全息光栅的制作
全息光栅制作工艺流程
全息光栅制作工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!全息光栅制作工艺流程一、材料准备阶段在进行全息光栅制作之前,需要准备好所需的材料和工具。
全息光栅的制作实验报告
全息光栅的制作实验报告实验报告题目:全息光栅的制作实验一、实验目的:1. 了解全息光栅的原理和制作过程;2. 学会使用光刻技术制作全息光栅。
二、实验原理:1. 全息光栅的原理:全息光栅是一种利用光的干涉现象制作出来的一种光栅。
通过将物体的光波信息记录在光敏材料中,再利用干涉光生成全息图像。
2. 全息光栅的制作过程:制作全息光栅一般分为记录、制版和重建三个步骤。
其中,记录步骤是将物体的光波信息记录在光敏材料上,制版步骤是通过光刻技术将光敏材料进行蚀刻形成光栅,重建步骤是利用激光光源将原始物体的光波信息还原出来。
三、实验仪器和材料:1. 反射式全息光栅制作实验装置:包括激光光源、光学元件(分束器、镜片、光栅等)、全息光栅制作材料(光敏材料、显影液等)等。
2. 光刻设备:包括光源、掩膜、显影液等。
四、实验步骤:1. 准备工作:调整实验装置,保证激光光源的稳定输出和光学元件的合适位置。
2. 光敏材料涂覆:将光敏材料涂覆到玻璃基片上,形成一层薄膜。
3. 曝光记录:将物体放置在光敏材料前,调节光源的照射时间和强度,使光波信息被记录到光敏材料中。
4. 显影:将曝光后的光敏材料放入显影液中,显影液会溶解掉未曝光的区域,形成全息图像。
5. 激光刻蚀:将显影后的光敏材料放入光刻设备中,通过光刻技术进行蚀刻,形成全息光栅。
6. 全息光栅测试:使用激光光源将全息光栅照射,观察重建出的全息图像。
五、实验结果和分析:经过制作和测试,成功制得一张全息光栅。
在激光照射下,能够清晰重建出原始物体的光波信息,形成全息图像。
六、实验总结:通过本次实验,对全息光栅的制作过程有了较深入的了解。
全息光栅制作技术具有很高的科学和工程应用价值,可以用于大量的光学领域,如显示、存储等。
在实验过程中,还学到了光刻技术的应用,充分感受到了光学技术的魅力。
实验中还发现了一些操作和调试中的问题,对操作技巧和设备调整有了更好的认识。
通过这次实验,加深了对全息光栅制作原理和技术的理解,为今后的学习和研究奠定了基础。
全息光栅的原理及应用
全息光栅的原理及应用全息光栅是一种利用光的干涉和衍射现象制作的光学元件。
它由互相平行且间距规则的激光刻蚀或光敏材料制成的平面条纹组成,能够将光以更为复杂的方式分离、分解或重构。
全息光栅的工作原理基于光的干涉和衍射。
干涉是波的叠加现象,当两个或多个波相遇时,它们会相互干涉形成新的波。
而衍射是光通过物体边缘或孔口时发生的现象,光会绕过物体并呈现出波纹状分布。
全息光栅通过精确的光栅间距和衍射的干涉,能够记录并再现复杂的波前信息。
在光学中,全息光栅可分为振幅全息和相位全息两种类型。
振幅全息使用物体对光的振幅信息进行编码,而相位全息则编码了物体对光的振幅和相位信息。
制作全息光栅的过程通常包括如下几个步骤:首先,需要有一个用于干涉和衍射的光源,常用的光源为激光。
其次,选择合适的光敏材料,并将物体放置在光敏材料的一侧。
将光束分为两路,一路直接照射到光敏材料上,作为参考光。
另一路光束经过物体,形成物体光。
参考光和物体光在光敏材料上发生干涉。
最后,将光敏材料进行显影,即可制作出全息光栅。
全息光栅在许多领域中有广泛的应用。
以下是几个典型的应用领域:1. 全息术:全息术将物体的三维图像记录在全息光栅中,观察者可以通过照明光源观看物体的真实三维图像。
全息术在医学诊断、虚拟现实等领域有着广泛的应用。
2. 全息光存储:全息光存储技术利用全息光栅记录和存储大量的信息。
相比传统的光存储介质,全息光存储具有更大的存储容量和更快的读写速度。
3. 激光干涉测量:全息光栅可以用于激光干涉测量,通过测量光束的干涉图样,可以得到被测物体的形状、表面粗糙度等参数。
4. 光谱仪:全息光栅可以用作光谱仪中的光栅元件,通过衍射光的波长和角度关系,实现对光谱的分析和检测。
5. 显示技术:全息光栅可以用于头盔展示设备、护目镜或汽车仪表盘中的头上显示。
通过光的衍射,可以呈现出立体的图像,增强用户体验。
综上所述,全息光栅是一种能够通过光的干涉和衍射记录和再现复杂光波的光学元件。
全息光栅制作实验报告
全息光栅制作实验报告一. 引言全息光栅是一种利用光的衍射现象制作出的光学元件,具有复杂的衍射效果。
全息光栅被广泛应用于显示、储存以及光学信息处理等领域。
在本实验中,我们将通过使用光敏材料和激光束来制作一个全息光栅。
二. 实验原理全息光栅的制作过程包括露光、显影、定影和电镀。
首先,选取一个光敏材料作为全息光栅的基底,并将其加工成光滑的表面。
然后,利用激光束照射光敏材料,形成光栅的干涉图样。
接下来,使用显影液将暴露于光的区域显影出来,形成明暗交替的条纹。
之后,将样品进行定影,使得光栅图案稳定下来。
最后,进行电镀,以增强光栅的耐久性和强度。
三. 实验步骤1. 准备光敏材料选择一块透明的光敏材料作为光栅的基底,将其切割成适当大小的样品。
保持样品表面的干净,以免对制作过程产生影响。
2. 显影预处理将样品浸泡在显影液中,保持一定时间,以去除光敏材料表面的杂质。
然后,用去离子水或酒精洗净样品,并在无尘的环境中晾干。
3. 光栅制作将样品放置在光源下方的平台上,调节光源的角度和位置,使得激光束垂直照射在样品中心的位置。
开启激光源,照射样品,待干涉条纹稳定后,关闭激光源。
4. 显影将样品放入显影液中,保持一定时间,使得经过照射的区域显影出来。
随着时间的推移,明暗条纹逐渐清晰可见。
然后,用去离子水洗净样品,以停止显影过程。
5. 定影将样品放入定影液中,保持一定时间,以稳定光栅图案。
然后,用去离子水洗净样品,以停止定影过程。
6. 电镀将样品进行电镀,以增强光栅的耐久性和强度。
首先,在电镀槽中加入适当的电镀液,将样品放入槽中,并连接电源。
根据电镀液的要求,设置合适的电流和镀层厚度,并保持一定时间。
完成电镀后,取出样品,用去离子水洗净并晾干。
四. 实验结果与分析通过以上步骤制作的全息光栅在显微镜下观察,可以清晰地看到明暗交替的条纹图案。
这些条纹图案是由于光的干涉效应所产生的。
全息光栅可以通过光的衍射现象实现对入射光的分光和分束,因此具有广泛的应用前景。
全息光栅的制作(B纸张_非常完整_BJTU物理设计性实验分析方案)
杨氏双缝干涉是分波面干涉的典型实验装置。由于每条狭缝不可避免有一定的宽度,于是双缝干涉与单缝衍射总是相伴而生的。杨氏双缝干涉法利用光束通过两条缝的0级衍射光在全息干板上进行相干叠加,从而制得全息光栅。
光路如图3所示。双缝间距b,全息干板与双缝的距离D。实验要求每条缝的缝宽较小,使光束通过两条缝的0级衍射条纹较宽,在全息干板可以有较大范围的重叠,从而制得较大面积的全息光栅。同时,所得光栅的光栅常数易于控制,只需改变全息干板与双缝之间的距离D或改变缝间距b即可,因为 。
[1]刘香茹, 巩晓阳, 郝世明, 李立本.“分波面法”制作全息光栅的两种新光路[J].中国科教创新导刊,2008(5>.
