树结构习题及答案

合集下载

数据结构叉树习题含答案

数据结构叉树习题含答案

第6章树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是()。

A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子(2)由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.5(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是()。

A.250 B. 500 C.254 D.501(4)一个具有1025个结点的二叉树的高h为()。

A.11 B.10 C.11至1025之间 D.10至1024之间(5)深度为h的满m叉树的第k层有()个结点。

(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-1(6)利用二叉链表存储树,则根结点的右指针是()。

A.指向最左孩子 B.指向最右孩子 C.空 D.非空(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍历实现编号。

A.先序 B. 中序 C. 后序 D. 从根开始按层次遍历(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用()遍历方法最合适。

A.前序 B.中序 C.后序 D.按层次(9)在下列存储形式中,()不是树的存储形式?A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法(10)一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()。

A.所有的结点均无左孩子B.所有的结点均无右孩子C.只有一个叶子结点 D.是任意一棵二叉树(11)某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。

A.空或只有一个结点 B.任一结点无左子树C.高度等于其结点数 D.任一结点无右子树(12)若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则X的前驱为()。

A.X的双亲 B.X的右子树中最左的结点C.X的左子树中最右结点 D.X的左子树中最右叶结点(13)引入二叉线索树的目的是()。

数据结构-树习题

数据结构-树习题

数据结构-树习题第六章树⼀、选择题1、⼆叉树的深度为k,则⼆叉树最多有( C )个结点。

A. 2kB. 2k-1C. 2k-1D. 2k-12、⽤顺序存储的⽅法,将完全⼆叉树中所有结点按层逐个从左到右的顺序存放在⼀维数组R[1..N]中,若结点R[i]有右孩⼦,则其右孩⼦是(B )。

A. R[2i-1]B. R[2i+1]C. R[2i]D. R[2/i]3、设a,b为⼀棵⼆叉树上的两个结点,在中序遍历时,a在b前⾯的条件是( B )。

A. a在b的右⽅B. a在b的左⽅C. a是b的祖先D. a是b的⼦孙4、设⼀棵⼆叉树的中序遍历序列:badce,后序遍历序列:bdeca,则⼆叉树先序遍历序列为()。

A. adbceB. decabC. debacD. abcde5、在⼀棵具有5层的满⼆叉树中结点总数为(A)。

A. 31B. 32C. 33D. 166、由⼆叉树的前序和后序遍历序列( B )惟⼀确定这棵⼆叉树。

A. 能B. 不能7、某⼆叉树的中序序列为ABCDEFG,后序序列为BDCAFGE,则其左⼦树中结点数⽬为( C )。

A. 3B. 2C. 4D. 58、若以{4,5,6,7,8}作为权值构造哈夫曼树,则该树的带权路径长度为( C )。

A. 67B. 68C. 69D. 709、将⼀棵有100个结点的完全⼆叉树从根这⼀层开始,每⼀层上从左到右依次对结点进⾏编号,根结点的编号为1,则编号为49的结点的左孩⼦编号为( A )。

A. 98B. 99C. 50D. 4810、表达式a*(b+c)-d的后缀表达式是( B )。

A. abcd+-B. abc+*d-C. abc*+d-D. -+*abcd11、对某⼆叉树进⾏先序遍历的结果为ABDEFC,中序遍历的结果为DBFEAC,则后序遍历的结果是( B )。

A. DBFEACB. DFEBCAC. BDFECAD. BDEFAC12、树最适合⽤来表⽰( C )。

第6章_数据结构习题题目及答案_树和二叉树_参考答案

第6章_数据结构习题题目及答案_树和二叉树_参考答案

一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。

【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。

【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。

本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。

虽然解法也对,但步骤多且复杂,极易出错。

6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。

【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。

6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。

【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。

若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。

6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。

树据结构 第5章答案(已核 )

树据结构 第5章答案(已核 )

第5章习题答案一、选择1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构2,以下说法错误的是 ( BC )A.二叉树可以是空集B.二叉树的任一结点都有两棵子树(是“最多有”两棵子树)C.二叉树与树具有相同的树形结构(二叉树的孩子必有左右之分,只有一个孩子时也要分出左右,而树即使是有序树, 只有一个孩子时部分左右)D.二叉树中任一结点的两棵子树有次序之分3、以下说法错误的是( )A.完全二叉树上结点之间的父子关系可由它们编号之间的关系来表达B.在三叉链表上,二叉树的求双亲运算很容易实现C.在二叉链表上,求根,求左、右孩子等很容易实现D.在二叉链表上,求双亲运算的时间性能很好4、以下说法错误的是 ( )A.一般在哈夫曼树中,权值越大的叶子离根结点越近B.哈夫曼树中没有度数为1的分支结点C.若初始森林中共有n裸二叉树,最终求得的哈夫曼树共有2n-1个结点D.若初始森林中共有n裸二叉树,进行2n-1次合并后才能剩下一棵最终的哈夫树5.深度为6的二叉树最多有( )个结点 ( )A.64B.63C.32D.316.将含有83个结点的完全二叉树从根结点开始编号,根为1号,后面按从上到下、从左到右的顺序对结点编号,那么编号为41的双结点编号为 ( )A.42B.40C.21D.207.设二叉树有n个结点,则其深度为( )A.n-1B.nC.5floor(log2n)D.无法确定注:完全二叉树才能确定其深度。

