高数上册知识点

合集下载

高数上册知识点总结

高数上册知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xa y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。

3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。

例如:||x y =连续但不可导。

6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df ∙= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ∙∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),x y 1=(x=0是函数的无穷间断点)12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

高数上册知识点

高数上册知识点

高数上册知识点
1. 极限呐,这可太重要啦!就像你跑步要跑到终点一样,极限就是函数接近的那个值哟。

比如说,1/x 当 x 趋近于无穷大时,它的极限不就是 0 嘛!
2. 导数呀,不就是变化率嘛!就好比汽车的速度,速度快变化就大呀。

像求曲线 y=x^2 的导数,得到 2x,这就能知道它在各个点的变化快慢喽。

3. 连续可不能小瞧哦!可以想想水流,一直不间断就是连续呀。

比如函数 y=sinx 就是连续的嘛。

4. 微分呢,就有点像把一个东西拆得更细致呀。

比如说一个面包,微分就是把它分成很小很小的部分。

像 y=x^2 的微分就是 2xdx 呀。

5. 积分呀,不就是把那些小部分又合起来嘛!类似把面包碎块再拼成一个完整面包哟。

求曲线下的面积不就是用积分嘛。

6. 无穷小和无穷大就像两个极端呀!无穷小接近 0,无穷大就超级大嘛。

想想 1/x,当 x 很大很大时,不就接近无穷小啦。

7. 函数的单调性和极值也很有趣呀!就好像爬山,有上坡有下坡,还有山顶这个极值点。

比如 y=x^3-3x,就能找到它的极值点呐。

我觉得呐,高数上册的这些知识点真的很神奇,能让我们看到数学世界里好多奇妙的现象呢!。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点第一章 函数与极限、、、函数1、函数定义及性质(有界性、单调性、奇偶性、周期性);2、反函数、复合函数、函数的运算;3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、函数的连续性与间断点;函数在连续)(x f 0x )()(lim 00x f x f x x =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

、、、极限1、定义1、数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2、函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00、、、左极限: 右极限:)(lim )(00x f x f xx -→-=)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 、、2、极限存在准则1、夹逼准则:1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim ax n n =∞→lim 2、单调有界准则:单调有界数列必有极限。

3、无穷小(大)量1、定义:若则称为无穷小量;若则称为无穷大量。

0lim =α∞=αlim2、无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小k Th1;)(~ααββαo +=⇔Th2 (无穷小代换)αβαβαβββαα''=''''lim lim lim ,~,~、、、、4、求极限的方法1、单调有界准则;2、夹逼准则;3、极限运算准则及函数连续性;4、两个重要极限:a) b)1sin lim 0=→xxx e xx xx xx =+=++∞→→11(lim )1(lim 105、无穷小代换:()0→x a)xx x x x arctan ~arcsin ~tan ~sin ~b)221~cos 1x x -c)()x e x ~1-a x axln ~1-d)()x x ~)1ln(+axx a ln ~)1(log +e)xx αα~1)1(-+第二章 导数与微分、、、导数1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:00)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数在点可导)(x f 0x )()(00x f x f +-'='⇔2、几何意义:为曲线在点处的切线的斜率。