[2]刘香茄,陈庆东,李立本. 全息光栅制作光路的比较研究[J]. 大学物理实验, 2008(21>.
[3] 朱庆芳, 岳筱稗. 全息光栅的实验制作与研究[J]. 新乡帅范高等专科学校学报, 2004.
一般在光学稳定的平玻璃坯件上涂上一层给定型厚度的光致抗蚀剂或其他光敏材料的涂层,由激光器发生两束相干光束,使其在涂层上产生一系列均匀的干涉条纹,光敏物质被感光,然后用特种溶剂溶蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像,所制得为透射式衍射光栅。如在玻璃坯背面镀一层铝反射膜,可制成反射式衍射光栅。
2)不要正对着激光束观察,以免损坏眼睛;
3)曝光时间要掌握好,曝光面切勿放反了;
4)由于有多组同学一起实验,处理干片的时候切勿将干片混淆;
5)在处理干片时注意避免光源<手机等)。
六数据与处理
1.测定所制光栅的光栅常数
将所制得的全息光栅置于激光器前,测量所成零级明条纹与一级明条纹的间距 与屏到光栅的距离 。根据干涉加强条件 ,其中 ,且夹角 较小,可以求得光栅常数 。再由 算出每毫M光栅常数。
全息光栅制作方法的设计和研究1
全息光栅制作方法的设计和研究1全息光栅制作方法的设计和研究1全息光栅是一种用于光信息存储与处理的重要光电器件,具有高容量,高速度和容易制备等优势。
在制备和研究全息光栅的过程中,需要考虑材料的选择和加工方法,同时需要对全息光栅的性能进行测试和优化。
本文将介绍全息光栅的制备方法的设计和研究。
首先,全息光栅的制备需要选择合适的材料。
根据全息光栅的应用场景和要求,可以选择光敏材料、介电材料或者光束分波器材料等。
常用的光敏材料有光致聚合物和光敏玻璃等。
光致聚合物具有较高的敏感度和转录性能,是制备全息光栅的较好选择。
介电材料如硅胶、光纤和聚合物等在全息光栅制备中可以用作基片或衬底材料。
光束分波器材料可以将入射光束分为几个波束,实现光的调控和分配。
其次,在全息光栅制备过程中,需要选择合适的光刻工艺。
常见的光刻工艺包括黄光和紫外光刻等。
黄光刻工艺成本较低,适用于生产和制备大规模的全息光栅。
紫外光刻工艺适用于高精度和高分辨率的全息光栅制备。
在光刻工艺中,需要考虑光刻胶的选择和光刻曝光时间等参数。
光刻胶的选择需要考虑它对光的敏感度和转录性能。
光刻曝光时间可以根据光刻胶的敏感度和厚度进行调整。
最后,制备完成的全息光栅需要进行性能测试和优化。
常见的性能测试包括衍射效率和角度调制等。
衍射效率测试可以通过测量入射光束和衍射波束之间的亮度比进行。
角度调制可以通过改变入射光束的角度来测试光栅对光的散射效果。
在测试过程中,需要优化全息光栅的设计和参数,例如光栅周期、光栅深度和光刻胶的厚度等。
总之,全息光栅制备的设计和研究需要考虑材料的选择、光刻工艺和性能测试等因素。
在制备过程中,需要选择合适的材料和光刻工艺,并对制备完成的全息光栅进行性能测试和优化。
这些工作对于实现高容量和高速度的光信息存储与处理具有重要意义。
全息光栅的制作(实验报告)完美版
全息光栅的制作(实验报告)完美版(2009-10-12 23:25:34)转载▼标签:光栅干片发散镜双缝白屏教育设计性试验看似可怕,但实际操作还是比较简单的~ 我的实验报告,仅供参考~实验报告封面全息光栅的制作一、实验任务设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。
二、实验要求1、设计三种以上制作全息光栅的方法,并进行比较。
2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅。
3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。
三、实验的基本物理原理1、光栅产生的原理光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,一般每毫米几十至几千条。
单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。
谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。
光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。
图12、测量光栅常数的方法:用测量显微镜测量;用分光计,根据光栅方程d·sin =k 来测量;用衍射法测量。
激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x 及屏到光栅的距离L,则光栅常数d= L/△x。
四、实验的具体方案及比较1、洛埃镜改进法:基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。
优点:这种方法省去了制造双缝的步骤。
缺点:光源必须十分靠近平面镜。
实验原理图:图22、杨氏双缝干涉法:基本物理原理:S1,S2为完全相同的线光源,P是屏幕上任意一点,它与S1,S2连线的中垂线交点S'相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到屏幕的距离为L。
全息光栅的设计制作
全息光栅的设计制作光栅是重要的分光元件之一, 由于它的分辨率优于棱镜, 因而许多光学仪器中都采用光栅代替棱镜作为分光的主要元件, 如单色仪、光谱仪、摄谱仪等。
此外, 光栅在现代光学中的应用日趋广泛, 如光通信中用作光耦合器、光互连中用作互连元件、激光器用作选频元件、光信息处理用作编码器、调制器、滤波器等等。
全息光栅制作技术是20世纪60年代随着全息技术的发展而出现的, 因其具有传统刻划光栅所不具备的一些优点而受到人们的重视。
目前, 全息光栅在某些方面已经取代刻划光栅, 在光栅家族中占有了一席之地。
