万向传动轴设计说明书

合集下载

汽车设计▲4【第四章】 万向传动轴设计

汽车设计▲4【第四章】 万向传动轴设计
一、十字轴式万向节
1. 组成
第二节 万向节结构方案分析
一、十字轴式万向节
1. 组成 主、从动叉、十字轴、滚针轴承及其轴向定位件、橡胶密 封件。
2. 滚针轴承的轴向定位方式
第二节 万向节结构方案分析
一、十字轴式万向节
2.滚针轴承的轴向定位方式
定位方式 特点
零件数 结构 质量 拆装 工作
制造工艺 十字轴轴向窜动※
Northeast Forestry University
汽车设计
第四章 万向传动轴设计
交通学院 《汽车设计》教研组
Northeast Forestry University
第一节 概述 第二节 万向节结构方案分析 第三节 万向传动的运动和受力分析 第四节 万向节的设计计算 第五节 传动轴结构分析与设计 第六节 中间支承结构分析与设计
3.特点
优点:十字轴万向节结构简单,强度高, 耐久性好,传动效率高,生产成本低。
缺点:但所连接的两轴夹角不宜过大,当 夹角由4°增至16°时,十字轴万向节滚针 轴承寿命约下降至原来的1/4。
第二节 万向节结构方案分析
二、准等速万向节
1. 双联式万向节 双联式万向节是由两
个十字轴万向节组合而成 。为了保证两万向节连接 的轴工作转速趋于相等, 可设有分度机构。偏心十 字轴双联式万向节取消了 分度机构,也可确保输出 轴与输入轴接近等速。
第二节 万向节结构方案分析
三、等速万向节
1.球叉式万向节
(1)圆弧槽滚道型
第二节 万向节结构方案分析
三、等速万向节
第二节 万向节结构方案分析
二、准等速万向节
2. 凸块式万向节
第二节 万向节结构方案分析
二、准等速万向节

万向传动装置课程设计说明书

万向传动装置课程设计说明书

汽车设计课程设计说明书设计题目:东风DNZ1080G万向传动装置的设计姓名任伟学院交通学院专业汽车设计与运用班级1101学号2011281指导教师孙宏图、王昕彦2014年09月05日目录1 前言 (2)2 万向传动装置设计 (3)2.1 万向传动装置的结构方案设计 (3)2.1.1 主要参数的选择 (3)2.1.2 总体设计方案 (3)(1)传动轴管的选择 (4)(2)伸缩花键的选择 (4)(3)万向节分析 (5)(4)中间支承结构分析与设计 (5)2.2 万向节的设计与强度校核 (6)2.2.1 万向节结构与尺寸设计 (6)(1)基本构造与基本原理 (6)(2)确定十字轴尺寸 (6)(3)滚针轴承的设计与校核 (6)2.2.2 十字轴万向节强度校核 (6)2.3 万向传动轴设计及强度校核 (7)2.3.1 万向节传动轴结构与尺寸设计 (7)2.3.2 万向节传动轴强度校核 (7)3参考文献 (10)前言本次课程设计的任务是对一汽解放CA1130PK2L2进行万向传动轴的设计、研究。

在指导老师的细心指导下,通过对汽车万向传动装置的了解,进一步进行万向传动轴的设计。

通过实际的市场调查和客观的实际观察,全面了解万向传动轴的结构,充分了解到万向传动装置的工作原理与意义,及其在汽车行驶中的重要作用。

在汽车的正常工作中,是一个必不缺少的部件,也是一个不可替代的关键部件。

对于万向传动轴的研究,有很大的发展空间,具有相当大的研究意义。

在充分与指导老师讨论、研究后,故选此课题进行设计任务时,分析了万向传动装置类型的,根据题目所要求的原始数据要求,确定了所选用万向传动轴的种类。

在初定各个部件的相关尺寸后,根据要求进行了校核,确定了所设计部件的尺和参数,并选择了零部件的材料本文介绍了一汽解放CA1130PK2L2 型货车的万向传动装置的结构和工作原理,及相关参数的确定。

全文的中心内容共分为三章:第一章为一汽解放CA1130PK2L2汽车原始数据及设计要求;第二章十字轴的结构特点及基本特点和设计要求;第三章为万向传动轴结构方案的分析及设计;在原始数据确定的前提下,设计所要完成的任务有:查找、收集相关资料,进一步确定万向传动装置的基本尺寸的选取、材料选择和传动过程中的接触应力等工作,其中传动过程中零件内部的接触应力最为关键,在此文中着重做到了应力校核这一步。

万向传动轴设计说明书

万向传动轴设计说明书

word 格式 整理版学习参考汽车设计课程设计说明书设计题目: 上海大众-桑塔纳志俊万向传动轴设计2014年11月28日目录1前言2设计说明书2.1原始数据2.2设计要求3万向传动轴设计3.1万向节结构方案的分析与选择3.1.1十字轴式万向节3.1.2准等速万向节3.2万向节传动的运动和受力分析3.2.1单十字轴万向节传动3.2.2双十字轴万向节传动3.2.3多十字轴万向节传动4 万向节的设计与计算4.1 万向传动轴的计算载荷4.2传动轴载荷计算4.3计算过程5 万向传动轴的结构分析与设计计算5.1 传动轴设计6 法兰盘设计前言万向传动轴在汽车上应用比较广泛。