完整版高数一知识点

完整版高数一知识点

完整版高数一知识点一、导数与微分高等数学中,导数是一种表示函数变化率的工具。

它是研究函数在某一点上的局部性质和变化趋势的基本概念。

导数可以通过极限的概念进行定义,表示函数在某一点上的瞬时变化率。

导函数的计算方法包括:1. 基本函数的导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

2. 四则运算法则:求导的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。

3. 复合函数的求导:使用链式法则求解复合函数的导数。

微分是导数的应用之一,用于研究函数的近似变化。

微分的计算方法包括:1. 微分的定义:微分可以通过导数来进行计算,表示函数在某一点上的变化量。

2. 微分的近似计算:使用微分近似计算可以帮助我们在没有具体数值的情况下估计函数的变化。

二、不定积分与定积分不定积分是求解函数原函数的过程,也被称为反导数。

不定积分可以表示函数的面积、函数的平均值等。

计算不定积分的方法包括:1. 基本积分公式:根据一些基本函数的导数公式,可以得到相应的不定积分公式。

2. 积分的线性性质:积分具有线性性质,即函数的线性组合的积分等于各组成函数的积分之和。

3. 特殊函数的积分:对于一些特殊的函数,可以通过一些特殊的方法进行积分。

定积分是求解函数在某一区间上的面积的过程,也被称为积分。

定积分可以表示弧长、质量、体积等物理量。

计算定积分的方法包括:1. 定积分的定义:定积分可以通过分割区间,计算分割点上函数值与区间长度的乘积之和来进行计算。

2. 积分的性质:定积分具有一些性质,例如积分的线性性质、积分的区间可加性等。

3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式给出了定积分与不定积分之间的关系。

三、常微分方程常微分方程是研究函数的导数与自变量之间关系的方程。

它是高等数学中一个重要的分支,应用广泛。

常微分方程的求解方法包括:1. 可分离变量法:对于可分离变量的常微分方程,可以通过分离变量并积分的方法进行求解。

(完整版)高等数学上册知识点

(完整版)高等数学上册知识点

高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

高数上册知识点

高数上册知识点

1、极限·数列极限: = a , = bx n n lim ∞>-y n n lim ∞>-(1)若 a > b,则 ,当n > N 时有N ∃y x nn >(2)若n > N 时或,则a by x n n ≥y x n n>≥ 注:要看好是 还是 >,必须严格要求≥·函数极限的不等式性质:= A , = B)(lim 0x f x x >-)(lim 0x g x x >-(1)若,则B A >)()(x g x f >(2),则)()(x g x f ≥BA ≥ 注:要看好是 还是 >,必须严格要求≥·保号性质: = A)(lim 0x f x x >-(1)若A > 0,则0)(>x f (2)若,则0)(0)(≥>x f x f 或0≥A ·若数列{}单调上升有上界,则{}收敛x n x n 若数列{}单调下降有下界,则{}收敛x n x n ·极限存在充要条件函数: = A = = A)(lim 0x f x x >-⇔)(lim 0x f x x +>-)(lim 0x f x x ->-数列: = A = = Ax n n lim ∞>-⇔x n n 2lim ∞>-x n n 12lim -∞>-·常见等价无穷小::0→x, x e x ≈-1xx ≈+)1ln(,,,x x ≈arctan x x ≈sin x x ≈tan xx ≈arcsin xx 221cos 1≈-xx x 221)1ln(≈+-xx 222111≈-+a x a xln 1≈-)1,0(≠>a a xx x 361sin ≈-x x x ≈++)1ln(2xx αββα≈-+1)1(xnx n111≈-+ax a ln 1)1(log ≈+)1,0(≠>a a )(ln 11∞>-≈-n n nn n1ln -≈u u )1(→u ·判断函数连续的方法:(1)若是初等函数,则在它的定域区间上处处连续(2)用连续运算法则:①(连续性的四则运算法则)设与都在点)(x f )(x g 处连续,则与在点x x 0=)()(x g x f ±)()(x g x f 处连续,当时在处x x 0=0)(0≠x g )()(x g x f x x 0=也连续。