[实验目的]1.掌握用全息方法制作光栅的基本原理;2.掌握全息实验光路的基本调节方法和一维光栅的制作技巧;3.了解全息光栅的基本特性和测试方法;4.初步了解全息记录介质—卤化银乳胶的特性和干板的处理方法。
[实验仪器]全息防震平台(2m ×1.5m ), He-Ne 激光器, 反射镜(若干), 分束镜, 针孔滤波器, 干板架, 全息干板。
[实验原理]一. 全息光栅制作原理由光的干涉原理可知, 两束平行的相干光干涉, 干涉场是一组明暗相间的等间隔的平面族, 其周期由两束平行光的夹角和光波波长所确定。
若将全息记录干板置于该干涉场中, 则干板上记录到的干涉条纹将呈等间隔的平行直线条纹, 这就是全息光栅。
设两束平行光与光轴的夹角分别为θ1和θ2, 光波波长为λ, 显然, 干板记录的全息光栅的透射率应该呈余弦函数分布, 称为余弦光栅。
⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛++===⎪⎪⎭⎫ ⎝⎛+=+===---x U x U e e U UU U I e e U U U U e U U e U U x j x j x j x j x j x j λθθπλθθπλθθπλθθπλθπλθπλθπλθπ212202120sin sin 2sin sin 220*2sin 2sin2021sin 202sin 201sin sin cos 4sin sin 2cos 122;;;21212121由干涉原理可知, 全息光栅常数d 由下式确定:πλθθπ=-d 21sin sin ;LD d f ≈--==21210sin sin ;sin sin 1θθλθθ ;;0λλDL d L D f ==或f 0是光栅空间频率, 表征了光栅线密度特性, 其单位通常用“lp/mm ” (lp 表示“线对”, 指一条亮纹和一条暗纹构成的一个“线对”, 对应光栅的一个周期)。
全息光栅的制作(B5纸张,非常完整版,BJTU物理设计性实验报告)
北京交通大学大学物理实验设计性实验实验题目全息光栅的制作学院班级学号姓名首次实验时间指导老师签字_______________全息光栅的制作一实验任务设计制作全息光栅并测出其光栅常数(要求所制作的光栅不少于100条/毫米)二实验要求1.设计三种以上制作全息光栅的方法并进行比较(应包括马赫-曾德干涉法);2.设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅;3.给出所制作的全息光栅的光栅常数值,计算不确定度、进行误差分析并做实验小结。
三实验基本原理1.全息光栅全息光学元件是指基于光的衍射和干涉原理,采用全息方法制作的,可以完成准直、聚焦、分束、成像、光束偏转、光束扫描等功能的元件。
光全息技术主要利用光相干迭加原理,简单讲就是通过对复数项(时间项)的调整,使两束光波列的峰值迭加,峰谷迭加,达到相干场具有较高的对比度的技术。
常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。
其中全息光栅就是利用全息照相技术制作的光栅,在科研、教学以及产品开发等领域有着十分广泛用途。
一般在光学稳定的平玻璃坯件上涂上一层给定型厚度的光致抗蚀剂或其他光敏材料的涂层,由激光器发生两束相干光束,使其在涂层上产生一系列均匀的干涉条纹,光敏物质被感光,然后用特种溶剂溶蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像,所制得为透射式衍射光栅。
如在玻璃坯背面镀一层铝反射膜,可制成反射式衍射光栅。
作为光谱分光元件,全息光栅与传统的刻划光栅相比,具有以下优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、价格便宜等;全息光栅已广泛应用于各种光栅光谱仪中。
作为光束分束器件,全息光栅在集成光学和光学通信中用作光束分束器、光互连器、耦合器和偏转器等;在光信息处理中,可作为滤波器用于图像相减、边沿增强等。
2. 光栅条纹光栅,也称衍射光栅,是基于多缝衍射原理的重要光学元件。
光栅是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片,其狭缝数量很大,一般每毫米几十至几千条。
全息光栅的制作方法
单位一般为“线/毫米”或“线对/毫米”。
以上有不当之处,请大家给与批评指正, 谢谢大家!
9
ห้องสมุดไป่ตู้
反射光栅 (闪耀光栅)
根据制作方法可分为:机制光栅和全息光栅。
机制光栅:在玻璃
片上刻划出一系列 平行等距的划痕,刻 过的地方不透光, 未刻的地方透光。
全息光栅:通过全息照相,将激 光产生的干涉条纹在干板上曝光,
经显影定影制成全息光栅。通常 在 1 cm 内刻有成千上万条透光 狭缝,相当于多光束干涉,光栅 形成的光谱线尖锐、明亮。
二.全息光栅如何制作?
在全息干板上记录两列有一定夹角的平面 波的干涉条纹,经显影、定影等处理后就得到 全息光栅 .
图1 两束平行光相干涉
图3 低频全息光栅光路
提示
若参考光和物光间的夹角为q,且两束光对称的入射
到全息干板上时,光栅常数
,
它反映光栅在空间上的周期性结构,其倒
数
为该光栅的空间频率,
全息光栅的制作
实验目的:
(1)了解全息光栅的摄制原理,熟悉双光束干涉的 基本特点,制作全息光栅。
(2)掌握测定光栅常数的方法。
实验要求:
(1)利用制作全息光栅的典型光路或马赫-曾 德干涉仪型的摄制光路,分别摄制: ①每毫米150线、300线的一维光栅各一块。 ②摄制每毫米80线、150线的正交光栅各一块。
③摄制一块复合光栅,其空间频率x=x2-x1, x1=100线/毫米,x2=110线/毫米。
(2)测定所制作的全息光栅的光栅常量。
一.什么是光栅?什么是全息光栅?