发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。

本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。

传动轴是由轴管、万向节、伸缩花键等组成。

伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。

传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。

在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

2 设计说明书2.1 原始数据最大总质量:1210kg发动机的最大输出扭矩:Tmax=140N·m(n=3800r/min);轴距:2656mm;前轮胎选取:195/60 R14 、后轮胎规格:195/60 R14长*宽*高(mm):4687*1700*1450前轮距(mm);1414后轮距(mm):1422最大马力(pa):952.2 设计要求1.查阅资料、调查研究、制定设计原则2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。

汽车万向传动轴设计技术毕业设计说明书

汽车万向传动轴设计技术毕业设计说明书

目录1.1 汽车万向传动轴的发展与现状 (2)1.2 万向传动轴设计技术综述 (2)2 万向传动轴结构方案确定 (4)2.1 设计已知参数 (4)2.2 万向传动轴设计思路 (6)2.3 结构方案的确定 (6)3 万向传动轴运动分析 (9)4 万向传动轴设计 (10)4.1 传动载荷计算 (10)4.2 十字轴万向节设计 (12)4.3滚针轴承设计 (13)4.4传动轴初步设计 (14)4.5 花键轴设计 (15)4.6 万向节凸缘叉连接螺栓设计 (16)4.7 万向节凸缘叉叉处断面校核 (17)5基于UG的万向传动轴三维模型构建 (18)5.1万向节凸缘叉作图方法及三维图 (18)5.2万向节十字轴总成作图方法及三维图 (21)5.3 内花键轴管与万向节叉总成作图方法及三维图 (25)5.4 花键、轴管与万向节叉总成作图方法及三维图 (2624)5.5万向传动轴总装装配方法及三维图 (27)6 万向传动装置总成的技术要求、材料及使用保养 (29)6.1普通万向传动轴总成的主要技术要求 (29)6.2万向传动轴的使用材料 (29)6.3 传动轴的使用与保养 (30)7 结论 (31)总结体会 (32)谢辞 (33)附录1外文文献翻译 (34)附录2模拟申请万向传动轴专利书 (48)【参考文献】 (52)1引言1.1 汽车万向传动轴的发展与现状万向传动装置的出现要追溯到1352年,用于教堂时钟中的万向节传动轴。

1663年英国物理学家虎克制造了一个铰接传动装置,后来被人们叫做虎克万向节,也就是十字轴式万向节,但这种万向节在单个传递动力时有不等速性。

1683年双联式虎克万向节诞生,消除了单个虎克万向节传递的不等速性,并于1901年用于汽车转向轮。

上世纪初,虎克万向节和传动轴已在机械工程和汽车工业中起到了极其重要的作用。

1908年第一个球式万向节诞生,1926年凸块式等速万向节出现,开始用于独立悬架的前轮驱动轿车和四轮驱动的军用车的前轮转向节。

轻型商用车传动轴及万向节设计设计说明书 毕业设计

轻型商用车传动轴及万向节设计设计说明书 毕业设计

轻型商用车传动轴及万向节设计设计说明书毕业设计本科学生毕业设计轻型商用车传动轴及万向节设计The Graduation Design for Bachelor's Degree Design of Light Commercial Vehicle Transmission Shaft and Cardan Joint摘要汽车的万向传动轴是由传动轴、万向节两个主要部件联接而成,在长轴距的车辆中还要加装中间支承。

万向传动轴主要用于工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。

在本世纪初万向节与传动轴的发明与使用,在汽车工业的发展中起到了极其重要的作用。

随着汽车工业的发展,现代汽车对万向节与传动轴的效率、强度、耐久性和噪声等性能方面的设计及计算校核要求也越来越严格。

本毕业设计将依据现有生产企业在生产车型(CA1041)的万向传动装置作为设计原型。

在给定整车主要技术参数以及发动机、变速器等主要总成安装位置确定的条件下,对整车结构进行了分析,确定了传动轴布置方案,采用两轴三万向节带中间支承的布置形式。

在确定了传动方案后,对传动轴、万向节总成、中间支承总成进行设计,使该总成能够在正常使用的情况及规定的使用寿命内不发生失效。

关键字:传动轴;万向节;中间支承;设计;校核第1章第2章第3章绪论3.1选题的目的和意义随着汽车工业的迅猛发展,车型的多样化、个性化已经成为发展趋势,对汽车节能、舒适与轻量化的要求越来越高。

而传动轴及万向节的设计装配不良将产生振动和噪声,增添未能估算在内的符加动载荷,还可能导致传动系不能正常运转和早期破坏,万向传动轴是汽车传动系的重要组成部件之一[1]。