大一高数上所有知识点总结

大一高数上所有知识点总结

大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。

大一高数上册笔记知识点

大一高数上册笔记知识点

大一高数上册笔记知识点一、函数与极限1. 定义和性质- 函数的定义:函数是一个将一个集合的元素对应到另一个集合的元素的规则。

- 函数的性质:唯一性和有界性。

2. 极限的定义和性质- 极限的定义:当自变量趋近于某个特定值时,函数的值趋近于一个确定的常数。

- 极限的性质:唯一性、局部有界性和保号性。

3. 无穷大与无穷小- 无穷大:当自变量趋近于无穷时,函数的值无限增大。

- 无穷小:当自变量趋近于某个特定值时,函数的值无限接近于零。

二、导数与微分1. 导数的定义和性质- 导数的定义:函数在某一点的变化率。

- 导数的性质:线性性、乘积法则和除法法则。

2. 常用函数的导数- 幂函数的导数:幂函数的导数是其指数乘以底数的幂减一。

- 指数函数和对数函数的导数:指数函数和对数函数可以互相转化为求幂函数的导数。

- 三角函数的导数:根据三角函数的特性,可以求得三角函数的导数。

3. 微分的定义和性质- 微分的定义:函数在某一点的线性逼近。

- 微分的性质:可加性、恒等关系和乘积关系。

三、一元函数的应用1. 函数的极值- 极值的定义:函数取得最大值或最小值的点。

- 极值的判别法:一阶导数判别法和二阶导数判别法。

2. 函数的凸性和拐点- 函数的凸性:函数图像在某一区间上向上凸或向下凸。

- 函数的拐点:函数图像由凹变凸或由凸变凹的点。

3. 泰勒公式- 泰勒公式的定义:将一个函数在某一点展开成无穷级数的形式。

- 泰勒公式的应用:求函数的近似值和导数的近似值。

四、不定积分1. 不定积分的定义和性质- 不定积分的定义:函数在某一区间上的原函数。

- 不定积分的性质:线性性、换元法则和分部积分法则。

2. 常用函数的不定积分- 幂函数的不定积分:幂函数的不定积分是其指数加一的倒数乘以底数的幂。

- 指数函数和对数函数的不定积分:指数函数和对数函数可以互相转化为求幂函数的不定积分。

- 三角函数的不定积分:根据三角函数的特性,可以求得三角函数的不定积分。

(完整版)高等数学(上)重要知识点归纳

(完整版)高等数学(上)重要知识点归纳

高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。

(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。

(3)*无穷小乘以有界函数仍为无穷小。

二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f x x =→间断点 第一类:左右极限均存在. ( 可去间断点、跳跃间断点)第二类:左右极限、至少有一个不存在. (无穷间断点、振荡间断点)5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论. (二) 极限 1、 定义1) 数列极限 : εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限 :εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔; Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换) 4、 求极限的方法1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性;4) 两个重要极限: a) 1sin lim 0=→xx x b) e x x x x x x =+=++∞→→)11(lim )1(lim 15)无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~ b) 221~cos 1x x - c) x ex~1-,(a x a x ln ~1-) d)x x ~)1ln(+ (ax x a ln ~)1(log +) e) x x αα~1)1(-+二、 导数与微分(一) 导数 1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- , 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔ 2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、可导与连续的关系: 4、求导的方法1) 导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5) 隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、 高阶导数1)定义:⎪⎭⎫ ⎝⎛=dx dy dx d dx y d 222)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使. 2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈;2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 中值定理:若函数)(),(x F x f 满足: 1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) Taylor 公式 (四) 单调性及极值1、单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则 ①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2( ,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2(,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的. 2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、利用函数单调性;3、利用极值(最值). (六) 方程根的讨论1、连续函数的介值定理;2、Rolle 定理;3、函数的单调性;4、极值、最值;5、凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线;2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;3、 斜渐近线:k xx f x =∞→)(lim ,b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv(四) 有理函数积分 : 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ2、性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ(平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)1、变上限积分:设⎰=Φxa dt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dxd x x ααβββα'-'=⎰ 2、N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分1、换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)( 2、分部积分法:[]⎰⎰-=baba ba vdu uv udv(四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat adx x f dx x f )(lim)(, ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(, ⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、瑕积分:⎰⎰+→=btat badx x f dx x f )(lim )((a 为瑕点), ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q qa b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x fV )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=b ay dx x xf V )(2π(柱壳法) 2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(1 2、参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设xyu =,则dx du x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dy dv y v dy dx += (四) 一阶线性微分方程)()(x Q y x P dx dy =+ ,用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dydp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程 )(x f qy y p y =+'+''1、)()(x P e x f m xλ=,设特解)(*x Q e x y m xkλ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m mx k ωωλsin )(cos )()2()1(*+=, 其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

高数大一上知识点有哪些

高数大一上知识点有哪些

高数大一上知识点有哪些高等数学是大一上学期的一门重要课程,它是建立在高中数学基础之上的一门学科,旨在培养学生的数学思维能力和解决实际问题的能力。

本文将介绍高数大一上的主要知识点,帮助读者全面了解这门课程。

一、数列与极限1. 数列的概念和性质:数列的定义、递推公式、通项公式等;2. 数列的极限:数列的极限定义、数列极限存在准则、数列极限的性质等;3. 常见数列的极限:等差数列、等比数列、级数等;4. 极限的四则运算:极限乘法法则、极限加法法则等。

二、函数与映射1. 函数的概念和性质:函数的定义、定义域、值域、图像等;2. 基本初等函数:幂函数、指数函数、对数函数、三角函数等;3. 反函数与复合函数:反函数定义、复合函数定义、求解复合函数的方法等;4. 一些特殊函数:取整函数、符号函数、阶乘函数等。

三、导数与微分1. 导数的定义与计算:导数的定义、导数的基本性质、导数的计算方法等;2. 基本函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等的导数;3. 高阶导数与隐函数求导:高阶导数定义、求解高阶导数的方法、隐函数的导数计算等;4. 微分与线性化:微分的概念、微分的性质、线性化与微分的应用等。

四、微分中值定理与应用1. 罗尔定理与拉格朗日中值定理:中值定理的概念、罗尔定理的条件和结论、拉格朗日中值定理的条件和结论等;2. 闭区间上函数性质的应用:零点存在性、最值存在性等;3. 函数的单调性、凹凸性与拐点:单调性的定义与判断、凹凸性的定义与判断、拐点的定义与判断等;4. 泰勒公式与导数的应用:泰勒公式的定义、泰勒公式的展开、泰勒公式在函数逼近和求极限中的应用。

五、不定积分与定积分1. 不定积分的定义与性质:不定积分的定义、换元积分法、分部积分法等;2. 基本积分公式与常见积分:幂函数积分、三角函数积分、指数函数积分等;3. 定积分的概念与性质:定积分的定义、定积分的计算法则、定积分的性质等;4. 定积分的应用:求面积、求弧长、求体积等。

(完整版)高数知识点总结(上册)