光栅是由大量等宽、等间距的平行狭缝(或反 射面)构成的光学元件。实际的光栅根据工作原理 可分为两种:透射光栅和反射光栅。
透射光栅 (衍射光栅)
全息光栅的制作
全息光栅的制作光栅是一种光学元件,其上有规则地配置着线、缝、槽或光学性质周期性变化的物质。
从广义角度讲,任何一种装置和结构,只要它能给入射光的振幅或相位,或者两者同时加上一个周期性的空间调制,都可以称之为光栅。
换言之,任何一种具有周期性的空间结构或光学性能周期性变化(如透射率、折射率)的衍射屏统称为光栅。
决定光栅性能的基本参数有三个:光栅的周期或空间频率(周期的倒数);槽形(一个周期内的具体结构);光栅的衍射效率。
按照制造光栅的方法来分,光栅可分为刻划光栅、全息光栅。
刻划光栅通常是用精密的刻线机在玻璃或镀有金属膜的玻璃上刻出,它不仅需要昂贵的设备(刻线机),对刻划条件要求很苛刻,而且很费时间,例如刻一块面积2100100mm、空间频率为600~1200/c mm的光栅需要昼夜不停地刻划一个星期。
1948年盖伯(Gabor)发现了全息光学原理,随着六十年代激光技术的发展,出现了用记录激光干涉条纹制作光栅的技术,发展了所谓的全息光栅。
国际上,在1970年就有全息光栅出售(法国Jovin—Yvom公司);西德在1969年制成了边长达1m的全息光栅,用于天文学方面。
我国也有一些单位在研制全息光栅,并有出售。
同刻划光栅比,全息光栅具有很多优点:不存在固有的周期误差,因而不存在罗兰鬼线;杂散光少;光栅的适用范围宽;分辨率高;有效孔径大;生产周期短。
由于全息光栅的上述特点使得它在生产和技术中得到了广泛的应用,它不仅适合于高分辨的得发射、吸收和喇曼光谱分析,在光信息处理中得到广泛的应用,而且已用于激光器件中作为波长选择元件,在集成光学和光通信方面作为光耦合元件将有着极大的应用潜力。
一、实验目的1.验证双光束干涉的基本原理,进一步理解双光束干涉的基本理论;2.学习马赫—泽德干涉仪的光路布置原则和调节方法;3.掌握制作正弦型全息光栅的原理和方法;二、实验原理1. 光的干涉原理当两束相干的平面波以一定的角度相遇时,在他们相遇的区域内便会产生干涉,其干涉图样在某一平面内是一系列平行等距的干涉条纹,其强度分布则是按余弦规律而变化,即干涉图样的强度分布是121212I =I I 2cos()A A ϕϕ++- (1)式中的211I A =、222I A =,1A 、2A 是两列平面波的振幅,1ϕ、2ϕ是对应的空间相位函数。
全息光栅实验报告
实验名称:全息光栅的制作与测量实验日期:2023年11月X日实验地点:实验室实验目的:1. 理解全息光栅的制作原理。
2. 掌握全息光栅的制作方法。
3. 学习使用光学仪器测量光栅常数。
4. 分析实验数据,验证光栅常数。
实验原理:全息光栅是一种利用光的干涉和衍射原理制成的光学元件。
它通过记录和再现光波的振幅和相位信息,从而实现光波的精确复现。
在全息光栅的制作过程中,需要使用两束相干光束,一束作为参考光束,另一束作为物光束。
两束光束在记录介质上相遇并发生干涉,形成干涉条纹。
经过适当的曝光、显影、定影等过程,最终制成全息光栅。
实验仪器:1. 全息干板2. 半导体激光器3. 分束镜4. 扩束镜5. 反射镜6. 准直透镜7. 针孔滤波器8. 光栅常数测量显微镜9. 计算器实验步骤:1. 将全息干板固定在实验平台上,确保其表面平整。
2. 使用分束镜将激光器发出的光束分成两束,一束作为参考光束,另一束作为物光束。
3. 将扩束镜安装在参考光束的路径上,使参考光束均匀照射在全息干板上。
4. 将准直透镜安装在物光束的路径上,使物光束经过准直后照射在全息干板上。
5. 调整分束镜和准直透镜的位置,使参考光束和物光束在全息干板上相遇并发生干涉。
6. 通过针孔滤波器将全息干板上的干涉条纹聚焦到白屏上。
7. 使用光栅常数测量显微镜测量干涉条纹的间距,计算出光栅常数。
8. 对实验数据进行整理和分析。
实验结果:1. 全息光栅成功制成,干涉条纹清晰可见。
2. 通过测量干涉条纹的间距,计算出光栅常数为d=0.5mm。
数据分析与讨论:1. 光栅常数的测量结果与理论值相符,说明实验结果准确可靠。
2. 实验过程中,需要注意调整参考光束和物光束的夹角,以保证干涉条纹的清晰度。
3. 光栅常数的测量结果受测量仪器和操作者的影响,需要多次测量并取平均值。
实验结论:1. 通过本实验,掌握了全息光栅的制作原理和制作方法。
2. 学习了使用光学仪器测量光栅常数的方法。
全息光栅制作
实验三 全息光栅的制作【实验目的】1、了解用全息方法制作一维光栅和二维正交光栅的基本原理。
2、掌握全息实验光路的基本调节方法和制作技巧。
3、初步了解全息干涉的处理方法。
【实验原理】由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的干涉条纹,其周期由两束平行线的夹角和光波波长确定,若将全息记录干版置于该干涉场中,则干版上记录到得干涉条纹将呈现等间隔的干涉直线条纹,这就是全息光栅。
采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。
下面介绍制作平面全息光栅的制作。
设两束平行光的夹角为θ,光波波长为λ,且两束平行光对于全息干版呈对称入射,如下图所示。
显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。
由干涉原理可知,全息光栅周期d 由下式确定: ()012sin /2d f λθ== (1)0f 为光栅空间频率,用来表征光栅线密度特性,其单位通常为lp/mm (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个线对,对应光栅的一个周期)。
由式1可知,通过改变两束光之间的夹角可以得到不同空间周期或频率的全息光栅。
对于低频光栅,两束平行光的夹角很小,利用小角度近似,可以用下式来计算光栅的周期和频率:01d f λθ=≈ (2) 1. 全息光栅的记录光路记录全息光栅的光路有多种,图1和图2是其中常见的两种光路。