8.设深度为k的二叉树上只有度为0 和度为2 的节点,则这类二叉树上所含结点总数最少()个A.k+1B.2kC.2k-1D.2k+1注:单支数含结点个数最少,但题目规定该二叉树中不存在度为1的结点。

所以,在单支树的基础上把结点补齐,使之度数为2 或 0,结果就是有2k-1个结点。

数据结构习题及答案与实验指导(树和森林)7

数据结构习题及答案与实验指导(树和森林)7

第7章树和森林树形结构是一类重要的非线性结构。

树形结构的特点是结点之间具有层次关系。

本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。

重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。

要点:树是一种递归的数据结构。

2.结点的度:一个结点拥有的子树数称为该结点的度。

3.树的度:一棵树的度指该树中结点的最大度数。

如图7-1所示的树为3度树。

4.分支结点:度大于0的结点为分支结点或非终端结点。

如结点a、b、c、d。

5.叶子结点:度为0的结点为叶子结点或终端结点。

如e、f、g、h、i。

6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。

7.兄弟结点:具有同一父亲的结点为兄弟结点。

如b、c、d;e、f;h、i。

8.树的深度:树中结点的最大层数称为树的深度或高度。

9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。

10.森林:是m棵互不相交的树的集合。

7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。

(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。

(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。

下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。

数据结构二叉树习题含答案

数据结构二叉树习题含答案

第6章树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是()。

A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子(2)由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.5(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是()。

A.250 B. 500 C.254 D.501(4)一个具有1025个结点的二叉树的高h为()。

A.11 B.10 C.11至1025之间 D.10至1024之间(5)深度为h的满m叉树的第k层有()个结点。

(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-1(6)利用二叉链表存储树,则根结点的右指针是()。

A.指向最左孩子 B.指向最右孩子 C.空 D.非空(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍历实现编号。

A.先序 B. 中序 C. 后序 D. 从根开始按层次遍历(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用()遍历方法最合适。

A.前序 B.中序 C.后序 D.按层次(9)在下列存储形式中,()不是树的存储形式?A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法(10)一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()。

A.所有的结点均无左孩子B.所有的结点均无右孩子C.只有一个叶子结点 D.是任意一棵二叉树(11)某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。

A.空或只有一个结点 B.任一结点无左子树C.高度等于其结点数 D.任一结点无右子树(12)若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则X的前驱为()。

A.X的双亲 B.X的右子树中最左的结点C.X的左子树中最右结点 D.X的左子树中最右叶结点(13)引入二叉线索树的目的是()。

数据结构(树)习题与答案

数据结构(树)习题与答案

一、单选题1、树最适合用来表示()。

A.元素之间具有分支层次关系的数据B.有序数据元素C.元素之间无联系的数据D.无序数据元素正确答案:A2、在树结构中,若结点A有三个兄弟,且B是A的双亲,则B的度是()。

A.5B.4C.3D.2正确答案:B3、下列陈述中正确的是()。

A.二叉树是度为2的有序树B.二叉树中结点只有一个孩子时无左右之分C.二叉树中每个结点最多只有两棵子树,并且有左右之分D.二叉树中必有度为2的结点正确答案:C4、设深度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含结点数至少为()。

A.2h-1B.2h+1C.h+1D.2h正确答案:A解析: A、除根之外,每层只有两个结点,且互为兄弟。

5、设深度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含结点数至多为()。

A.2h-1B. 2h+1-1C. 2h-1-1D. 2h+1正确答案:A解析: A、构成完全二叉树。

6、具有n(n>0)个结点的完全二叉树的深度为()。

A.⌊ log2(n)⌋ +1B.⌈log2(n)⌉C.⌊ log2(n)⌋D.⌈log2(n)+1⌉正确答案:A7、具有32个结点的完全二叉树有()个叶子结点。

A.16B.14C.15D.17正确答案:A解析: A、对结点按层序编号,32号结点的双亲结点编号为16,则17至32号结点都为叶子,共16个。

8、一棵完全二叉树的第6层上有23个叶子结点,则此二叉树最多有()结点。

A.81B.78C.80D.79正确答案:A解析: A、完全二叉树的叶子结点只能在最下两层,要使结点最多,这棵二叉树深度为7,前6层结点数共为63,第6层有32个结点,其中叶子为23个,非叶子为9个,它们的度都为2,第7层只有18个结点,故整棵二叉树结点数为81.9、具有3个结点的二叉树有()种。

A.6B.3C.5D.4正确答案:C10、若一棵二叉树有9个度为2的结点,5个度为1的结点,则叶子结点的个数为()。

数据结构练习题--树(题)

数据结构练习题--树(题)

第六章树一.名词解释:1 树 2。

结点的度 3。

叶子 4。

分支点 5。

树的度6.父结点、子结点 7兄弟 8结点的层数 9树的高度 10 二叉树11 空二叉树 12 左孩子、右孩子 13孩子数 14 满二叉树 15完全二叉树16 先根遍历 17 中根遍历 18后根遍历 19二叉树的遍历 20 判定树21 哈夫曼树二、填空题1、树(及一切树形结构)是一种“________”结构。