(完整版)高数知识点总结(上册)

xfdy)('
)('xfdxdy
xffxf)0()0()(' xnxn111
xxsin(x用弧度) xxtan(x用弧度)
xe12 xx)1ln(
)(xf满足下列条件
(1)在闭区间ba,上连续
(2)在开区间ba,内具有导数
(3)在端点处函数值相等,即)()(bfaf,则在ba,内至少有一点,使0)('f
x处有定义
(2)当
xx时,)(xf的极限)(lim
xfxx存在
(3)极限值等于函数)(xf在点
x处的函数值)(0xf
如果函数)(xf在点
x处连续,由连续定义可知,当0xx时,)(xf的极限一定存在,反
分类:第一类间断点 (左右极限都存在) 第二类间断点(有一个极限不存在)
定理:如果函数)(xf、)(gx在点
如果 (1)ax时,)(xf与)(x都趋于无穷大
(2)在点a的某领域(点a可除外)内,)('xf与)('x都存在且0)('x
(3))()(lim''xxfax存在(或为) ,则则极限)()(limxxfax存在(或为),且)()(limxxfax
)()(lim''xxfax
2、x情形
x处连续,则他们的和、差、积、商(分母不为零)在
x也连续
定理:如果函数)(xfy在某区间上是单调增(或单调减)的连续函数,则它的反函数
(yx
定理:设函数)(xf在闭区间ba,上连续,则函数)(xf在闭区间ba,上必有最大值和最小
推论:如果函数)(xf在闭区间ba,上连续,则)(xf在ba,上有界
结论:如果函数)(xf在某区间上连续,则在这个区间上)(xf必有原函数