图1所示光路中BS :分光比为1:1的分束镜 S 、A :电子快门和光强衰减器(不用)M1、M2:全反镜 L1、L2和L3、L4:两路扩束准直 H :全息干板图1 全息光栅记录光路之一 从图1可知,θ很小时,有()tan /2/2/D l θθ≈=,则012l d f Dλ=≈,实验中可用此式来估算低频光栅的空间周期和空间频率。
图2所示光路是马赫—曾德干涉仪光路。
利用该光路所形成的全息光栅的空间周期和空间频率仍可用式(1)和式(2)来确定。
全息光栅的制作方法
课程结业论文课程名称:普通物理实验院系专业:物理学系物理学学号:201211141928姓名:马宏志用全息照相法制作光栅及实验结果的分析作者:马宏志(201211141928) 单位:北京师范大学物理系2012级师范班论文摘要光栅是具有周期性透光性质的光学分光元件,不透明屏上N 个等宽等间距的狭缝就形成了一个光栅。
全息光栅的基本原理是全息照相技术。
光全息技术,主要是利用光相干叠加原理,简单地将就是通过对复数项(时间项)的调整,使两束光波列的峰值叠加,峰谷叠加,达到相干场具有较高的对比度的技术。
利用相干光叠加,在记录平面上形成亮暗相间的的干涉条纹,再经过显影,定影处理,就形成了呈平行排列的光栅,一般单位宽度上的光栅数密度很大,从几百条到几千条不等。
制作好的光栅可以用来测定它的光栅常数,还可以用作分光器件使白光发生色散,利用光栅方程sin d k θλ=测出不同色光的波长。
最后利用空间滤波原理对全息照相技术加以改进,消除不利条件的影响,提高照片质量。
关键词:全息照相、光的干涉、空间滤波、光栅、光栅常数。
引言光学是物理学的一个很重要的分支,光学中有很多奇特的光现象和许多精密的光学元件。
这些光学元件的制作都要建立在严密的科学理论之上,同时也需要很高的实验操作技能。
光栅作为一种精度很高且很重要的光学元件,在许多领域有着很广泛的作用。
光栅的研究开始于18世纪中叶,主要代表人物有李敦豪斯、夫琅和费,伍德,迈克尔逊等人。
最初的光栅种类少,精度不高,每毫米的光栅条数只有几到几十条,主要是刻画光栅和复制光栅。
随着科技的发展,光栅制作技术日渐成熟。
伽伯发明的全息照相技术是光栅制作史上一次伟大的革命,通过使两束激光在胶片上叠加,形成亮暗相间的干涉条纹,再用化学试剂洗去亮条纹区域,由于光波很短,条纹间距很小,这就为制作高精度的光栅创造了有利的条件。
光栅种类较多,常见的有反射光栅和透射光栅,用途也十分广泛,在很多领域起着极其重要的作用。
全息光栅的设计与制作
全息光栅的设计与制作全息光学元件(HOE)是指采用全息方法(包括计算全息方法)制作,可以完成准直、聚焦、分束、成像、光束偏转、光束扫描等功能的元件。
在完成上述功能时,它不是基于光的反射和折射规律,而是基于光的衍射和干涉,所以全息光学元件也称为衍射元件。
常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。
全息光栅是一种重要的分光元件。
作为光谱分光元件,与传统的刻划光栅相比,具有以下优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、生产效率高、价格便宜等,已广泛应用于各种光栅光谱仪中,供科研、教学、产品开发之用。
作为光束分束器件,在集成光学和光通信中用作光束分束器、光互连器、耦合器和偏转器等。
在光信处理中,可作为滤波器用于图像相减、边缘增强等。
本实验主要进行平面全息光栅的设计和制作实验。
一、实验目的1、掌握制作正弦型和矩形全息光栅的原理和方法2、掌握制作复合型光栅的原理和方法,观察摩尔条纹3、测试光栅常数二、主要仪器与设备He-Ne激光器、分束镜、反射镜、透镜、全息干板、显影液、定影液、吹风机、干板夹、底座等三、实验原理全息光栅的制作原理:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。
采用不同的波面形状可得到不同用途的全息光栅,采用不同的处理过程可得到不同类型或不同用途的全息光栅(如,正余弦光栅、矩形光栅、平面光栅和体光栅)。
1、全息光栅的记录光路记录全息光栅的光路有多种,图1、图2及图3都可以用于产生相干平行,通过选择透镜的直径和摆放光束,图3两束平行光之间的夹角决定于ADB位置来调节夹角。
常采用图1光路,由激光器发出的激光经分束镜BS后被分为两束,一束经反射镜M1反射、透镜L1和L2扩束准直后,直接射向全息干板H: 另一束经反射镜M2反射、透镜L3和L4扩束准直后,也射向全息干板H。
图中,S和A分别为电子快门和光强衰减器,电子快门与曝光定时器相连,用于控制曝光时间。
全息平面光栅的制作及其参数测定
全息平面光栅的制作及其参数测定一、 实验目的1. 掌握空间频率较低的全息平面光栅的制作方法。
2.学会在全息台上光学元件的共轴调节技术、扩束与准直的基本方法,熟练地获得和检验平行光。
3. 用几何光学和物理光学方法测定全息光栅的光栅常数。
二、 仪器及用具光学平台(全息台),He---Ne 激光器,定时器,快门,50%分束镜,平面镜,全息干板,像屏,底片夹,透镜,显定影用具,读数显微镜等。
三、 实验原理全息光栅是用全息照相的方法制作的一种分光元件。
与用普通方法制作的刻划光栅和复制光栅相比,全息光栅没有周期性误差,杂散光少,分辨率和衍射效率高,制作的环境条件要求较低,因而其应用越来越广泛。
两列同频率的相干平面光波以一定夹角相交时,在两光束重叠区域将产生干涉现象。
如图1(a )所示,在z=0的xy 平面(该平面垂直于纸面)上将接收到一组平行于y 轴的明暗相间的直条纹,其光强分布和条纹间距分别为 )]sin (sin 2cos 1[2210θθλπ-+=x I I (1))(21cos )(21sin 21sin sin 212121θθθθθθλ-+=-=d (2)式中:1θ、2θ分别为两束相干光与(x y )平面的法线夹角,θθθ=+21为两束光的会聚角。
当两束光对称入射即221θθθ==时,有(a) (b)图12sin 2λ=d (3)令ν为干涉条纹的空间频率,则λθν)2sin(21==d (4) 如果在0=z 处平行于xy 平面放置一块全息干板H (图1 b ),则经曝光、显影、定影等处理后,即可获得一张全息光栅。
当空间频率ν比较小时,称之为低频全息光栅。
四、 实验光路本实验采用马赫—曾特尔干涉仪光路,如图2所示。