传动轴选用与设计的合理与否直接影响传动系的传动性能。

选用、设计不当会给传动系增添不必要的和设计未能估算在内的附加负荷,可能导致传动系不能正常运转,因此该总成设计是汽车设计中重要的环节之一。

3.2国内外研究现状、发展趋势传动轴普遍采用具有较高的强度的薄钢板卷焊而成的空心轴,超重型货车的传动轴则直接采用无缝钢管制成。

0.75吨级商用车万向传动轴设计说明书

0.75吨级商用车万向传动轴设计说明书

课程设计说明书学生姓名:学号:学院(系):机械系专业:车辆工程题目:0.75吨级商用车万向传动轴设计起迄日期:2020年12月14日~2020年12月31日课程设计地点:指导教师:系主任:目录1绪论 (1)1.1选题的目的和意义 (1)1.2国内外研究现状、发展趋势 (2)1.3研究内容及方法 (3)1.3.1传动轴方案的选择及主要参数的确定 (3)1.3.2万向节类型的选择 (3)1.3.3十字轴式万向节的结构分析 (4)1.3.4万向节总成主要参数的确定与校核 (4)1.3.5中间支承的设计与校核 (4)2传动轴总成的设计 (5)2.1万向传动轴总体概述 (5)2.2传动布置型式的选择 (6)2.3结构方案选择 (6)2.4计算传动轴载荷 (6)2.5 传动轴强度校核 (6)2.6 传动轴转速校核及安全系数 (7)3万向节总成的设计 (9)3.1万向节类型的选择 (10)3.2十字轴式万向节的结构分析 (11)3.3 十字轴万向节设计 (12)参考文献 (13)1 绪论1.1选题的目的和意义随着汽车工业的迅猛发展,车型的多样化、个性化已经成为发展趋势,对汽车节能、舒适与轻量化的要求越来越高。

而传动轴及万向节的设计装配不良将产生振动和噪声,增添未能估算在内的符加动载荷,还可能导致传动系不能正常运转和早期破坏,万向传动轴是汽车传动系的重要组成部件之一[1]。

传动轴选用与设计的合理与否直接影响传动系的传动性能。

选用、设计不当会给传动系增添不必要的和设计未能估算在内的附加负荷,可能导致传动系不能正常运转,因此该总成设计是汽车设计中重要的环节之一。

1.2国内外研究现状、发展趋势传动轴普遍采用具有较高的强度的薄钢板卷焊而成的空心轴,超重型货车的传动轴则直接采用无缝钢管制成。

近年来由于对汽车低能耗,低成本的要求越来越高,汽车必须轻量化,汽车变得更易产生振动和噪声。

因此对传动系重要组成部分万向节振动特性必须进行分析[2]。

课程设计说明书--万向传动轴设计

课程设计说明书--万向传动轴设计

万向传动轴设计1.车型及其相关参数1.1车型图片设计所选车型为:一汽解放赛龙中卡(CA1145PK2L2AEA80)1.2车型参数:驱动形式4*2 轴距4920m车身长度8.45m 车身宽度 2.5m车身高度 2.56m 最高车速93km/h 轮胎规格8.25-16 发动机最大输出功率103kw整车质量 5.8吨发动机最大转矩450N·m 最大总质量13.8吨最大扭矩转速1400发动机额定转速2500rpm 档数6档变速器最大输出扭矩610N·m 一档传动比 6.515后桥允许载荷8950Kg 六档传动比0.813刚性万向节安徽工程大学万向节------课程设计说明书挠性万不等速万向节准等速万向节等速万向节向节十字轴式双联式凸块式三销轴式球面滚轮式圆弧槽滚刀式球叉式直槽滚道式伸缩型球笼式Birfield型Rzeppa型图 2.1万向节的分类在方案选择时,我们考虑到它是用于变速器与驱动桥之间,并且在满足万向传动轴设计基本要求后,我们选择了十字轴万向节。

其结构如下图所示,注油嘴套筒滚针轴承座注油孔油道图 2.2十字轴结构图因为这种万向节结构简单紧凑,强度高,耐久性好,传动效率高,生产成本低,能使不在同轴线或轴线角较大,轴向移动较大的两轴等角速连续回转,与可伸缩的传动轴搭配在一起,构成的十字轴万向传动轴被广泛采用。

十字轴万向传动可分为单十字轴和双十字轴两种。

单十字轴万向节传动,传动轴被封闭在一套管中,套管将牵引力或制动力从驱动桥传至车架或车身。

但其结构笨重,增加了非悬挂部分的重量。

而且,由于这种结构中只用了一个十字轴万向节传动,因此不能保证主减速器主动轴与变速器第二轴的转速恒等,引起了工作不均匀性,这种万向节应用很少。

目前应用最广泛的是双十字轴万向节。

双十字轴万向节直接用两个简单十字轴万向节和一根传动轴连接。

另外双十字轴万向节的重量轻,对载重汽车而言通常只占 1.0~1.4%。

所以我们选了双十字轴万向节。

车辆工程毕业设计220重型货车万向传动装置设计说明书

车辆工程毕业设计220重型货车万向传动装置设计说明书

本科学生毕业设计重型货车万向传动装置设计院系名称:汽车与交通工程学院专业班级:车辆工程学生姓名:指导教师:职称:副教授The Graduation Design for Bachelor's Degree Universal Transmission Design of Heavy Goods VehiclesCandidate:Hu BingSpecialty :Vehicle EngineeringClass:B07-10Supervisor:Associate Prof. Yao JiayanHeilongjiang Institute of Technology摘要本毕业设计的任务是对解放CA1140型货车进行万向传动装置的设计、研究。