高数重要知识点

高数重要知识点

高等数学上册重要知识点 第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim1l = 0,称f x 是比gx 高阶的无穷小,记以f x = 0)(x g ,称gx 是比fx 低阶的无穷小; 2l ≠ 0,称f x 与gx 是同阶无穷小;3l = 1,称f x 与gx 是等价无穷小,记以f x ~ gx 2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1 cos x ~ 2/2^x , x e 1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.夹逼定理设gx ≤ f x ≤ hx 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:10)(lim 0=→x f x x ,0)(lim 0=→x F x x ;2)(x f 与)(x F 在0x3)()(lim 0x F x f x x ''→存在或为无穷大,则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达H L 'ospital 法则.例1计算极限0e 1lim x x x→-.解 该极限属于“0”型不定式,于是由洛必达法则,得0e 1lim x x x →-0e lim 11x x →==. 例2计算极限0sin lim sin x axbx→.解 该极限属于“0”型不定式,于是由洛必达法则,得00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: 1∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;2)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;3)()(lim 0x F x f x x ''→存在或为无穷大,则 注:上述关于0x x →时未定式∞∞∞∞型同样适用.例3计算极限lim (0)nx x x n e →+∞>.解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点: 1洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; 2只要条件具备,可以连续应用洛必达法则;3洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限基本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆如果存在8.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n 如果存在三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f x 的间断点;如果f x 在间断点0x 处的左、右极限都存在,则称0x 是f x 的第一类间断点;第一类间断点包括可去间断点和跳跃间断点; 2第二类间断点第一类间断点以外的其他间断点统称为第二类间断点;常见的第二类间断点有无穷间断点和振荡间断点;四.闭区间上连续函数的性质在闭区间a ,b 上连续的函数f x ,有以下几个基本性质;这些性质以后都要用到;定理1.有界定理如果函数f x 在闭区间a ,b 上连续,则f x 必在a ,b 上有界;定理2.最大值和最小值定理如果函数f x 在闭区间a ,b 上连续,则在这个区间上一定存在最大值M 和最小值m ;定理3.介值定理如果函数f x 在闭区间a ,b 上连续,且其最大值和最小值分别为M 和m ,则对于介于m 和M 之间的任何实数c ,在a ,b 上至少存在一个ξ ,使得f ξ = c推论:如果函数f x 在闭区间a ,b 上连续,且f a 与f b 异号,则在a ,b 内至少存在一个点ξ ,使得f ξ = 0这个推论也称为零点定理第二章 导数与微分1.复合函数运算法则设y = f u ,u = x ,如果 x 在x 处可导,f u 在对应点u 处可导,则复合函数y = f x 在x 处可导,且有)('))(('x x f dxdudu dy dx dy φφ==对应地dx x x f du u f dy )('))((')('φφ==,由于公式du u f dy )('=不管u 是自变量或中间变量都成立;因此称为一阶微分形式不变性; 2.由参数方程确定函数的运算法则设x = t ,y =)(t ϕ确定函数y = yx ,其中)('),('t t ϕφ存在,且)('t φ≠ 0,则)(')('t t dx dy φϕ= 二阶导数3.反函数求导法则设y = f x 的反函数x = gy ,两者皆可导,且f ′x ≠ 0 则)0)('())(('1)('1)('≠==x f y g f x f y g4 隐函数运算法则可以按照复合函数理解设y = yx 是由方程Fx , y = 0所确定,求y ′的方法如下:把Fx , y = 0两边的各项对x 求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y ′ 的表达式允许出现y 变量 5 对数求导法则 指数类型 如x x y sin =先两边取对数,然后再用隐函数求导方法得出导数y ′; 对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数注意定义域 P106 例6关于幂指函数y = f xg x 常用的一种方法,y = )(ln )(x f x g e 这样就可以直接用复合函数运算法则进行; 6 可微与可导的关系f x 在0x 处可微 f x 在0x 处可导;7 求n 阶导数n ≥ 2,正整数先求出 y ′, y ′′,…… ,总结出规律性,然后写出yn ,最后用归纳法证明;有一些常用的初等函数的n 阶导数公式 (1) x n x e y e y ==)(, (2) n x n x a a y a y )(ln ,)(== (3) x y sin =,)2sin()(πn x y n += (4) x y cos =,)2cos()(πn x y n +=5x y ln =,n n n x n y ----=)!1()1(1)(第三章 微分中值定理与导数应用一 罗尔定理 设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;3 f a = f b 则存在ξ ∈a ,b ,使得f ′ξ = 0二 ★拉格朗日中值定理证明不等式 P134 9、10设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;则存在ξ ∈a ,b ,使得)(')()(ξf ab a f b f =-- 推论1.若f x 在a ,b 内可导,且f ′x ≡ 0,则f x 在a ,b 内为常数;推论2.若f x , gx 在a ,b 内皆可导,且f ′x ≡ g ′x ,则在a ,b 内f x = gx + c ,其中c 为一个常数; 三 柯西中值定理设函数f x 和gx 满足:1在闭区间a ,b 上皆连续;2在开区间a ,b 内皆可导;且g ′x ≠0则存在ξ ∈a ,b 使得)(')(')()()()(ξξg f a g b g a f b f =--)(b a <<ξ注:柯西中值定理为拉格朗日中值定理的推广,特殊情形gx = x 时,柯西中值定理就是拉格朗日中值定理;四 ★泰勒公式① 估值 ② 求极限麦克劳林 P145 T10 定理 1.皮亚诺余项的n 阶泰勒公式 设f x 在0 x 处有n 阶导数,则有公式,称为皮亚诺余项对常用的初等函数如x e ,sin x ,cos x ,ln1+ x 和α)1(x + α 为实常数等的n 阶泰勒公式都要熟记;定理2拉格朗日余项的n 阶泰勒公式设f x 在包含0 x 的区间a ,b 内有n +1阶导数,在a ,b 上有n 阶连续导数,则对x ∈a ,b ,有公式,,称为拉格朗日余项上面展开式称为以0 x 为中心的n 阶泰勒公式;当0x =0 时,也称为n 阶麦克劳林公式;导数的应用一 基本知识设函数f x 在0x 处可导,且0x 为f x 的一个极值点,则0)('0=x f ;我们称x 满足0)('0=x f 的0x 称为)(x f 的驻点,可导函数的极值点一定是驻点,反之不然;极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断; 极值点判断方法)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.② 第二充分条件)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.二 凹凸性与拐点 1.凹凸的定义设f x 在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有 则称f x 在I 上是凸凹的;在几何上,曲线y = f x 上任意两点的割线在曲线下上面,则y = f x 是凸凹的;如果曲线y = f x 有切线的话,每一点的切线都在曲线之上下则y = f x 是凸凹的; 2 拐点的定义曲线上凹与凸的分界点,称为曲线的拐点; 3 凹凸性的判别和拐点的求法 设函数f x 在a ,b 内具有二阶导数)(''x f ,如果在a ,b 内的每一点x ,恒有)(''x f > 0,则曲线y = f x 在a ,b 内是凹的; 如果在a ,b 内的每一点x ,恒有)(''x f < 0,则曲线y = f x 在a ,b 内是凸的; 求曲线y = f x 的拐点的方法步骤是: 第一步:求出二阶导数)(''x f ;第二步:求出使二阶导数等于零或二阶导数不存在的点k x x x ,...2,1 ;第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该点就是拐点的横坐标; 第四步:求出拐点的纵坐标; 四 渐近线的求法 五 曲率第四章 不定积分一基本积分表:二 换元积分法和分部积分法 换元积分法1第一类换元法凑微分:[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2第二类换元法变量代换:[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ分部积分法使用分部积分法时被积函数中谁看作)(x u 谁看作)('x v 有一定规律;记住口诀,反对幂指三为)(x u ,靠前就为)(x u ,例如xdx e x arcsin ⎰,应该是x arcsin 为)(x u ,因为反三角函数排在指数函数之前,同理可以推出其他; 三 有理函数积分 有理函数:)()()(x Q x P x f =其中)()(x Q x P 和是多项式; 简单有理函数: ⑴21)()(,1)()(x x P x f x x P x f +=+=⑵))(()()(b x a x x P x f ++=⑶ba x x P x f ++=2)()()(1、“拆”;2、变量代换三角代换、倒代换、根式代换等.第五章 定积分一概念与性质1、 定义:∑⎰=→∆=ni ii bax f dx x f 1)(lim )(ξλ2、 性质:10条(3)3 基本定理变上限积分:设⎰=Φxadtt f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ N —L公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰4 定积分的换元积分法和分部积分法第六章 定积分的应用(一)平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二)体积1、 旋转体体积: a 曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=ba xdx x f V )(2πb 曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=baydx x xf V )(2π 柱壳法2、 平行截面面积已知的立体:⎰=badx x A V )((三)弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()( 极坐标:[][]⎰'+=βαθθρθρd s 22)()(第七章 微分方程(一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程.阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdux u dx dy +=;或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dxx P )()()((五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''不显含有y ,令p y =',则p y '='';3、),(y y f y '=''不显含有x ,令p y =',则dy dppy =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程1、)()(x P e x f m x λ=设特解)(*x Q e x y m x k λ=,其中⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]xx R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