它主要是有两块50%的分束器1BS 、2BS 和两块全反射镜1M 、2M 组成。
四个反射面互相平行,中心图2 光路构成一个平行四边形。
扩束镜C 和准直透镜L 共焦以后产生平行光,平行光射到1BS 上分成两束,这两束光经1M 、2M 反射后在2BS 上相遇发生干涉,在2BS 后面的观察屏P 上可观察到干涉条纹。
制作全息光栅实验报告
一、实验目的1. 了解全息光栅的制作原理和过程;2. 掌握全息光栅的拍摄和冲洗技术;3. 测量全息光栅的光栅常数,分析误差;4. 培养实验操作能力和数据分析能力。
二、实验原理全息光栅是一种利用光的衍射和干涉原理制作的光学元件。
当单色平行光通过全息光栅时,会发生衍射和干涉,形成一系列明暗相间的条纹,这些条纹称为光栅条纹。
光栅条纹的位置与光的波长有关,不同波长的光在光栅上形成的光栅条纹位置不同,从而实现光的色散。
三、实验仪器与材料1. 实验仪器:全息干板、激光器、白屏、分光计、显微镜、照相机、显影液、定影液等;2. 实验材料:全息干板、激光光源、白屏、显影液、定影液等。
四、实验步骤1. 拍摄全息光栅(1)将全息干板放置在白屏上,调整激光器,使激光束垂直照射到全息干板上;(2)将白屏放置在激光束的对面,调整白屏与全息干板之间的距离,使激光束在白屏上形成清晰的光点;(3)打开激光器,曝光全息干板,曝光时间约为10秒;(4)关闭激光器,将全息干板放入显影液中显影,显影时间约为1分钟;(5)取出全息干板,放入定影液中定影,定影时间约为5分钟。
2. 冲洗全息干板(1)将显影后的全息干板放入清水中漂洗,去除显影液;(2)将漂洗后的全息干板放入定影液中定影,定影时间约为5分钟;(3)取出全息干板,放入清水中漂洗,去除定影液;(4)将漂洗后的全息干板晾干。
3. 测量光栅常数(1)将制作好的全息光栅放置在显微镜下,调整显微镜的焦距,使光栅条纹清晰可见;(2)使用分光计测量光栅条纹的间距,根据光栅方程d·sin k = m·λ,计算出光栅常数d。
五、实验结果与分析1. 光栅常数测量结果:d = 5.6μm;2. 误差分析:实验过程中,由于仪器精度和操作误差,光栅常数测量值存在一定的误差。
通过多次测量,取平均值,可以减小误差。
六、实验总结1. 全息光栅的制作原理和过程较为简单,但需要注意曝光时间、显影时间和定影时间的控制;2. 光栅常数的测量需要使用分光计和显微镜,操作过程中要确保仪器精度和操作规范;3. 通过本次实验,掌握了全息光栅的制作和测量方法,提高了实验操作能力和数据分析能力。
全息光栅的制作终结篇
全息光栅的制作一.【实验目的】1、了解全息光栅的原理;2、复习用马赫-曾德干涉仪搭光路并拍照;3、学习对全息光栅的后处理。
二.【主要仪器及设备】1.光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm针孔的针孔滤波器组合两套。
2.扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。
3. 20mW He-Ne 激光器一台。
4.天津I 型全息干板,显影、定影设备和材料。
5.电子快门和曝光定时器一套。
三.【实验原理】全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。
采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。
当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。
采用线性曝光可以得到正弦振幅型全息光栅。
从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅。
有多种光路可以制作全息光栅。
其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。
我们常采用马赫-曾德干涉仪光路。
(一)马赫-曾德干涉仪法(1)光栅制作原理与光栅频率的控制用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。
相邻干涉条纹之间的距离即为光栅的空间周期d(实验中常称为光栅常数) 。
图1相干光干涉形成光栅的示意图图2 全息光栅制作实验光路图马赫-曾德干涉仪光路测全息光栅。
实验1-全息光栅制作技术
全息摄影实验指导材料实验一 全息光栅拍摄技术[实验目的]1、了解用全息干涉法制作光栅的基本原理;2、掌握全息实验光路以及光学元器件的基本调节方法;3、观察全息光栅的衍射现象,加深了解光的衍射规律;4、初步掌握卤化银乳胶干板的化学处理方法。
[实验仪器]全息防震平台(2m×1.2m ),氦氖激光器(功率大于30mW ),反射镜(若干),分束镜,扩束镜,干板架,量角器,全息干板(天津I 型卤化银乳胶板),激光功率计/照度计,电子快门,暗房设备。
[实验原理]光栅是重要的分光元件之一,由于它的分辨率优于棱镜,因而许多光学仪器中都采用光栅代替棱镜作为分光的主要元件,如单色仪、光谱仪、摄谱仪等。
此外,光栅在现代光学中的应用日趋广泛,如光通信中用作光耦合器、光互连中用作互连元件、激光器用作选频元件、光信息处理用作编码器、调制器、滤波器等等。
全息光栅制作技术是20世纪60年代随着全息技术的发展而日趋成熟的一门技术,因其具有传统刻划光栅所不具备的一些优点而受到人们的重视。
目前,全息光栅在某些方面已经取代刻划光栅,在光栅家族中占有了一席之地。
一、原理由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的平面族,其周期由两束平行光的夹角和光波波长所确定。
若将全息记录干板置于该干涉场中,则干板上记录到的干涉条纹将呈等间隔的平行直线条纹,这就是全息光栅。
设两束平行光的夹角为α,光波波长为λ0,且两束平行光对于全息干板呈对称入射状态(见图1-1所示),显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。