在指导老师的细心指导下,通过对汽车万向传动装置的了解,进一步进行万向传动装置的设计。

通过实际的市场调查和客观的实际观察,全面了解万向传动装置的结构,充分了解到万向传动装置的工作原理与意义,及其在汽车行驶中的重要作用。

在汽车的正常工作中,是一个必不缺少的部件,也是一个不可替代的关键部件。

对于万向传动装置的研究,有很大的发展空间,具有相当大的研究意义。

在充分与指导老师讨论、研究后,故选此课题。

在进行设计任务时,分析了万向传动装置类型的,根据题目所要求的原始数据要求,确定了所选用万向传动轴的种类。

在初定各个部件的相关尺寸后,根据要求进行了计算和校核,确定了所设计部件的尺寸和参数,并选择了零部件的材料。

关键字:万向节,传动轴,强度,计算,校核ABSTRACTThis graduation task is on the Jiefang CA1140 type trucks for universal transmission design. In the instructor's careful guidance, through the automotive universal drive unit, further universal design of the drive shaft. Through actual market research and objective observations, a comprehensive understanding of the structure of universal drive shaft to fully understand the universal drive unit works and significance, and its vehicle. In the car's work, is a not missing parts, is a key part. For the study of universal drive shaft, have a high potential for growth, with considerable significance. In fully and instructor to discuss, study, this issue.The design task, analyzed the universal transmission device type, under the title the required raw data requirements, decide to choose the kind of universal drive shaft. In various parts of the associated YTC sizes depending on the requirements for the calculation and check, determine the design part of dimensions and parameters, and selected parts of the material.Keywords:Universal joint, Transmission shaft, Strength,Calculation, Check目录摘要 (I)Abstract (II)第1章绪论…………………………………………………………………………错误!未定义书签。

汽车设计 第6版 第4章 万向传动设计

汽车设计 第6版 第4章 万向传动设计

尺寸大,零件多,结构较复杂,传递转矩有限
当应用于转向驱动桥中,由于轴向尺寸大,为 使主销轴线的延长线与地面交点到轮胎的印迹 中心偏离不大,需要较大的主销内倾角
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
1.球笼式万向节
(1)固定型球笼式万向节
星形套7以内花键与主动轴1相连,其外表面设置有 6条凹槽(形成内滚道)。球形壳8的内表面设置有 对应的6条凹槽(形成外滚道)。6个钢球分别嵌装 在6条滚道中,并由保持架4使之保持在同一平面内。 动力由主动轴1经过钢球6、球形壳8输出。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
二、十字轴式万向节
滚针轴承的润滑和密封
毛毡油封:因防漏油、防水、防尘效果差,已淘汰 双刃口复合油封:防漏油、防水、防尘效果好。在 灰尘较多的环境中万向节寿命显著提高。 多刃口油封:防漏油、防水、防尘效果更好。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
2.三枢轴式万向节
三枢轴式万向节能允许最大轴间交角为43°
万向节安装位置或相连接总成
离合器-变速器;变速器-分动器 (相连接总成均安装在车架上)
驱动桥 传动轴
汽车满载 静止夹角
行驶中的 极限夹角
一般汽车 越野汽车 一般汽车 越野汽车
α不大于
1°~3°
6° 12° 15°~20° 30°
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
三、双联式万向节
汽车工程系

汽车设计万向传动轴设计

汽车设计万向传动轴设计

(a) 具有球面对中机构的挠性万向节 (b) 具有轴向变形的挠性万向节
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§ 4-2 万向节结构方案分析
四、挠性万向节
六角环形橡胶圈
所用橡胶的 力学特性: 抗拉强度 相对收缩率 肖氏硬度 挤压应力 切变模量G 工作温度 。。。
万向节(Universal Joint)的功用 万向节传动用于不同轴线的
两轴间或在工作过程中相对位置 不断变化的两轴间的动力传递 (转矩和旋转运动)。
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§4.1 万向传动概述
二、万向传动轴设计应满足的基本要求
(1)保证所连接的两轴相对位置在预定范围内 变动时,能可靠的传递动力 (2)保证所连接的两轴尽可能等速旋转。 (3)由于万向节夹角而产生的附加载荷、振动 和噪声应在允许范围内 (4)传动效率高,使用寿命长 (5)结构简单,容易维修。
《汽车设计》 第四章 万向传动轴设计
§4.1 万向传动概述
一、万向传动轴的组成与功用 二、万向传动轴设计应满足的基本要求 三、万向传动轴的应用 四、万向节的分类
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§4.1 万向传动概述
一、万向传动轴的组成
汽车上的万向传动轴主要由万向节、传动轴(轴 管及伸缩花键)组成,对长轴距汽车,还加装有 支撑装置。
用途:多用于军用越野转向驱动桥
中北大学 机电工程学院 车辆与动力工程系
《汽车设计》 第四章 万向传动轴设计
§ 4-2 万向节结构方案分析
二、准等速万向节 2. 凸块式万向节