在树上,________结点没有直接前趋。

对树上任一结点X来说,X是它的任一子树的根结点惟一的________。

2、一棵树上的任何结点(不包括根本身)称为根的________。

若B是A的子孙,则称A是B的________3、一般的,二叉树有______二叉树、______的二叉树、只有______的二叉树、只有______ 的二叉树、同时有______的二叉树五种基本形态。

4、二叉树第i(i>=1)层上至多有______个结点。

5、深度为k(k>=1)的二叉树至多有______个结点。

6、对任何二叉树,若度为2的节点数为n2,则叶子数n0=______。

7、满二叉树上各层的节点数已达到了二叉树可以容纳的______。

满二叉树也是______二叉树,但反之不然。

8、具有n个结点的完全二叉树的深度为______。

9、如果将一棵有n个结点的完全二叉树按层编号,则对任一编号为i(1<=i<=n)的结点X有:(1)若i=1,则结点X是______;若i〉1,则X的双亲PARENT(X)的编号为______。

(2)若2i>n,则结点X无______且无______;否则,X的左孩子LCHILD(X)的编号为______。

(3)若2i+1>n,则结点X无______;否则,X的右孩子RCHILD(X)的编号为______。

10.二叉树通常有______存储结构和______存储结构两类存储结构。

11.每个二叉链表的访问只能从______结点的指针,该指针具有标识二叉链表的作用。

数据结构(树和二叉树)练习题与答案1

数据结构(树和二叉树)练习题与答案1

1、树最适合用来表示()。

A.元素之间无联系的数据B.元素之间具有层次关系的数据C.无序数据元素D.有序数据元素正确答案:B2、现有一“遗传”关系,设x是y的父亲,则x可以把他的属性遗传给y。

表示该遗传关系最适合的数据结构为()。

A.线性表B.树C.数组D.图正确答案:B3、一棵节点个数为n、高度为h的m(m≥3)次树中,其分支数是()。

A.n+hB.h-1C.n-1D.nh正确答案:C4、若一棵3次树中有2个度为3的节点,1个度为2的节点,2个度为1的节点,该树一共有()个节点。

A.11B.5C.8D.10正确答案:A解析: A、对于该3次树,其中有n3=2,n2=1,n1=2,总分支数=总度数=n-1,总度数=1×n1+2×n2+3×n3=10,则n=总度数+1=11。

5、设树T的度为4,其中度为1、2、3、4的节点个数分别为4、2、1、1,则T中的叶子节点个数是()。

A.6B.8C.7D.5正确答案:B解析: B、这里n1=4,n2=2,n3=1,n4=1,度之和=n-1=n1+2n2+3n3+4n4=15,所以n=16,则n0=n-n1-n2-n3-n4=16-8=8。

6、有一棵三次树,其中n3=2,n2=1,n0=6,则该树的节点个数为()。

A.9B.12C.大于等于9的任意整数D.10正确答案:C解析: C、n=n0+n1+n2+n3=6+n1+1+2=9+n1。

7、假设每个节点值为单个字符,而一棵树的后根遍历序列为ABCDEFGHIJ,则其根节点值是()。

A.JB.BC.以上都不对D.A正确答案:A8、一棵度为5、节点个数为n的树采用孩子链存储结构时,其中空指针域的个数是()。

A.4nB.4n-1C.4n+1D.5n正确答案:C解析: C、总指针数=5n,非空总指针数=分支数=n-1,空指针域的个数=5n-(n-1)=4n+1。

9、有一棵三次树,其中n3=2,n2=2,n1=1,该树采用孩子兄弟链存储结构时,则总的指针域数为()。

树习题

树习题

4.1 习题一、判断题()1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。

()2. 二叉树就是结点度为2的树。

()3. 二叉树中每个结点的两棵子树是有序的。

()4. 二叉树中每个结点有两棵非空子树或有两棵空子树。

()5. 对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。

()6. 具有12个结点的完全二叉树有5个度为2的结点。

()7. 完全二叉树的某结点若无左孩子,则它必是叶结点。

()8. 存在这样的二叉树,对它采用任何次序的遍历,结果相同。

()9. 二叉树中不存在度大于2的结点,当某个结点只有一棵子树时无所谓左、右子树之分。

()10. 若有一个结点是某二叉树子树的中序遍历序列中的最后一个结点,则它必是该子树的前序遍历序列中的最后一个结点。

()11. 已知二叉树的前序遍历序列和后序遍历序列并不能唯一地确定这棵树,因为不知道树的根结点是哪一个。

()12. 当k≥1时,高度为k的二叉树至多有2k-1个结点。

()13. 一棵含有n个结点的完全二叉树,它的高度是㏒2n+1。

()14. 将一棵树转换成二叉树后,根结点没有左子树。

()15. 哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

二、填空1.由3个结点所构成的二叉树有种形态。

2. 一棵深度为6的满二叉树有个分支结点和个叶子。

3.一棵具有257个结点的完全二叉树,它的深度为。

4. 设一棵完全二叉树具有1000个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个结点只有非空左子树,有个结点只有非空右子树。