知识点总结高数一

知识点总结高数一

知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。

数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。

函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。

极限的性质包括唯一性、有界性、局部性、夹逼性等。

2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。

3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。

无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。

在极限运算中,无穷小和无穷大的性质十分重要。

4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。

连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。

二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。

求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。

2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。

3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。

微分公式包括基本微分公式、换元法、分部积分法等。

4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。

三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f x x =→间断点 第一类:左右极限均存在. ( 可去间断点、跳跃间断点)第二类:左右极限、至少有一个不存在. (无穷间断点、振荡间断点)5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论. (二) 极限 1、 定义1) 数列极限 : εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限 :εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔; Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换) 4、 求极限的方法1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性;4) 两个重要极限: a) 1sin lim 0=→xx x b) e x x x x x x =+=++∞→→)11(lim )1(lim 15)无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~ b) 221~cos 1x x - c) x ex~1-,(a x a x ln ~1-) d)x x ~)1ln(+ (ax x a ln ~)1(log +) e) x x αα~1)1(-+二、 导数与微分(一) 导数 1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- , 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔ 2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、可导与连续的关系: 4、求导的方法1) 导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5) 隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、 高阶导数1)定义:⎪⎭⎫ ⎝⎛=dx dy dx d dx y d 222)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使. 2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈;2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 中值定理:若函数)(),(x F x f 满足: 1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) Taylor 公式 (四) 单调性及极值1、单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则 ①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2( ,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2(,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的. 2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、利用函数单调性;3、利用极值(最值). (六) 方程根的讨论1、连续函数的介值定理;2、Rolle 定理;3、函数的单调性;4、极值、最值;5、凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线;2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;3、 斜渐近线:k xx f x =∞→)(lim ,b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv(四) 有理函数积分 : 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ2、性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ(平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)1、变上限积分:设⎰=Φxa dt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dxd x x ααβββα'-'=⎰ 2、N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分1、换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)( 2、分部积分法:[]⎰⎰-=baba ba vdu uv udv(四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat adx x f dx x f )(lim)(, ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(, ⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、瑕积分:⎰⎰+→=btat badx x f dx x f )(lim )((a 为瑕点), ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q qa b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x fV )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=b ay dx x xf V )(2π(柱壳法) 2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(1 2、参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设xyu =,则dx du x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dy dv y v dy dx += (四) 一阶线性微分方程)()(x Q y x P dx dy =+ ,用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dydp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程 )(x f qy y p y =+'+''1、)()(x P e x f m xλ=,设特解)(*x Q e x y m xkλ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m mx k ωωλsin )(cos )()2()1(*+=, 其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