万向传动轴说明书

万向传动轴说明书

万向传动轴设计说明书商用汽车万向传动轴设计摘要万向传动轴在汽车上应用比较广泛。

发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。

本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。

传动轴是由轴管、万向节、伸缩花键等组成。

伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。

传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。

在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

关键字:万向传动轴、伸缩花键、十字轴万向节、临界转速、扭转强度目录一、概述 (04)二、货车原始数据及设计要求 (05)三、万向节结构方案的分析与选择 (06)四、万向传动的运动和受力分析 (08)五、万向节的设计计算 (11)六、传动轴结构分析与设计计算 (17)七、法兰盘的设计 (19)八、参考文献 (20)一、概述汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。

主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。

在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动(图1—1a、b)。

当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段,万向节用三个。

此时,必须在中间传动轴上加设中间支承。

在转向驱动桥中,由于驱动桥又是转向轮,左右半轴间的夹角随行驶需要而变,这是多采用球叉式和球笼式等速万向节传动(图1—1c)。

第四章 万向传动轴设计

第四章 万向传动轴设计

第四章•万向传动轴设计24.1.1 万向传动轴概述¾功能用于在工作过程中相对位置不断改变的两根轴之间传递转矩和旋转运动¾组成:万向节、传动轴,有时加装中间支承¾设计基本要求两轴相对位置在预计范围内变动时,能可靠传递动力 尽可能使所连接两轴同步(等速)运转传动效率高、使用寿命长、结构简单、制造和维修方便3发动机前置后轮或全轮驱动的汽车上,变速器或分动器输出轴和驱动桥输入轴之间转向驱动桥中,内、外半轴之间后驱动桥为独立悬架结构时采用4.1.2 万向传动轴在汽车中的应用4¾刚性万向节不等速万向节:十字轴式准等速万向节:双联式、凸块式、三销轴式等 等速万向节:球叉式、球笼式等¾挠性万向节4.2 万向节分类54.3 十字轴万向节Ö单十字轴万向节传动Ö双十字轴万向节传动Ö多十字轴万向节传动64.3.1 单十字轴万向节传动αϕϕcos tan tan 21=转角关系7转速关系12212cos sin 1cos ϕααωω−=αωωcos /1max 2=αωωcos 1min 2=ααωωωtan sin 1min2max 2=−=k 12/ωω是周期为π的周期函数当为0、π、2π、…时1ϕ当为π/2、3π/2、…时1ϕ传动的不等速性!8转矩关系2211ωωT T =11222cos cos sin 1T T αϕα−=αcos /1max 2T T =αcos 1min 2T T =当为0、π、2π、…时1ϕ当为π/2、3π/2、…时1ϕ9附加弯矩0'1=T αsin 1'2T T =αtan 1'1T T =0'2=T 0≠α1T 2T 与作用于不同的平面如何平衡呢?2'21'1=+++T T T T vv v v 10附加弯矩引起的径向载荷αsin 1'2T T =21222sin L T L T F j α=′=αtan 1'1T T =αααcos tan cos 21212L T L T F c =′=呈周期性变化11惯性力矩222εJ T G =212212212)cos sin 1(2sin sin cos ϕαϕααωε−−=124.3.2 双十字轴万向节传动21αα=获得等速传动的条件1)2)同传动轴相连的两个万向节叉布置在同一平面内13附加弯矩的影响双万向节传动中附加弯矩产生的径向力可由轴承反力平衡两万向节叉所受附加弯矩彼此平衡,传动轴弯曲振动两万向节叉所受附加弯矩方向相同,从而对两端的十字轴产生大小相同、方向相反的径向力,在两轴的支承上引起反力144.3.3 多十字轴万向节传动()θϕαϕ+=Δ122sin 4e L±±±=232221ααααe 多万向节传动设计要求1)当量夹角尽量小,空载和满载时小于最大许用角2)角加速度幅值应小于许用值e α212ωαe 15多十字轴万向节传动实例o o o 5.4,5.3,5.1321===αααmin/30001r n =比较某货车的两种传动方案,其中16o o 5.5)5.45.35.1(222=−−=e α2212/909s rad e =ωαo o 4.2)5.45.35.1(222=−+=e α2212/173s rad e =ωα917¾万向传动轴在汽车中的典型应用 变速器与驱动桥之间 转向驱动桥中¾确定传动系计算载荷的主要方法按发动机最大转矩和一档传动比来确定 按驱动轮打滑来确定 按日常平均使用转矩来确定4.4 万向节设计184.4.1 万向传动轴计算载荷ni ki T k T f e d se η1max 1=n i i ki T k T f e d se 201max 2η=mm r ss i i r m G T ηϕ0'221=mm r ss i r m G T ηϕ2'112=ni i r F T m m r t sf η01=ni r F T m m r t sf η22=按日常平均使用转矩按驱动轮打滑按发动机最大转矩和一挡传动比转向驱动桥中变速器与驱动桥之间19计算驱动桥数和分动器传动比选取326×6214×4高低挡传动比关系车型2fd fg i i >2fd fg i i <32fd fgi i >32fd fg i i <f i nfg i fd i fg i fdi 20载荷选择参考静强度计算疲劳寿命计算],min[11ss se s T T T =],min[22ss se s T T T =此时,安全系数取2.5~3.0s T 取或1sf T 2sf T 214.4.2 十字轴万向节设计¾主要的失效形式十字轴轴颈和滚针轴承的磨损十字轴轴颈和滚针轴承碗表面出现压痕和剥落 十字轴轴颈根部断裂22十字轴强度校核αcos 2r T F s=][)(3242411w w d d Fsd σπσ≤−=][)(42221τπτ≤−=d d F],min[ss se s T T T =23bnj L F d d )11(27201+=σiZF F n 6.4=滚针轴承的接触应力24十字轴万向节的传动效率παηtan 2)(110r d f −=o 25≤α当时通常情况下,约为97%~99%25¾传动轴总成的组成传动轴、两端焊接的花键轴、万向节叉等¾传动轴设计时应首先考虑的问题 长度变化范围 夹角变化范围4.5 传动轴结构分析与设计264.5.1 传动轴的临界转速2228102.1cc c k Ld D n +×=0.22.1/max ~==n n K k 27][)(1644c c c sc cd D T D τπτ≤−=][163h hsh d T τπτ≤=4.5.2 传动轴其它校核¾轴管扭转强度¾花键轴扭转强度¾花键的齿侧挤压强度][)2)(4(0y h h h h h s y n L d D d D K T σσ≤−+′=284.5.3 传动轴的平衡¾传动轴总成不平衡传动系弯曲振动的一个激励源 高速旋转时将产生明显的振动和噪声¾不平衡的主要来源万向节中十字轴的轴向窜动 传动轴滑动花键的间隙传动轴总成两端连接处的定心精度 高速回转时传动轴的弹性变形点焊平衡片的热影响(应在冷却后进行动平衡检验)¾对传动轴不平衡度的要求29¾中间支承的作用提高传动轴临界转速,减小万向节夹角(长轴距汽车) 提高传动系的弯曲刚度,减振降噪(轿车)¾中间支承的设计要求适应安装面的实时变化 不发生共振¾轴承的选择不传递轴向力,主要承受径向力单列滚珠轴承需要承受轴向力两个滚锥轴承4.6 中间支承结构分析与设计30mC f R π210=中间支承的固有频率60f n =。