5. 用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是。

6.深度为k的完全二叉树至少有_____个节点。

7._____的二叉树中序和后序的遍历次序完全相同8.在二叉树的一维数组存储方式中,父节点和右孩子的索引值之间满足的关系是___ 9.对于一棵具有n个结点的树,该树中所有结点的度数之和为_______。

数据结构树的测试题(二)

数据结构树的测试题(二)

习题六树和二叉树一、单项选择题1.以下说法错误的是( A )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是( D )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了(A )A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示( C )A.有序数据元素B.无序数据元素C.元素之间具有分支层次关系的数据D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是(B )A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。

与森林F对应的二叉树根结点的右子树上的结点个数是( D )。

A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是( E )A.250 B.500 C.254 D.505 E.以上答案都不对8.二叉树的第I层上最多含有结点数为( C )A.2I B.2I-1-1 C.2I-1D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( B )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是(B )。

A.指向最左孩子B.指向最右孩子C.空D.非空12.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为(A )。

数据结构二叉树习题含答案

数据结构二叉树习题含答案

2.1 创建一颗二叉树创建一颗二叉树,可以创建先序二叉树,中序二叉树,后序二叉树。

我们在创建的时候为了方便,不妨用‘#’表示空节点,这时如果先序序列是:6 4 2 3 # # # # 5 1 # # 7 # #,那么创建的二叉树如下:下面是创建二叉树的完整代码:穿件一颗二叉树,返回二叉树的根2.2 二叉树的遍历二叉树的遍历分为:先序遍历,中序遍历和后序遍历,这三种遍历的写法是很相似的,利用递归程序完成也是灰常简单的:2.3 层次遍历层次遍历也是二叉树遍历的一种方式,二叉树的层次遍历更像是一种广度优先搜索(BFS)。

因此二叉树的层次遍历利用队列来完成是最好不过啦,当然不是说利用别的数据结构不能完成。

2.4 求二叉树中叶子节点的个数树中的叶子节点的个数= 左子树中叶子节点的个数+ 右子树中叶子节点的个数。

利用递归代码也是相当的简单,2.5 求二叉树的高度求二叉树的高度也是非常简单,不用多说:树的高度= max(左子树的高度,右子树的高度) + 12.6 交换二叉树的左右儿子交换二叉树的左右儿子,可以先交换根节点的左右儿子节点,然后递归以左右儿子节点为根节点继续进行交换。

树中的操作有先天的递归性。

2.7 判断一个节点是否在一颗子树中可以和当前根节点相等,也可以在左子树或者右子树中。

2.8 求两个节点的最近公共祖先求两个节点的公共祖先可以用到上面的:判断一个节点是否在一颗子树中。

(1)如果两个节点同时在根节点的右子树中,则最近公共祖先一定在根节点的右子树中。

(2)如果两个节点同时在根节点的左子树中,则最近公共祖先一定在根节点的左子树中。

(3)如果两个节点一个在根节点的右子树中,一个在根节点的左子树中,则最近公共祖先一定是根节点。

当然,要注意的是:可能一个节点pNode1在以另一个节点pNode2为根的子树中,这时pNode2就是这两个节点的最近公共祖先了。

显然这也是一个递归的过程啦:可以看到这种做法,进行了大量的重复搜素,其实有另外一种做法,那就是存储找到这两个节点的过程中经过的所有节点到两个容器中,然后遍历这两个容器,第一个不同的节点的父节点就是我们要找的节点啦。

数据结构树和二叉树习题及答案

数据结构树和二叉树习题及答案

数据结构树和二叉树习题及答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。

与森林F对应的二叉树根结点的右子树上的结点个数是()。

A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。

数据结构 树 考试习题

数据结构 树 考试习题

第五章树11.不含任何结点的空树( )A)是一棵树 B)是一棵二叉树C)既不是树也不是二叉树 D)是一棵树也是一棵二叉树12.二叉树是非线性数据结构,所以( )A)它不能用顺序存储结构存储; B)它不能用链式存储结构存储;C)顺序存储结构和链式存储结构都能存储; D)顺序存储结构和链式存储结构都不能使用13.把一棵树转换为二叉树后,这棵二叉树的形态是( )A)唯一的 B)有多种C)有多种,但根结点都没有左孩子 D)有多种,但根结点都没有右孩子9. 11 , 8 , 6 , 2 , 5 的叶子结点生成一棵哈夫曼树,它的带权路径长度为()A) 24 B) 72 C) 48 D) 5310.一棵含18个结点的二叉树的高度至少为( )A) 3 B) 4 C) 6 D) 511.下面的二叉树中,( C )不是完全二叉树。