高数重要知识点汇总

高数重要知识点汇总
0
简变形成 “0 ”或“ ”型才能运用该法则 ;
0
(2)只要条件具备 ,可以连续应用洛必达法则 ;
(3)洛必达法则的条件是充分的 ,但不必要 .因此 ,在该法则失效时并不
能断定原极限不存在 .
7 .利用导数定义求极限
参考 .资料
..
..
..
..
基本公式 lim f (x0 x0
x) f (x0) x
6 可微与可导的关系 f (x)在 x0处可微 ? f (x)在 x0 处可导 。
7 求n 阶导数 (n ≥ 2,正整数 )
先求出 y′, y′,…′… ,总结出规律性 , 然后写出 y(n), 最后用归纳法证明 。 有一些
常用的初等函数的 n 阶导数公式
( 1) y e x, y (n) ex
( 2) y a x , y (n) a x (ln a)n
,称为皮亚诺余项 对常用的初等函数如 ex ,sin x,cos x,ln(1+ x)和 (1 x) (α 为实常数 )等的 n阶 泰勒公式都要熟记 。 定理 2(拉格朗日余项的 n 阶泰勒公式 ) 设 f (x)在包含 0 x 的区间 (a,b )内有 n +1 阶导数 ,在 [a,b ]上有 n阶连续导数 ,则对 x
3!
n!
x5 ... ( 1)n x 2n 1
5!
(2n 1)!
o( x2 n 1)
x2 cos x 1
x4
... ( 1)n x 2n
o( x2n)
2! 4!
2 n!
ln(1 x)
x
x2
x3 ...
( 1)n 1 x n
o( xn )
23
n
(1 x) 1 x ( 1) x2 ... ( 1)...( (n 1)) xn o( xn)

高数上册知识点总结

高数上册知识点总结

高数上册知识点总结高等数学是大多数理工科学生在大学学习的重要课程之一。

高等数学上册主要涵盖了一元函数、极限与连续、导数与微分、微分中值定理、不定积分等内容。

本文将对高等数学上册的主要知识点进行总结与归纳,希望对学习该课程的同学提供一些帮助。

一、一元函数一元函数是高等数学的基础,它是一种将输入的实数映射为输出实数的数学关系。

在高等数学上册中,我们主要关注函数的定义域、值域、奇偶性、周期性、反函数以及函数图像等方面的内容。

在学习一元函数时,需要掌握常见函数的性质和图像,比如幂函数、指数函数、对数函数和三角函数等。

二、极限与连续极限是高等数学的核心概念之一。

在学习极限时,需要了解数列极限与函数极限的定义,熟练掌握极限的计算方法,掌握常用极限的性质和相关定理。

在极限的概念基础上,我们可以进一步学习函数的连续性和间断点的分类,包括可去间断点、跳跃间断点和无穷间断点等。

三、导数与微分导数是描述函数变化率的重要工具,也是微分学的基础。

在学习导数与微分时,需要掌握导数的定义、导数的计算、导数的性质以及常用函数的导数。

此外,需要了解微分的概念和微分中值定理,以及利用导数求函数的单调性、极值和凹凸性等相关内容。

四、微分中值定理微分中值定理是微积分中的重要定理,它是导数与函数的关系的基本结论。

微分中值定理包括拉格朗日中值定理、柯西中值定理和罗尔中值定理等。

在学习微分中值定理时,需要理解定理的假设条件,掌握定理的几何和物理意义,并能熟练运用定理解决相关问题。

五、不定积分不定积分是微积分中的重要内容,它是定积分的逆运算。

在学习不定积分时,需要了解不定积分的定义和性质,熟练掌握不同类型函数的不定积分计算方法,包括基本初等函数的不定积分、换元积分法和分部积分法等。

此外,还需要掌握不定积分求解定积分和求解微分方程等应用。

六、小结高等数学上册涵盖了一元函数、极限与连续、导数与微分、微分中值定理、不定积分等重要内容。

在学习这些知识点时,需要掌握其基本定义和性质,熟练掌握计算方法和相关定理,并能够灵活运用于解决实际问题。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