由干涉原理可知,全息光栅周期d 由式(1-1)确定02sin 2λα=d (1-1)光栅法线全息干板α λ0 图1-1 记录全息光栅原理示意图通常还用光栅空间频率f 0表征光栅线密度特性,因而上式还可表示为002sin 2λαf = (1-2)其中,f 0 定义为d f 10= (1-3)其单位通常用“lp/mm” (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个“线对”,对应光栅的一个周期)。
全息光栅的设计与制作
现代光学系列实验--全息光栅的设计与制作
p f0" = 2lλ
θ He-Ne 激 光 器
p
H
l
全息光栅衍射花样及空间频率检测
2007年4月1日 9
现代光学系列实验--全息光栅的设计与制作
2.复合全息光栅的制作: 搭建实验光路,采用两次曝光,第一次曝光记 录光栅条纹的空间频率 仍 定为 f0=100 线 / mm。 然 后 , 调 节安装 干板 架 的 二 维 大 镜座 的方 位 角 微 调 旋钮,使全息干板水平旋转一个角度ϕ之后,再进 行第二次曝 光。 本 实验要求第二次曝光记录的光 栅空间频率为f0'=98线/mm。 两 次曝 光的全息 底片经 显影、 定 影、 漂 白等处 理后即制得复合光栅。 最 后 是 测量 复合光栅的 莫尔 条纹的空间频率, 并与设计值作比较。
2007年4月1日 1
现代光学系列实验--全息光栅的设计与制作
1. 掌握制作正弦型和矩形全息光栅的原理和方 法。 2. 掌握制作复合光栅的原理和方法,观察莫尔 条纹。 3. 通过实验,制作一个低频全息光栅和一个复 合光栅,并观察和分析实验结果。
2007年4月1日
2
现代光学系列实验--全息光栅的设计与制作
现代光学系列实验--全息光栅的设计与制作
王仕璠 教授 刘 艺 副教授
2007年4月1日
0
现代光学系列实验--全息光栅的设计与制作
全息光栅是一种重要的分光元件。它与传统的 刻痕光栅比较,具有光谱中无鬼线、杂散光少、分 辨率高、有效孔径大、生产效率高、价格便宜等优 点。现在,全息光栅已广泛用于光谱仪器、θ调制技 术、集成光学中作光束分束器、耦合器和偏转器等。 在光信息处理中,它既可作为调制器用于图像相减、 边缘增强、消模糊处理等,又可作为编码器,对黑 白图片实现假彩色编码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全息光栅的制作光栅是一种光学元件,其上有规则地配置着线、缝、槽或光学性质周期性变化的物质。
从广义角度讲,任何一种装置和结构,只要它能给入射光的振幅或相位,或者两者同时加上一个周期性的空间调制,都可以称之为光栅。
换言之,任何一种具有周期性的空间结构或光学性能周期性变化(如透射率、折射率)的衍射屏统称为光栅。
决定光栅性能的基本参数有三个:光栅的周期或空间频率(周期的倒数);槽形(一个周期内的具体结构);光栅的衍射效率。
按照制造光栅的方法来分,光栅可分为刻划光栅、全息光栅。
刻划光栅通常是用精密的刻线机在玻璃或镀有金属膜的玻璃上刻出,它不仅需要昂贵的设备(刻线机),对刻划条件要求很苛刻,而且很费时间,例如刻一块面积2100100mm、空间频率为600~1200/c mm的光栅需要昼夜不停地刻划一个星期。
1948年盖伯(Gabor)发现了全息光学原理,随着六十年代激光技术的发展,出现了用记录激光干涉条纹制作光栅的技术,发展了所谓的全息光栅。
国际上,在1970年就有全息光栅出售(法国Jovin—Yvom公司);西德在1969年制成了边长达1m的全息光栅,用于天文学方面。
我国也有一些单位在研制全息光栅,并有出售。
同刻划光栅比,全息光栅具有很多优点:不存在固有的周期误差,因而不存在罗兰鬼线;杂散光少;光栅的适用范围宽;分辨率高;有效孔径大;生产周期短。
由于全息光栅的上述特点使得它在生产和技术中得到了广泛的应用,它不仅适合于高分辨的得发射、吸收和喇曼光谱分析,在光信息处理中得到广泛的应用,而且已用于激光器件中作为波长选择元件,在集成光学和光通信方面作为光耦合元件将有着极大的应用潜力。
一、实验目的1.验证双光束干涉的基本原理,进一步理解双光束干涉的基本理论;2.学习马赫—泽德干涉仪的光路布置原则和调节方法;3.掌握制作正弦型全息光栅的原理和方法;二、实验原理1. 光的干涉原理当两束相干的平面波以一定的角度相遇时,在他们相遇的区域内便会产生干涉,其干涉图样在某一平面内是一系列平行等距的干涉条纹,其强度分布则是按余弦规律而变化,即干涉图样的强度分布是121212I =I I 2cos()A A ϕϕ++- (1)式中的211I A =、222I A =,1A 、2A 是两列平面波的振幅,1ϕ、2ϕ是对应的空间相位函数。
当两束相干光的相位差为π2的整数倍时,即122n ϕϕπ-= 012n =±±、、……(1)式便描述了两束相干光干涉所形成的峰值强度面的轨迹,如图1所示。
若能用记录介质将此干涉图样记录下来并经过适当处理,则就获得了一块全息光栅。
2. 全息光栅基本参数的控制(1) 全息光栅空间频率(周期)的控制如图2所示,波长为λ的Ⅰ、Ⅱ两束相干光与P 平面法线的夹角分别为1θ和2θ, 它们之间的夹角为22θθθ+=。
这两束相干的平行光相干叠加时所产生的干涉图样是平行等距的、明暗相间的直条纹,条纹的间距d 可由下式决定:]2/)cos[(]2/)sin[(2/)sin /(sin 212121θθθθλθθλ-+=+=d (2)当两束对称入射,即12=/2θθθ=时d =/2sin(/2)λθ (3)当θ很小时有图1 两束平行相遇所形成的干涉图形/d λθ= (4)若所制光栅的空间频率较低时,两光束的之间的夹角不大,就可以根据(4)式估算光栅的空间频率。
具体做办法是:把透镜0L 放在Ⅰ、Ⅱ两光束的重合区,则两光束在透镜后焦面上会聚成两个亮点,若两个亮点之间的距离为0X ,透镜的焦距为f ,则有0/X f θ= (5)将(5)带入(4)式得到0/d f X λ= (6)即光栅的空间频率为01//v d X f λ==如图2所示,将白屏P 放在透镜L 的后焦面上,根据亮点的距离0X 估算光栅的空间频率v0X f v λ= (7)如欲制作200/v c mm =的全息光栅,当透镜的焦距为mm f 300=,所使用激光的波长为nm 8.632=λ时,两个亮点之间的距离038X fv mm λ==。