10. 设结点x和结点y是二叉树T中的任意两个结点,若在前序序列中x在y之前,而在中序序列中x在y之后,则x和y的关系是()A)x是y的左兄弟 B)x是y的右兄弟C)y是x的祖先 D)y是x的孩子11.设二叉树根结点的层次为1,所有含有15个结点的二叉树中,最小高度是()A) 6 B) 5 C) 4 D) 37.下列陈述中正确的是()A)二叉树是度为2的有序树B)二叉树中结点只有一个孩子时无左右之分C)二叉树中必有度为2的结点D)二叉树中最多只有两棵子树,并且有左右之分8. 树最适合用来表示()A)有序数据元素 B)无序数据元素C)元素之间具有分支层次关系的数据 D)元素之间无联系的元素9. 3个结点有()不同形态的二叉树A) 2 B) 3 C) 4 D) 56.二叉树是非线性数据结构,( )A)它不能用顺序存储结构存储; B)它不能用链式存储结构存储;C)顺序存储结构和链式存储结构都能存储;D)顺序存储结构和链式存储结构都不能使用7.二叉树上叶结点数等于( )A ) 分支结点数加1B ) 单分支结点数加1C ) 双分支结点数加1D ) 双分支结点数减18.如将一棵有n个结点的完全二叉树按顺序存放方式,存放在下标编号为0, 1,…, n-1的一维数组中,设某结点下标为k(k>0),则其双亲结点的下标是( )A ) (k-1)/2B ) (k+1)/2C ) k/2D ) k-18. 树最适合用来表示()。

大学数据结构习题7

大学数据结构习题7

数据结构习题7树和二叉树一、判断题1. 树结构中每个结点最多只有一个直接前驱。

(√)2. 完全二叉树一定是满二叉树。

(×)3. 在中序线索二叉树中,右线索若不为空,则一定指向其双亲。

(×)4. 一棵二叉树中序遍历序列的最后一个结点,必定是该二叉树前序遍历的最后一个结点。

(√)5. 二叉树的前序遍历中,任意一个结点均处于其子女结点的前面。

(√)6. 由二叉树的前序遍历序列和中序遍历序列,可以推导出后序遍历的序列。

(√)7. 在完全二叉树中,若一个结点没有左孩子,则它必然是叶子结点。

(√)8. 在哈夫曼编码中,当两个字符出现的频率相同,其编码也相同,对于这种情况应该做特殊处理。

(×)9. 含多于两棵树的森林转换的二叉树,其根结点一定无右孩子。

(×)10. 具有n个叶子结点的哈夫曼树共有2n-1个结点。

(√)二、填空题1. 在树中,一个结点所拥有的子树数称为该结点的度。

2. 度为零的结点称为叶(或叶子,或终端)结点。

3. 树中结点的最大层次称为树的深度(或高度)。

4. 对于二叉树来说,第i层上至多有 2i-1个结点。

5. 深度为h的二叉树至多有 2h-1 个结点。

6. 由一棵二叉树的前序序列和中序序列可唯一确定这棵二叉树。

7. 有20个结点的完全二叉树,编号为10的结点的父结点的编号是 5 。

8. 哈夫曼树是带权路径长度的最小的二叉树。

9. 由二叉树的后序和中序遍历序列,可以唯一确定一棵二叉树。

10. 某二叉树的中序遍历序列为:DEBAC,后序遍历序列为:EBCAD。

则前序遍历序列为 DABEC 。

11. 设一棵二叉树结点的先序遍历序历为:ABDECFGH,中序遍历序历为:DEBAFCHG,则二叉树中叶结点是: E、F、H 。

12. 已知完全二叉树的第8层有8个结点,则其叶结点数是 68 。

13. 由树转换二叉树时,其根结点无右子树。

14. 采用二叉链表存储的n个结点的二叉树,一共有 2n 个指针域。

数据结构(树与图部分)练习题

数据结构(树与图部分)练习题

数据结构(树与图部分)练习题数据结构(树与图部分)练习题⼀、填空题1.不考虑顺序的3个结点可构成种不同形态的树,种不同形态的⼆叉树。

2.已知某棵完全⼆叉树的第4层有5个结点,则该完全⼆叉树叶⼦结点的总数为:。

3.已知⼀棵完全⼆叉树的第5层有3个结点,其叶⼦结点数是。

4.⼀棵具有110个结点的完全⼆叉树,若i=54,则结点i的双亲编号是;结点i的左孩⼦结点的编号是,结点i的右孩⼦结点的编号是。

5.⼀棵具有48个结点的完全⼆叉树,若i=20,则结点i的双亲编号是______;结点i的左孩⼦结点编号是______,右孩⼦结点编号是______。

6.在有n个叶⼦结点的Huffman树中,总的结点数是:______。

7.图是⼀种⾮线性数据结构,它由两个集合V(G)和E(G)组成,V(G)是______的⾮空有限集合,E(G)是______的有限集合。

8.遍历图的基本⽅法有优先搜索和优先搜索两种⽅法。

9.图的遍历基本⽅法中是⼀个递归过程。

10.n个顶点的有向图最多有条弧;n个顶点的⽆向图最多有条边。

11.在⼆叉树的⼆叉链表中,判断某指针p所指结点是叶⼦结点的条件是。

12.在⽆向图G的邻接矩阵A中,若A[i,j]等于1,则A[j,i]等于。

⼆、单项选择题1.树型结构的特点是:任意⼀个结点:()A、可以有多个直接前趋B、可以有多个直接后继C、⾄少有1个前趋D、只有⼀个后继2.如下图所⽰的4棵⼆叉树中,()不是完全⼆叉树。

3.深度为5的⼆叉树⾄多有()个结点。

A、16B、32C、31D、104.64个结点的完全⼆叉树的深度为:()。

A、8B、7C、6D、55.将⼀棵有100个结点的完全⼆叉树从根这⼀层开始,每⼀层从左到右依次对结点进⾏编号,根结点编号为1,则编号为49的结点的左孩⼦的编号为:()。