课程设计说明书--万向传动轴设计

课程设计说明书--万向传动轴设计

万向传动轴设计1.车型及其相关参数1.1车型图片设计所选车型为:一汽解放赛龙中卡(CA1145PK2L2AEA80)1.2车型参数:驱动形式4*2 轴距4920m车身长度8.45m 车身宽度 2.5m车身高度 2.56m 最高车速93km/h 轮胎规格8.25-16 发动机最大输出功率103kw整车质量 5.8吨发动机最大转矩450N·m 最大总质量13.8吨最大扭矩转速1400发动机额定转速2500rpm 档数6档变速器最大输出扭矩610N·m 一档传动比 6.515后桥允许载荷8950Kg 六档传动比0.813刚性万向节安徽工程大学万向节------课程设计说明书挠性万不等速万向节准等速万向节等速万向节向节十字轴式双联式凸块式三销轴式球面滚轮式圆弧槽滚刀式球叉式直槽滚道式伸缩型球笼式Birfield型Rzeppa型图 2.1万向节的分类在方案选择时,我们考虑到它是用于变速器与驱动桥之间,并且在满足万向传动轴设计基本要求后,我们选择了十字轴万向节。

其结构如下图所示,注油嘴套筒滚针轴承座注油孔油道图 2.2十字轴结构图因为这种万向节结构简单紧凑,强度高,耐久性好,传动效率高,生产成本低,能使不在同轴线或轴线角较大,轴向移动较大的两轴等角速连续回转,与可伸缩的传动轴搭配在一起,构成的十字轴万向传动轴被广泛采用。

十字轴万向传动可分为单十字轴和双十字轴两种。

单十字轴万向节传动,传动轴被封闭在一套管中,套管将牵引力或制动力从驱动桥传至车架或车身。

但其结构笨重,增加了非悬挂部分的重量。

而且,由于这种结构中只用了一个十字轴万向节传动,因此不能保证主减速器主动轴与变速器第二轴的转速恒等,引起了工作不均匀性,这种万向节应用很少。

目前应用最广泛的是双十字轴万向节。

双十字轴万向节直接用两个简单十字轴万向节和一根传动轴连接。

另外双十字轴万向节的重量轻,对载重汽车而言通常只占 1.0~1.4%。

所以我们选了双十字轴万向节。

万向传动轴设计说明书

万向传动轴设计说明书

万向传动轴设计说明书万向传动轴设计1.1概述...............................................................021.1结构方案选择...................................................031.2计算传动轴载荷................................................041.3十字轴万向节设计.............................................051.4传动轴强度校核................................................071.5传动轴转速校核及安全系数.................................071.6参考文献 (09)万向传动轴通常就是由万向节、传动轴和中间车轴共同组成。