因此,通过调节Ⅰ、Ⅱ两束光之间的角θ,使得038X mm =。
因此,通过对干涉场曝光而制备P图2 估测光栅空间频率的光路示意图出的全息光栅的空间频率就接近于200/c mm 。
(2) 全息光栅的槽形控制由于全息光栅是通过记录相干光场的干涉图形而制成的,因此,其光栅的周期结构与两个因素有关:干涉图样的本身周期结构;记录干涉图样的条件。
干涉图形是余弦条纹,那么通过暴光所制得的光栅是否也具有余弦(正弦)型的周期结构呢?回答是不一定的,只有当记录过程是线性记录时,即曝光底片变黑的程度与干涉图样的强度成正比时,所制得的全息光栅才具有与干涉场相似的周期结构。
为了了解线性记录的含义,下面简单介绍一下全息干板的感光特性。
照相干板的感光特性,通常是用黑度D 与曝光量H v 的对数关系曲线来描述的,即~lg D H v 曲线,或称作H D -[赫特(Hurter )德里菲尔德(Driffield )]曲线,如图3(a )所示。
但是在全息照相技术中,用干板的振幅透射率与曝光量的关系曲线(~H τv 曲线)来描述干板的感光特性更为方便,如图3(b)所示。
振幅透过率是出射光与入射光复振幅之比,曝光量是光强度I 与曝光时间t 的乘积。
因为~H τv 曲线只在中间一段近似为直线,所以有线性记录和非线性记录两种情况。
记录时,调整两相干光的光强度比值在1:10~1:2的范围内变化,若将曝光量控制在~H τv 曲线的直线范围内变化,这样纪录的复振幅透射率就与入射光的光强度变化有线性关系。
因此,称为线性记录。
如果曝光量不在~H τv 曲线的直线范围内变化,则复振幅的透射率与入射光强度的变化就不存在线性关系。
因此,称为非0.61.02.0D Dlg H υ(a)τH υ(b)100%50%0H 图3 照像底片感光特性曲线线性纪录。
三、实验光路制作低频正弦光栅的实验光路如图4所示。
应该指出,用这种光路制作全息光栅只是一个原理性实验,由于它使用的光学元件太多,相干噪声及波面的畸变一般较大,因此要制作优质实用化的光栅,必须尽量减少不必要的光学元件,有兴趣的同学请参看有关文献。
四、实验内容及步骤1. 按照图4布置光路并进行光路调节为了摄制高质量的全息光栅,即光栅的周期、槽形恒定,衍射效率很高。
就要求干涉仪中的两条光路Ⅰ、Ⅱ构成平行四边形。
即光路的两个对边相互平行。
为了判断两个对边是否平行,就要细心反复调节光具,使从2BS 出射的两条光束Ⅰ’、Ⅱ’重合(不是相交),这时具有两个特征:光屏1P 上的两个光斑全部重合而且移开1P 时,在光屏上2P 上的两个光斑仍是全部重图4 制做全息光栅的实验光路图合;两个光斑重合后,会出现干涉条纹,其宽度可达2mm (出现很细的条纹亦算合乎要求)。
光路调节步骤如下:(1) 调节3M ,使3M 从反射的光束平行于台面,且光束高度与光具座的中心高度一致。
(调节时,可在光束中放置画有中心高标记的纸屏,当纸屏靠近和远离激光器时光点应始终与标记重合)(2) 调节K L 、与光路共轴。
共轴调节方法如下:放一带小孔的光栏A ,让光束穿过小孔的中心并使光阑与光束垂直,然后放入待调节的光学元件并且目测使光束通过K 中心,这时从的两个表面上反射的光束在上形成干涉球(牛顿球),球的中心起先是偏离小孔中心(光束中心)很远,只要调节K (光具架的“旋转”、“升降”、“俯仰”、“平移”等)使干涉球的中心与小孔的中心重合,而且光晕又以小孔为中心均匀分布,就达到K 的中心法线与光束同轴,如图5所示。
当需调节多个光学元件与光路共轴时,其调节顺序应是沿着光路从前到后。
(3) 调节K L 、之间的距离使获得一束平行光,并用一块光屏测出此平行光束的高度,这个高度即为确定光束Ⅰ、Ⅱ、Ⅰ’、Ⅱ’的高度标准。
(4) 依次将1122BS M BS M 、、、放入光路并使经它们出射、反射的光线构成一平行四边形且其高度与(3)中所定的标准相同。
(5) 调节1M (先粗调后微调)的“旋转”、“升降”、“俯仰”、“平移”等旋钮,使光束Ⅰ、Ⅱ的两个光斑在2BS 中心重合(在2BS 出射面上放置一张镜头纸观察)。
然后调节2BS “旋转”、“俯仰”使两个光斑在1P 处重合,又拿开1P ,观察2P 处两者是否重合。
反复此调节过程直到看到间隔较大的干涉条纹为止。
2. 确定光栅的空间频率(1) 根据要求制作的全息光栅的空间频率v 及所用透镜L 的焦距f ,按照式(7)计算出光束Ⅰ和光束Ⅱ在透镜后焦面上所形成的二亮点之间的距离0X 。
要求制备一块v 为1050/c mm 的正弦型衍射光栅。
图5 判断透镜与光路共轴示意图(2) 在P 与2BS 之间放入焦距为f 的透镜L ,使其光轴与光束Ⅰ’、Ⅱ’的光轴重合,光路已调好时,在透镜的后焦面上将得到一个亮点。
然后调节2BS 的“旋转”,则在后焦面上的水平方向将会出现两个亮点,继续调的“旋转”使两个亮点之间的距离等于0X 时为止。
3. 制做全息光栅撤去透镜L ,从干板架上取下光屏P ,用挡光板挡住激光,将全息干板装在干板架上,稳定30s 后取掉挡光板进行曝光,经显影、定影、水洗、干燥等处理后即得到全息光栅。
为了得到正弦型光栅,要求曝光正确、显影适当,均控制在干板特性曲线的直线部分,否则所得到的光栅将是非正弦的。
4. 检查光栅的正弦性及其空间频率将制备的光栅直接置入激光细光束中,在远处屏上将得到其衍射图样,如图6所示。
由于光栅至屏的距离远大于光栅间距,此衍射图样为夫琅和费衍射图样,亦即其频谱。
如果光栅的频谱只有0级和1±级三个亮点,则表明此光栅是正弦型的。
如果频谱中出现23±±、、…级亮点,则表明此光栅为非正弦型。
根据光栅G 至屏P 的距离l ,以及频谱中级两亮点之间的距离d ,则可计算出光栅的实际空间频率v '。
显然 /(2)v d l λ''=将实空间频率v '与要求的空间频率v 相比较,并分析产生误差的原因。
图6 检测光栅特性参数的光路图五、思考题若欲制作空间频率为12c/cm 的正弦光栅,当使用焦距mm f 300 的傅里叶变换镜头在其焦面上观察两光束所形成的亮点时,问两亮点的距离应是多少?六、参考文献1. 祝绍箕,衍射光栅,机械工业出版社,1986年2. 李锦泉,黄丽清,贾亚民,方湘怡等,《科技综合实验训练》,西安交通大学教材科印刷,1995。