度和稳定性等性能指标,为结构设计和优化提供依据。
实验方法与结果分析为了评估待测结构的可靠性和安全性,我们进行了一系列声发射检测实验。
实验步骤如下:1.准备测试设备:包括声发射传感器、信号放大器和数据采集系统等。
2.安装传感器:将声发射传感器固定在待测结构的表面,确保其能够准确捕捉声波信号。
3.加载结构:施加适当的负荷或变形到待测结构,触发声发射事件。
4.数据采集与分析:通过数据采集系统记录并存储声发射事件的信号数据,然后对数据进行分析。
5.结果评估:根据分析结果,评估待测结构的可靠性和安全性。
经过实验和数据分析,我们得到了以下结果:1.声发射事件的定位:通过分析声发射事件的波形和到达时间,我们可以定位声发射源的位置。
声发射的概念
声发射的概念及主要名词解释声发射的概念声发射(Acoustic Emission, 简称AE) 是指材料局部因能量的快速释放而发出瞬态弹性波的现象,有时也称为应力波发射。
材料在应力作用下的变形与裂纹扩展,是结构失效的重要机制。
这种直接与变形和断裂机制有关的源,被称为声发射源。
近年来,流体泄漏、摩擦、撞击、燃烧等与变形和断裂机制无直接关系的另一类弹性波源,被称为其它或二次声发射源。
声发射是一种常见的物理现象,各种材料声发射信号的频率范围很宽,从几Hz的次声频、20 Hz~20K Hz的声频到数MHz的超声频;声发射信号幅度的变化范围也很大,从10 13m的微观位错运动到1m量级的地震波。
按传感器的输出可包括数uV到数百mV,不过,多数情况下用高灵敏传感器才能探测到的微弱振动。
用最灵敏的传感器,可探测到约为10 11mm表面振动。
目前日本富士陶瓷株式会社和东京大学先端科学技术研究所合作研发的R-case声发射传感器系统已经可以检测到几微米的微裂纹产生。
无损检测资源网如果声发射释放的应变能足够大,就可产生人耳听得见的声音。
大多数材料变形和断裂时有声发射发生,但许多材料的声发射信号强度很弱,人耳不能直接听见,需要藉助灵敏的电子仪器才能检测出来。
用仪器探测、记录、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射技术,人们将声发射仪器形象地称为材料的听诊器。
声发射技术,是一种新兴的动态无损检测技术,涉及声发射源、波的传播、声电转换、信号处理、数据显示与记录、解释与评定等基本概念,基本原理如下图所示:声发射源发出的弹性波,经介质传播到达被检体表面,引起表面的机械振动。
经声发射传感器将表面的瞬态位移转换成电信号。
声发射信号再经放大、处理后,形成其特性参数,并被记录与显示。
最后,经数据的解释,评定出声发射源的特性。
声发射检测的主要目标是:①确定声发射源的部位;②分析声发射源的性质;③确定声发射发生的时间或载荷;④评定声发射源的严重性。
声发射标准
声发射标准
声发射标准是指对于声学设备、产品或环境中产生的声音发射进行评估和规定的标准。
这些标准旨在确保声音的合理水平,以保护人们的听力健康,减少噪声污染,以及提高声学设备和产品的质量和性能。
具体的声发射标准可能因国家、地区和行业而有所不同。
以下是一些常见的声发射标准例子:
1. 噪声限制标准:针对特定的设备、机械或工业过程,各国通常设定了噪声限制标准,规定了允许的噪声水平。
这些标准可以根据不同的使用环境、时间段和设备类型而有所不同。
2. 产品标准:某些产品(如电器、机械等)可能有特定的声发射标准。
这些标准可以规定产品在正常使用情况下发出的声音级别和频谱要求。
3. 建筑和城市规划标准:为了确保建筑物和城市环境的声学质量,一些国家和地区制定了声学设计和规划标准。
这些标准规定了建筑物的隔声性能和噪声控制要求,以确保室内外环境的声学舒适度。
4. 交通噪声标准:交通噪声是城市环境中主要的噪声源之一。
许多国家和地区制定了交通噪声标准,规定了各种交通工具(如汽车、列车、飞机等)发出的噪声水平,并采取相应的控制措施。
需要注意的是,具体的声发射标准可能因国家、地区和行业等而有所不同。
在相关领域中,应遵守适用的声发射标准,并通过合适的测试和评估方法来确保声发射符合要求。