主要用作在工作过程中相对边线不断发生改变的两根轴间传达转矩和转动运动。

万向传动轴设计应当满足用户如下基本建议:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。

2.确保所相连接两轴尽可能SWEEPS运转。

3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。

4.传动效率高,使用寿命短,结构直观,生产便利,修理难等。

变速器或分动器输入轴与驱动桥输出轴之间广泛使用十字轴万向传动轴。

在转为驱动桥中,多使用SWEEPS万向传动轴。

当后驱动桥为单一制的弹性,使用万向传动轴。

1.传动轴与十字轴万向节设计要求1.1结构方案挑选十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,但所连接的两轴夹角不宜太大。

当夹角增加时,万向节中的滚针轴承寿命将下降。

普通的十字轴式万向节主要由主动叉,从动叉,十字轴,滚针轴承及轴向定位件和橡胶封件等共同组成。

1.组成:由主动叉、从动叉、十字轴、滚针轴承、轴向定位件和橡胶密封件组成2.特点:结构直观、强度低、耐久性不好、传动效率高、成本低,但夹角不必过小。

第四章万向传动轴设计

第四章万向传动轴设计

f
j
=
1 100
(16 -
0.195 ma g ) Te m a x
0
当0.195 ma g 16时 Te m a x
当0.195 ma g 16时 Te m a x
k—液力变矩器变矩系数; k = [(k0 -1) / 2] 1 k0为最大变矩系数
—发动机到万向传动轴之间的传动效率;
iⅠ—变速器一挡传动比;
点: 力强,效率较高,尺寸紧凑,安装方
便,精度要求高,成本较高
目前应用最为广泛的等速万向节!
伸缩型 结构简单,滚动阻力小,传动效率高
伸缩型球笼式万向节
四、挠性万向节
特 能减小传动系的扭转振动、 点:动允载许荷a=和°噪~声5°,及结很构小简轴单,
向位移,使用中不需要润滑
应用:常用作轿车三万向节传
主动轴 T1
a T2 从动轴
T2
a
T1 T2'
此时:T1'=T1sina
(T1的最大值)
当1=9 °时 ,T作用于十字轴平面,T2’必为零.
主动轴
特点:
a 从动轴
a T1
T2
T1'
此时:T1'=T1tana
(T’1的最大值)
附加弯矩值每转半转就在上述最大值与零之间变
化一次(周期为180°)
危害: 附加弯矩可引起与万向节相连机件的弯曲振动,
效率高,工作可靠,制造方便。
双联式万向节
缺点:结构较复杂,外形尺寸较大,零件数目较多。 应用: 中吨位以上的越野车
凸块式万向节
组成:主要由两个万向节叉和两个凸块组成
优点:
工作可靠,加工简单,允许所联两 轴夹角较大(可达50°)

汽车设计——第四章 万向传动轴设计

汽车设计——第四章 万向传动轴设计
一、万向传动轴的计算载荷 二、十字轴万向节设计 1.十字轴轴颈根部的弯曲、剪切应力 2. 滚针轴承 3. 万向节叉 4. 十字轴万向节传动效率与材料
第五节 传动轴设计
传动轴设计时的主要考虑因素: 花键的轴向阻力 实心轴与空心轴 传动轴管的制作 传动轴的长度和夹角及变化范围 临界转速 轴管扭转强度
2.双万向节传动(普通十字轴式万向节) 1)等速传动条件 与传动轴相连的两个万向节叉布置在同 一平面内。 两万向节与传动轴的夹角相等 2)附பைடு நூலகம்弯矩的作用
第三节 万向节传动的运动分析
3.多万向节传动(普通十字轴式万向节) 当量夹角 角加速度幅值 多万向节传动计算
另一种方法
第四节 万向节的设计计算
能可靠而稳定地传递动力。 保证所连接的两轴尽可能等速旋转。 由万向节传动引起的振动、噪音以及附加载
荷在允许范围内。 传动效率高,使用寿命长。 结构简单、制造方便、维修容易。 4.万向节分类
第二节 万向节结构方案分析
1.十字轴式万向节
2.准等速万向节 双联式万向节 凸块式万向节 三销轴式万向节 球面滚轮式万向节
传动轴花键轴扭转应力 传动轴花键齿侧挤压应力
第六节 中 间 支 承
在长轴距汽车上,常常将传动轴分段(两段或三段), 目的主要是缩短每一段的长度,提高刚度,从而 提高传动轴的临界转速。在乘用车中,有时为了 提高传动系的弯曲刚度、改善传动系弯曲振动特 性,减少噪音,也将传动轴分成两段。当传动轴 分段时,需要加中间支承。
第二节 万向节结构方案分析
3.等速万向节 球叉式万向节 球笼式万向节 Rzeppa型等速万向节 Birfield型球笼等速万向节 伸缩型球笼万向节 4.挠性万向节
第三节 万向节传动的运动分析