A、98B、99C、50D、486.在⼀个⽆向图中,所有顶点的度之和等于边数的()倍。

A、1/2B、1C、2D、47.设有13个值,⽤它们组成⼀棵Huffman树,则该Huffman树中共有( )个结点。

树结构习题及答案

树结构习题及答案

第5章树【例5-1】写出如图5-1所示的树的叶子结点、非终端结点、每个结点的度及树深度。

AB C D EF G H I J图5-1解:(1)叶子结点有:B、D、F、G、H、I、J。

(2)非终端结点有:A、C、E。

(3)每个结点的度分别是:A的度为4,C的度为2,E的度为3,其余结点的度为0。

(4)树的深度为3。

【例5-2】一棵度为2的树与一棵二叉树有什么区别?解:度为2的树有两个分支,但分支没有左右之分;一棵二叉树也有两个分支,但有左右之分,左右子树的次序不能交换。

【例5-3】树与二叉树有什么区别?解:区别有两点:(1)二叉树的一个结点至多有两个子树,树则不然;(2)二叉树的一个结点的子树有左右之分,而树的子树没有次序。

【例5-4】分别画出具有3个结点的树和三个结点的二叉树的所有不同形态。

解:如图5-2(a)所示,具有3个结点的树有两种不同形态。

图5-2(a)如图5-2(B)所示,具有3个结点的二叉树有以下五种不同形态。

图5-2(b)【例5-5】如图5-3所示的二叉树,试分别写出它的顺序表示和链接表示(二叉链表)。

解:(1)顺序表示。

(2)该二叉树的二叉链表表示如图5-4所示。

【例5-6】试找出满足下列条件的所有二叉树:(1)先序序列和中序序列相同; (2)中序序列和后序序列相同; (3)先序序列和后序序列相同。

解:(1)先序序列和中序序列相同的二叉树为:空树或者任一结点均无左孩子的非空二叉树;(2)中序序列和后序序列相同的二叉树为:空树或者任一结点均无右孩子的非空二叉树;(3)先序序列和后序序列相同的二叉树为:空树或仅有一个结点的二叉树。

【例5-7】如图5-5所示的二叉树,要求:(1)写出按先序、中序、后序遍历得到的结点序列。

(2)画出该二叉树的后序线索二叉树。

解: (1) 先序遍历序列:ABDEFC 中序遍历序列:DEFBAC 后序遍历序列:FEDBCA (2)其后序线索二叉树如图5-6所示。

数据结构第6章 树习题+答案

数据结构第6章 树习题+答案

第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( D )A .-A+B*C/DE B. -A+B*CD/E C .2. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( C ) A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 3. 在下述结论中,正确的是( D )①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。

A .①②③B .②③④C .②④D .①④4. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( A )A .m-nB .m-n-1C .n+1D .条件不足,无法确定5.设森林F 中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。

与森林F 对应的二叉树根结点的右子树上的结点个数是( D )。

A .M1B .M1+M2C .M3D .M2+M36. 设给定权值总数有n 个,其哈夫曼树的结点总数为( D )A .不确定B .2nC .2n+1D .2n-17.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( B )结点A .2hB .2h-1C .2h+1D .h+18. 一棵具有 n 个结点的完全二叉树的树高度(深度)是( A )A .⎣logn ⎦+1B .logn+1C .⎣logn ⎦D .logn-19.深度为h 的满m 叉树的第k 层有( A )个结点。

(1=<k=<h)A .m k-1B .m k -1C .m h-1D .m h -110. 一棵树高为K 的完全二叉树至少有( C )个结点A .2k –1 B. 2k-1 –1 C. 2k-1 D. 2k11. 利用二叉链表存储树,则根结点的右指针是( C )。

数据结构第6章树习题

数据结构第6章树习题

第六章树习题1单项选择题1、若一棵二叉树具有10个度为2的结点,5个度为1的结点,则叶子结点个数是(B)。

A、9B、11C、15D、无法确定2、设给定权值总数有n个,其哈夫曼树的结点总数为( D )。

A、不确定B、2nC、2n+1D、2n–13、有关二叉树下列说法正确的是(B)。

A、二叉树的度为2B、一棵二叉树的度可以小于2C、二叉树中至少有一个结点的度为2D、二叉树中任何一个结点的度都为24、一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点。

A、2hB、2h-1C、2h+1D、h+15、对于有n个结点的二叉树, 其高度为()。

log D、不确定A、n log2nB、log2nC、⎣⎦n26、利用二叉链表存储树,则根结点的右指针是()。

A、指向最左孩子B、指向最右孩子C、空D、非空7、树的后根遍历序列等同于该树对应的二叉树的( )。

A、先序遍历B、中序遍历C、后序遍历D、层序遍历8、在下列存储形式中,哪一个不是树的存储形式?()A、双亲表示法B、孩子链表表示法C、孩子兄弟表示法D、顺序存储表示法9、已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。

A、CBEFDAB、FEDCBAC、CBEDFAD、不定10、某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。