此外,随着技术的发展和环境要求的变化,声发射标准也可能会进行更新和修订。
声发射技术的基础原理资料
复合材料中的声发射源
复合材料是由基体材料和分布于整个基体材料中的第2相材料所组成的。根据第2相 材料的不同,复合材料分为3类:扩散增强复合材料、颗粒增强复合材料和纤维增强 复合材料。与常规材料相比,复合材料具有强度高、疲劳性能和抗腐蚀性能好等优 点,而且容易制造出结构较复杂的部件。
1、扩散增强和颗粒增强复合材料的声发射源主要包括:基体开裂和第2相 颗粒和基体的脱开。 2、纤维增强复合材料中的声发射源主要包括以下7类: ①基体开裂 ②纤维和基体的脱开 ③纤维拔出 ④纤维断裂 ⑤纤维松弛 ⑥分层 ⑦摩擦
2 2 2 2 1 2 2
1
}
• 式中括号内第一项是纵波贡献分量,而第二项是横波贡献, 在板中来回反射的波的贡献(第三项之后)在式中略去。
点脉冲加载的源
冲击载荷
TIME
2.0
• 具有一般形状的短脉冲力源f(t),该处的速度响应为纵波 的速度响应与力的变化率成正比,而切变波的速度响应与力 的大小成正比。 • 表面阶跃力源在厚板对面产生的垂直位移。
L
有机玻璃 钢 S
L
声发射的概念
声发射——材料中局域源快速释放能量产生瞬态弹性 波的现象。 (Acoustic Emission, 简称AE) ,也称为 应力波发射。 声发射事件—引起声发射的局部材料变化。 声发射源 ——材料中直接与变形和断裂机制有关的弹 性波发射源。声发射源的实质是指声发射的物理源点 或发生声发射的机制源。材料在应力作用下的变形与 裂纹扩展,是结构失效的重要机制。 其它声发射源 ——流体泄漏、摩擦、撞击、燃烧等与 变形和断裂机制无直接关系的另一类弹性波源。也称 为二次声发射源。
×¾ ½ Ô Á ¦ Ô ´ ² ú É ú µ Ä ´ ¹ Ö ±» Î Ò Æ 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 ±ä Ê ¼ (ct/b) 2 2.5 3
声发射
小组成员:x x
目录
一、概述
声发射 (Acoustic Emission =AE) ,又称为应力波发射 ——材料受外力或内力作用产生变形或断裂, 以弹性波形 式释放出应变能的现象 声发射信号 频率范围——从次声频、声频到数十 MHz 超声频 幅度范围——可从几微伏到上百伏 声发射技术 ——用仪器检测、记录、分析声发射信号并利用声发射 信号推断声发射源
(2)缺陷评价
缺陷评价的目的是及时了解缺陷的状态以及生成与扩展的情况,以便采 取措施,防止事故的发生。下面以压力容器为例说明缺陷评价的内容和方法。
1)缺陷有害度的分类评价方法 a.按升压过程声发射频率分类评价——A、B、C三级
等级
A级 B级 C级
特点
严重声发射信号 在升压过程中频繁出现的信号源 重要声发射信号 在升压过程中发生频率较低的信号源
4.3 声发射检测仪器
(1)模拟式声发射仪
(2)数字式声发射仪
原理
数字式声发射仪特点: a. 大大降低了系统噪声、漂移和频率相关性 b. 采用高精度设计,系统不需要重新标定 c. 高速采样 d. 大动态范围 e. 灵活性强 (用户可按自己要求设计特别的特征参数) f. 数字化的信号可储存在瞬态记录仪中,可快速记录多通道的AE信号
(7) B–B–
没有缺陷,也没有信号
对于(1)(7),检测成功 对于(2),避免出现,对操作人员的要求,良好的通信联络 方法 对于(3)(5)(6),要求做好充分的实验前准备工作,操 作人员业务熟练,设备处在良好的状态 对于(4),避免出现,良好的设备
五、声发射检测应用
(1)可获得关于缺陷的动态信息,并据此评价缺 陷的实际危害程度,以及结构的完整性和预期 使用寿命; (2)可提供随载荷、时间和温度等外部变量而 变化的实时瞬态或连续信号,适用于过程监控 以及早期或临近破坏的预报。
声发射检测原理
声发射检测原理声发射检测是一种常用的非破坏性检测方法,它通过检测材料内部的声波信号来判断材料的完整性和缺陷情况。