大一上高数基础知识点

大一上高数基础知识点

大一上高数基础知识点
大一上的高等数学主要包括以下几个基础知识点:
1.实数与函数
-实数的基本性质:有理数与无理数、实数的大小比较、实数的稠密
性等。

-函数的概念:自变量、因变量、定义域、值域等。

-函数的表示与性质:显函数、隐函数、参数方程等。

2.三角函数与函数的性质
-三角函数的定义:正弦函数、余弦函数、正切函数等。

-三角函数的性质:周期性、奇偶性、单调性等。

-三角函数的图像与性质:正弦函数图像、余弦函数图像、正切函数
图像等。

3.一元函数的极限与连续性
-函数的极限:极限的定义、极限的性质、极限的计算等。

-连续函数:连续的概念、连续函数的性质、连续函数的计算等。

4.一元函数的导数与微分
-函数的导数:导数的定义、导数的性质、导数的计算、高阶导数等。

-函数的微分:微分的定义、微分的性质、微分的计算等。

5.函数的应用
-函数的极值与最值:极大值、极小值、最大值、最小值等。

-函数的图像与曲线的描绘:对称性、渐近线、拐点等。

-函数与导数的应用:函数的单调性、函数的凸凹性、最优化等。

6.一元函数的不定积分
-不定积分的概念与性质:不定积分的定义、不定积分的性质、常用积分公式等。

-不定积分的计算:基本积分公式、换元积分法、分部积分法等。

以上是大一上高等数学的基础知识点,理解并掌握这些知识点是学好高等数学的基础。

在学习过程中,需要进行大量的练习以加深对这些知识的理解和应用能力的培养。

高数上需要记住的知识点

高数上需要记住的知识点

高数上需要记住的知识点高等数学作为大学中的一门重要基础课程,是理工科学生必修的一门课程之一。

学好高等数学对于理解和掌握其他专业课程至关重要。

下面将介绍高数上需要记住的一些重要的知识点。

一、函数与极限函数是高等数学的核心概念之一。

在高数上,我们需要掌握函数的概念、性质以及一些常见函数的图像和性质。

同时,我们还需要了解极限的概念和性质,掌握通过极限来求解函数的连续性、导数和积分等问题的方法。

二、导数与微分导数作为函数的一种重要性质,是研究函数的变化率和趋势的重要工具。

在高数上,我们需要熟悉导数的定义、求导法则以及一些基本函数的导数公式。

掌握导数的概念和性质,能够帮助我们解决函数的最值、切线和曲线的凹凸性等问题。

三、微分方程微分方程是高等数学中的重要内容。

在高数上,我们需要掌握一阶常微分方程的基本概念、解法和应用,了解常微分方程在物理、生物、经济等领域中的具体应用。

四、定积分与不定积分定积分和不定积分是高数上的两个重要概念。

我们需要熟悉定积分和不定积分的定义、性质以及求解方法。

掌握积分的概念和性质,能够帮助我们解决曲线下面积、定积分的计算和应用等问题。

五、级数与数项级数级数是高等数学中的一个重要内容。

在高数上,我们需要了解级数的概念、性质以及级数的收敛与发散的判别方法。

同时,我们还需要掌握数项级数的概念、性质以及常用的收敛判别法则。

六、多元函数与偏导数多元函数是高等数学中的一个重要分支。

在高数上,我们需要掌握多元函数的概念、性质以及一些常见多元函数的图像和性质。

同时,我们还需要了解偏导数的概念和计算方法,能够求解多元函数的极值和函数的最优化问题。

七、二重积分二重积分是高等数学中的一种重要的积分形式。

在高数上,我们需要掌握二重积分的概念、性质以及求解方法。

能够应用二重积分来计算平面图形的面积、质量、重心等问题。

八、三重积分三重积分是高等数学中的一种重要的积分形式。

在高数上,我们需要了解三重积分的概念、性质以及求解方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f x x =→间断点 第一类:左右极限均存在. ( 可去间断点、跳跃间断点)第二类:左右极限、至少有一个不存在. (无穷间断点、振荡间断点)5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论. (二) 极限 1、 定义1) 数列极限 : εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限 :εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔; Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换) 4、 求极限的方法1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性;4) 两个重要极限: a) 1sin lim 0=→xx x b) e x x x x x x =+=++∞→→)11(lim )1(lim 15)无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~ b) 221~cos 1x x - c) x ex~1-,(a x a x ln ~1-) d)x x ~)1ln(+ (ax x a ln ~)1(log +) e) x x αα~1)1(-+二、 导数与微分(一) 导数 1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- , 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔ 2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、可导与连续的关系: 4、求导的方法1) 导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5) 隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、 高阶导数1)定义:⎪⎭⎫ ⎝⎛=dx dy dx d dx y d 222)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使. 2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈;2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 中值定理:若函数)(),(x F x f 满足: 1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) Taylor 公式 (四) 单调性及极值1、单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则 ①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2( ,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2(,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的. 2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、利用函数单调性;3、利用极值(最值). (六) 方程根的讨论1、连续函数的介值定理;2、Rolle 定理;3、函数的单调性;4、极值、最值;5、凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线;2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;3、 斜渐近线:k xx f x =∞→)(lim ,b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv(四) 有理函数积分 : 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ2、性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ(平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)1、变上限积分:设⎰=Φxa dt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dxd x x ααβββα'-'=⎰ 2、N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分1、换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)( 2、分部积分法:[]⎰⎰-=baba ba vdu uv udv(四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat adx x f dx x f )(lim)(, ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(, ⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、瑕积分:⎰⎰+→=btat badx x f dx x f )(lim )((a 为瑕点), ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q qa b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x fV )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=b ay dx x xf V )(2π(柱壳法) 2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(1 2、参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设xyu =,则dx du x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dy dv y v dy dx += (四) 一阶线性微分方程)()(x Q y x P dx dy =+ ,用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dydp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程 )(x f qy y p y =+'+''1、)()(x P e x f m xλ=,设特解)(*x Q e x y m xkλ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m mx k ωωλsin )(cos )()2()1(*+=, 其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

相关文档
最新文档