A、空的或只有一个结点B、任一结点无左子树C、高度等于其结点数D、任一结点无右子树11、一棵左子树为空的二叉树在先序线索化后,其中空的链域的个数是:( )。

A、不确定B、0C、1D、212、若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )。

A、X的双亲B、X的右子树中最左的结点C、X的左子树中最右结点D、X的左子树中最右叶结点13、引入二叉线索树的目的是().A、加快查找结点的前驱或后继的速度B、为了能在二叉树中方便的进行插入和删除C、为了能方便的找到双亲D、使二叉树的遍历结果唯一14、下述编码中哪一个不是前缀码()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例5-1】写出如图5-1所示的树的叶子结点、非终端结点、每个结点的度及树深度。

AB C D EF G H I J图5-1解:(1)叶子结点有:B、D、F、G、H、I、J。

(2)非终端结点有:A、C、E。

(3)每个结点的度分别是:A的度为4,C的度为2,E的度为3,其余结点的度为0。

(4)树的深度为3。

【例5-2】一棵度为2的树与一棵二叉树有什么区别?解:度为2的树有两个分支,但分支没有左右之分;一棵二叉树也有两个分支,但有左右之分,左右子树的次序不能交换。

【例5-3】树与二叉树有什么区别?解:区别有两点:(1)二叉树的一个结点至多有两个子树,树则不然;(2)二叉树的一个结点的子树有左右之分,而树的子树没有次序。

【例5-4】分别画出具有3个结点的树和三个结点的二叉树的所有不同形态。

解:如图5-2(a)所示,具有3个结点的树有两种不同形态。

图5-2(a)如图5-2(B)所示,具有3个结点的二叉树有以下五种不同形态。

图5-2(b)【例5-5】如图5-3所示的二叉树,试分别写出它的顺序表示和链接表示(二叉链表)。

解:(2)该二叉树的二叉链表表示如图5-4所示。

【例5-6】试找出满足下列条件的所有二叉树:(1)先序序列和中序序列相同; (2)中序序列和后序序列相同; (3)先序序列和后序序列相同。

解:(1)先序序列和中序序列相同的二叉树为:空树或者任一结点均无左孩子的非空二叉树;(2)中序序列和后序序列相同的二叉树为:空树或者任一结点均无右孩子的非空二叉树;(3)先序序列和后序序列相同的二叉树为:空树或仅有一个结点的二叉树。

【例5-7】如图5-5所示的二叉树,要求:(1)写出按先序、中序、后序遍历得到的结点序列。

(2)画出该二叉树的后序线索二叉树。

解: (1) 先序遍历序列:ABDEFC 中序遍历序列:DEFBAC 后序遍历序列:FEDBCA (2)其后序线索二叉树如图5-6所示。

bac de f图5-5图5-6【例5-8】将图5-7所示的树转换为二叉树。

解:第一步,加线。

第二步,抹线。

第三步,旋转。

过程如图5-8所示。

【例5-9】将如图5-9所示的二叉树转换为树。

解: 第一步,加线。

第二步,抹线。

第三步,调整。

过程如图5-10所示。

A 图5-7BCDEFGHI K L MJ A B C DEFHIJ图5-9A图5-8(a) 第一步 加线B C D E F G H I K L MJ A 图5-8(b) 第二步 抹线 B C DE F G H I K L M JA B图5-8(c) 第三步 旋转C F DKG ELH MIJ AB D HC F J B A CD EF H J BAC D EF H【例5-10】将如图5-11所示的森林转换成二叉树。

解: 步骤略,结果如图5-12所示。

【例5-11】假定用于通信的电文由8个字符A 、B 、C 、D 、E 、F 、G 、H 组成,各字母在电文中出现的概率为5%、25%、4%、7%、9%、12%、30%、8%,试为这8个字母设计哈夫曼编码。

解: 根据题意,设这8个字母对应的权值分别为(5,25,4,7,9,12,30,8),并且n=8。

(1)设计哈夫曼树的步骤如图5-13所示。

C DE F G ABH ILJ K图5-12 第一步: 25 5 4 7 9 12 30 8 图5-11 C D EF G A B HI L J K(2)设计哈夫曼编码利用第八步得到的哈夫曼树,规定左分支用0表示,右分支用1表示,字母A 、B 、C 、D 、E 、F 、G 、H 的哈夫曼编码如下表示:A:0011 B:01 C:0010 D:1010 E:000 F:100 G:11 H:1011习题5一、单项选择题1. 在一棵度为3的树中,度为3的结点数为2个,度为2的结点数为1个,度为1的结点数为2个,则度为0的结点数为( 1. C )个。

A. 4B. 5C. 6D. 72. 假设在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为(2. B )个。

A. 15B. 16C. 17D. 47第二步: 25 7 9 12 30 54 9 8 第三步: 25 7 9 12 30 54 9 8 15 第七步: 25 30 9 5 4 918 7 12 8 15 27 43 57第八步:25 9 5 4 9 18 43 30 7 12 8 15 2757 100 图5-133. 假定一棵三叉树的结点数为50,则它的最小高度为(3. C )。