声发射检测原理基于材料在受力作用下会产生微小的声波信号,这些信号可以通过传感器捕获并分析,从而得出材料的状态。
声发射检测原理主要包括声波的产生、传播和接收三个基本过程。
首先,声波的产生是声发射检测的基础。
当材料受到外部力作用时,内部会产生微裂纹、位移和变形等现象,这些现象会释放能量,形成声波信号。
这些声波信号的频率、振幅和持续时间等特征可以反映材料的状态,如裂纹的数量和大小、材料的强度和刚度等。
其次,声波信号在材料中的传播是声发射检测的关键。
声波信号在材料中传播时会受到材料的物理性质和结构的影响,不同类型的缺陷会导致声波信号的传播方式和路径发生变化。
因此,通过分析声波信号在材料中的传播特性,可以判断材料中存在的缺陷类型和位置。
最后,声波信号的接收和分析是声发射检测的核心。
传感器会接收到材料中产生的声波信号,并将其转化为电信号进行处理和分析。
通过对声波信号的频谱、幅值、能量等特征进行分析,可以得出材料的缺陷情况和性质。
同时,声发射检测还可以结合数据处理和模式识别技术,对大量的声波信号进行自动化分析和判断,提高检测效率和准确性。
总的来说,声发射检测原理是基于材料内部微小声波信号的产生、传播和接收,通过分析这些声波信号的特征来判断材料的完整性和缺陷情况。
声发射检测具有高灵敏度、快速、准确的特点,广泛应用于材料的质量控制、结构健康监测和故障诊断等领域。
随着传感器技术和数据处理技术的不断发展,声发射检测将在工业生产和科学研究中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声发射检测技术摘要:通过阐述声发射检测的基本原理,总结了声发射检测的特点。
介绍了国内外声发射检测技术的发展历程和现状,并概述了声发射检测技术在压力容器、转动设备、航空航天工业、复合材料等方面的应用进展,提出了我国目前声发射检测急需解决的问题和发展趋势。
关键词:声发射;压力容器;复合材料A Study on the Applications of Acoustic Em ission TechniqueAbstract:Based on the principle of acoustic em ission testing, the features of acoustic em ission testing technique are summarized. After an introduction to the history and present situation of acoustic em ission testing technology home and abroad, the authors havemade an review of the applications of acoustic e-m ission technique in pressure vessel, rotate facility, aviation and space-flight industry, and composite materials. The authors have also pointed out the problems to be solved and development trend of this field. Key words: acoustic em ission; pressure vessel; compositematerial1 引言自1964年美国对北极星导弹舱第一次成功地进行声发射检测以来,声发射技术受到了极大的重视,发展很快。
美国、日本和欧洲一些国家将声发射用于压力容器试验或定期检修等,已达到了工业实用水平。
在核容器与化工容器运行中的安全监测、复合材料压力容器检测、焊接过程研究等方面研究及应用也取得了很大成就。
声发射技术于20世纪70年代初开始引入我国,正值是我国断裂力学发展的高峰,人们希望利用声发射预报和测量裂纹的开裂点。
随后中科院沈阳金属研究所、航空航天部621所、机械部合肥通用机械研究院、武汉大学、航天部703所、上海交通大学等一些科研院所和大学开展了金属和复合材料的声发射特性研究。
2 声发射检测原理声发射技术是一种评价材料或构件损伤的动态无损检测技术,它通过对声发射信号的处理和分析来评价缺陷的发生和发展规律,并确定缺陷的位置。
壶里的水快开时可以听到对流声,折断竹竿时可以听到噼啦的断裂声,打破玻璃可以听到清脆的破碎声,这都是人耳可觉查到的声发射现象。
声发射现象的实质是物体受到外力或内力作用时,由于内部结构的不均匀及各种缺陷的存在造成应力集中,从而使局部的应力分布不稳定。
当这种不稳定应力分布状态所积蓄的应变能达到一定程度时就会发生应力重新分布,重新达到新的稳定状态。
这一过程往往伴随有范性流变、微观龟裂、位错的发生与堆积裂纹的产生与发展等,实际上这就是应变能释放的过程。
这种释放的应变能,一部分以应力波的形式发射出去,由于最先注意到应力波发射现象的是人耳听觉领域内的声波,所以就称它为声发射。
其实,应力波发射的大部分频率范围要比声频广得多,包括人耳听不到的次声和超声频率。
金属材料的应力波发射大部分处于超声范围,检测频率处在100kHz—300kHz。
具体来说声发射就是指物体在外界条件作用下,缺陷或物体异常部位因应力集中而产生变形或断裂,并以弹性波形式释放出来应变能的一种现象。
声发射要具备两个条件:第一,材料要受外载作用;第二,材料内部结构或缺陷要发生变化。
基于以上原理,对于材料的微观形变和开裂以及裂纹的发生和发展,就可以利用声发射来提供它们的动态信息。
声发射源往往是材料灾难性破坏的发源地。
由于声发射现象往往在材料破坏之前就会出现,因此只要及时捕捉这些信息,根据其AE信号的特征及其发射强度,就可以推知声发射源的目前状态,以及它形成的历史,并对其发展趋势进行预报。
多数金属材料塑性变形或断裂时都有AE信号,但AE信号的强度一般很弱,需要借助电子仪器才能检测出来。
用仪器检测分析声发射信号并确定声发射源的技术称为声发射技术。
利用声发射技术可以对缺陷进行判断和预报,并对材料和构件进行评价。
图1 声发射技术基本原理图3 声发射检测技术的特点3.1 声发射检测技术的优点(1)几乎不受材料限制除少数材料外,无论是金属还是非金属材料,在一定条件下都有声发射发生,因此,声发射检测几乎不受材料限制。
(2)声发射检测是一种动态无损检测技术声发射检测可用来判断缺陷的性质。
一个同样大小、同样性质的缺陷,当它所处的位置和所受的应力状态不同时,对结构的损伤程度也不同,而其声发射特征也是有差别的。
明确了来自缺陷的声发射信号,就可以长期连续地监视缺陷的安全性,这是其他无损检测方法难以实现的。
(3)灵敏度高结构或部件的缺陷在萌生之初就有声发射现象,因此,只要及时对AE信号进行检测,就可以判断缺陷的严重程度,即使很微小的缺陷也能检测出来,检测灵敏度非常高。
(4)可检测活动裂纹声发射检测可以显示裂纹增量(零点几毫米数量级),因此可以检测发展中的活动裂纹。
(5)可以实现在线监测对压力容器等人员难以接近的场合和设备,如用X射线检测则必须停产,但用声发射则不需要停产,可以减少停产损失。
3.2 声发射检测技术的局限性(1)声发射特性对材料甚为敏感,又易受到机电噪声的干扰。
因此,对数据的正确解释要有更为丰富的数据库和现场检测经验。
(2)声发射检测一般需要适当的加载程序。
多数情况下,可利用现成的加载条件,但有时还需要特殊准备。
(3)由于声发射的不可逆性,实验过程的声发射信号不可能通过多次加载重复获得,因此,每次检测过程的信号获取是非常宝贵的,应避免因人为疏忽而造成数据的丢失。
(4)声发射检测所发现的缺陷的定性定量,仍需依赖于其他无损检测方法。
4 声发射检测技术的应用范围根据声发射的特点,现阶段声发射技术主要用于其他方法难以或不能适用的对象与环境、重要构件的综合评价、与安全性和经济性关系重大的对象等。
因此,声发射技术不是替代传统的方法,而是一种新的补充手段。
(1)石油化工工业:各种压力容器、压力管道和海洋石油平台的检测和结构完整性评价,常压贮罐底部、各种阀门和埋地管道的泄漏检测等。