A. 3B. 4C. 5D. 64. 在一棵二叉树上第4层的结点数最多为( 4. D)。

A. 2B. 4C. 6D. 85. 用顺序存储的方法将完全二叉树中的所有结点逐层存放在数组中R[1..n],结点R[i]若有左孩子,其左孩子的编号为结点(5. B)。

A. R[2i+1]B. R[2i]C. R[i/2]D. R[2i-1]6. 由权值分别为3,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为(6.D )。

A. 24B. 48C. 72D. 537. 线索二叉树是一种( 7. C)结构。

A. 逻辑B. 逻辑和存储C. 物理D. 线性8. 线索二叉树中,结点p没有左子树的充要条件是( 8. B)。

A. p->lc=NULLB. p->ltag=1C. p->ltag=1 且p->lc=NULLD. 以上都不对9. 设n , m 为一棵二叉树上的两个结点,在中序遍历序列中n在m前的条件是(9. B)。

A. n在m右方B. n在m 左方C. n是m的祖先D. n是m的子孙10. 如果F是由有序树T转换而来的二叉树,那么T中结点的前序就是F中结点的(10.B )。

A. 中序B. 前序C. 后序D. 层次序11. 欲实现任意二叉树的后序遍历的非递归算法而不必使用栈,最佳方案是二叉树采用( 11. A)存储结构。

A. 三叉链表B. 广义表C. 二叉链表D. 顺序12. 下面叙述正确的是( 12. D)。

A. 二叉树是特殊的树B. 二叉树等价于度为2的树C. 完全二叉树必为满二叉树D. 二叉树的左右子树有次序之分13. 任何一棵二叉树的叶子结点在先序、中序和后序遍历序列中的相对次序(13. A )。

A. 不发生改变B. 发生改变C. 不能确定D. 以上都不对14. 已知一棵完全二叉树的结点总数为9个,则最后一层的结点数为(14. B )。

A. 1B. 2C. 3D. 415. 根据先序序列ABDC和中序序列DBAC确定对应的二叉树,该二叉树( 15. A )。

A. 是完全二叉树B. 不是完全二叉树C. 是满二叉树D. 不是满二叉树二、判断题1. 二叉树中每个结点的度不能超过2,所以二叉树是一种特殊的树。

(1.×)2. 二叉树的前序遍历中,任意结点均处在其子女结点之前。

( 2.√)3. 线索二叉树是一种逻辑结构。

( 3.×)4. 哈夫曼树的总结点个数(多于1时)不能为偶数。

(4.√)5. 由二叉树的先序序列和后序序列可以唯一确定一颗二叉树。

(5.×)6. 树的后序遍历与其对应的二叉树的后序遍历序列相同。

(6.√)7. 根据任意一种遍历序列即可唯一确定对应的二叉树。

(7.√)8. 满二叉树也是完全二叉树。

(8.√)9. 哈夫曼树一定是完全二叉树。

(9.×)10. 树的子树是无序的。

(10.×)三、填空题1. 假定一棵树的广义表表示为A(B(E),C(F(H,I,J),G),D),则该树的度为_____,树的深度为_____,终端结点的个数为______,单分支结点的个数为______,双分支结点的个数为______,三分支结点的个数为_______,C结点的双亲结点为_______,其孩子结点为_______和_______结点。

1. 3,4,6,1,1,2,A,F,G2. 设F是一个森林,B是由F转换得到的二叉树,F中有n个非终端结点,则B中右指针域为空的结点有_______个。

2. n+13. 对于一个有n个结点的二叉树,当它为一棵________二叉树时具有最小高度,即为_______,当它为一棵单支树具有_______高度,即为_______。

3. 完全,,最大,n4. 由带权为3,9,6,2,5的5个叶子结点构成一棵哈夫曼树,则带权路径长度为___。

4. 555. 在一棵二叉排序树上按_______遍历得到的结点序列是一个有序序列。

5. 中序6. 对于一棵具有n个结点的二叉树,当进行链接存储时,其二叉链表中的指针域的总数为_______个,其中_______个用于链接孩子结点,_______个空闲着。

6. 2n,n-1,n+17. 在一棵二叉树中,度为0的结点个数为n0,度为2的结点个数为n2,则n0=______。

7. n2+18. 一棵深度为k的满二叉树的结点总数为_______,一棵深度为k的完全二叉树的结点总数的最小值为_____,最大值为______。

8. 2k-1,2k-1,2k-19. 由三个结点构成的二叉树,共有____种不同的形态。

9. 510. 设高度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含的结点数至少为____。

10. 2h-111. 一棵含有n个结点的k叉树,______形态达到最大深度,____形态达到最小深度。

11. 单支树,完全二叉树12. 对于一棵具有n个结点的二叉树,若一个结点的编号为i(1≤i≤n),则它的左孩子结点的编号为________,右孩子结点的编号为________,双亲结点的编号为________。

12. 2i,2i+1,i/2(或i/2)13. 对于一棵具有n个结点的二叉树,采用二叉链表存储时,链表中指针域的总数为_________个,其中___________个用于链接孩子结点,_____________个空闲着。

13. 2n,n-1,n+114. 哈夫曼树是指________________________________________________的二叉树。

14. 带权路径长度最小15. 空树是指________________________,最小的树是指_______________________。

15. 结点数为0,只有一个根结点的树16. 二叉树的链式存储结构有______________和_______________两种。

16. 二叉链表,三叉链表17. 三叉链表比二叉链表多一个指向______________的指针域。

17. 双亲结点18. 线索是指___________________________________________。

相关文档
最新文档