(2)电力工业:高压蒸汽汽包、管道和阀根据声发射的特点,现阶段声发射技术主要用于其他方法难以或不能适用的对象与环境、重要构件的综合评价、与安全性和经济性关系重大的对象等。
因此,声发射技术不是替代传统的方法,而是一种新的补充手段。
机叶片的检测,汽轮机轴承运行状况的监测,变压器局部放电的检测等。
(3)材料试验:材料的性能测试、断裂试验、疲劳试验、腐蚀监测和摩擦测试,铁磁性材料的磁声发射测试等。
(4)民用工程:楼房、桥梁、起重机、隧道、大坝的检测,水泥结构裂纹开裂和扩展的连续监视等。
(5)航天和航空工业:航空器壳体和主要构件的检测与结构完整性评价,航空器的时效试验、疲劳试验检测和运行过程中的在线连续监测,固体推进剂药条燃速测试等。
(6)金属加工:工具磨损和断裂的探测,打磨轮或整形装置与工件接触的探测,修理整形的验证,金属加工过程的质量控制,焊接过程监测,振动探测,锻压测试,加工过程的碰撞探测和预防。
7)交通运输业:长管拖车、公路和铁路槽车及船舶的检测与缺陷定位,铁路材料和结构的裂纹探测,桥梁和隧道的结构完整性检测,卡车和火车滚子轴承与轴连轴承的状态监测,火车车轮和轴承的断裂探测。
(8)矿山地质:边坡、巷道稳定性监测,山体滑坡监测。
(9)其他:硬盘的干扰探测,带压瓶的完整性检测,庄稼和树木的干旱应力监测,磨损摩擦监测,岩石探测,地质和地震上的应用,发动机的状态监测,转动机械的在线过程监测,钢轧辊的裂纹探测,汽车轴承强化过程的监测,铸造过程的监测,Li/MnO2电池的充放电监测,耳鼓膜声发射检测、人骨头的摩擦、受力和破坏特性试验,骨关节状况的监测等5 声发射检测方法5.1 声发射信号的基本特征5.1.1 声发射信号的分类声发射信号是物体受到外部条件作用使其状态改变而释放出来的一种瞬时弹性波这种弹性波的波形可分为连续型和突发型两类。
(如图2,图3所示)图2 突发型图3 连续型突发型声发射信号表现为脉冲波形,脉冲的峰值可能很大,但衰减很快。
金属、复合材料、地质材料等裂纹的产生和扩展,材料受到冲击作用等都会产生突发型声发射信号。
连续型声发射信号的特点是:波幅没有很大的起伏,发射的频度高、能量小。
材料的屈服过程、液压机械和旋转机械的噪声、充压系统的泄漏等产生的都是连续性的声发射信。
需要指出的是,把声发射信号分为连续型和突发型并不是绝对的,当突发型信号的频度大时,其形式类似于连续型信号。
另外,实际测量得到的声发射信号非常复杂,可能是连续型和突发型两类基本信号的复合。
5.1.2 声发射信号的基本特征⑴声发射信号是上升时间很短的振荡脉冲信号,上升时间为10-4s~10-8s信号的重复速度很高。
⑵声发射信号的频率范围很宽,通常可以从次声频一直到30MHZ。
⑶声发射信号一般是不可逆的,具有不复现性。
同一试件在同一条件下产生的声发射只有一次,这就是所谓的凯塞效应。
⑷声发射信号产生的影响因素复杂,不仅与外部因素有关,也与材料的内部结构有关。
因此,声发射信号具有随机性,即使对同一类试件在同一条件下进行观测,所得的数据分布范围也可能差异较大。
⑸由于产生声发射信号的机理各式各样,且频率范围很宽,因此声发射信号具有一定的模糊性。
声发射信号的上述特性主要有材料的强度、应变速率、晶体结构温度等决定。
5.2 声发射信号的表征参数声发射信号特征参数:超过门槛的声发射信号由特征提取电路变换为几个信号特征参数。
连续信号参数包括:振铃计数、平均信号电平和有效值电压。
突发信号参数包括:撞击(事件)计数、振铃计数、幅度、能量计数、上升时间、持续时间和时差等。
常用突发信号特征参数的示意如图4所示。
图4 声发射信号的表征参数示意图表1 常用信号特征参数的含义和用途5.3 信号波形特征波形是声发射传感器输出电压随时间变化的曲线,它可以用示波器从前置放大器或主放大器的输出端观察到,也可以从瞬态记录仪或波形记录装置上记录下来。
典型的突发信号的波形如图5所示,它的上升段比较迅速,而下降段呈现指数衰减振荡的现象,其包络线的形态则呈三角形。
声发射源的一次突发发射实际上是一个突发脉冲,传感器输出的信号呈现复杂的波形,则是信号在介质中传播过程的反射、折射、波形变换、传感器的谐振等多种因素合成的结果。