HGC1050万向传动轴结构设计-任务书

HGC1050万向传动轴结构设计-任务书
二、设计(论文)内容、技术要求(研究方法)
依据现有生产企业在生产车型的万向传动装置作为设计原型,在给定变速器输出转矩、转速及发动机和主减速器安装位置等条件下,独立设计出符合要求的万向传动装置,着重设计计算万向节的结构参数及对其进行了校核计算。对汽车万向传动轴的运动特性,技术难题,制造工艺,使用寿命影响因素,失效形式,进行深入系统的分析。在设计过程中避免振动,传动动轴断裂,十字轴折断,及滚针轴承过早损坏等问题。运用传统设计方法完成对传动轴的计算校核,传动轴滑动花键的设计计算。万向节叉及十字轴的计算校核。利用相关书籍资料完成对十字轴滚针轴承的设计及校核,传动轴滑动花键和万向节的润滑方案的选择与设计。
三、设计(论文)完成后应提交的成果
(一)计算说明部分
1、十字轴万向节的计算及校核;
2、传动轴的计算及校核;
3、重要零部件的校核;
4、设计计算说明书
(二)图纸部分
1、整体装配图A0一张;
2、传动轴主要零件图合计A0一张;
四、设计(论文)进度安排
1、第1周调研、开题报告、文献综述2、第2~3周传动轴的设计计算3、第4~7周万向节的设计计算4、第8~9周完成装配图5、第10~11周完成零件图6、第12周完成设计说明书,并且进行有限元分析7、第13周审查修改图纸、计算及设计说明书8、第14周毕业设计预答辩准备及答辩
毕业设计(论文)任务书
学生姓名
系部
汽车与交通工程学院
专业、班级
指导教师姓名
职称
副教授
从事
专业
车辆工程
是否外聘
□是■否
题目名称
HGC1050万向传动轴结构设计
一、设计(论文)目的、意义
随着汽车工业的迅猛发展,车型的多样化、个性化已经成为发展趋势。而传动轴及万向节的设计装配不良将产生振动和噪声,因此该总成设计是汽车设计中重要的环节之一。本题是依据现有生产企业在生产车型的万向传动装置作为设计原型,在给定变速器输出转矩、转速及发动机和主减速器安装位置等条件下,学生独立设计出符合要求的万向传动装置,着重设计计算万向节的结构参数及对其进行了校核计算。在对各种结构件进行了分析计算后,绘制出该总成装配图及主要零件的零件图。

SWC285DH2万向轴说明书

SWC285DH2万向轴说明书

SWC285DH2万向轴说明书一、用途:本产品主要用于我国自行设计制造的石油钻机设备上,作为动力传递的部件。

二、技术参数:公称转矩:90 KN.m疲劳转矩:45 KN.m安装角:≤1 5度每端不平衡剩余量500g.cm最大长度:960 mm最小长度:880 mm三、结构:本产品采用双万向节联接的结构形式,由法兰叉头、万向节叉、花键轴、花键套、十字轴、滚针轴承等主要零部件组成。

四、维护、保养:万向轴装配时应保证所注箭头对齐,按时加注润滑脂,及时检查卡、螺栓有无松动,如发现松动,及时停车修理。

按正常运转,一般为3~7天对轴润滑一次,该万向轴采用2号锂基脂。

SWC285DH2 Cardan Shaft Specification一useThis product is in use for oil rigs designed and made in China. Transferring motive power.-. TechnicalparameterCataloguetorque: 90 KN.mFatiguetorque: 45 KN.mAssemble angle: ≤150Each end unbalance: 500g.cmMaximum operating length: 960 mmMinimum compressed length: 880 mm-. StructureThis product adopts two universal joints connection, is consist of flanged yoke. universal-yok. external spline axis. internal spline sleeve. cross, needle bearing.四. SafeguardPlease keep arrowhead neating when the shaft assembled , lubricating on time, checking ring spring and bolt in time, stopping the oil rig to twist the ring spring or bolt while relaxing, lubricating for 3~7 days one time. using N0.2 lithium-loaded lubricant.1.法兰叉flanged yoke2.十字轴cross3.滚针轴承needle bearing4.万向节叉universal-yoke5.花键套internal spline sleeve6.花键轴external spline axis装箱单(A packing list)┏━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━┓┃名称(Name) ┃规格(standard) ┃数量(quantity) ┃┣━━━━━━━━━━━━╋━━━━━━━━━╋━━━━━━━━┫┃万向轴(cardan shaft) ┃SWC285DH2 ┃ 1 ┃┣━━━━━━━━━━━━╋━━━━━━━━━╋━━━━━━━━┫┃螺栓(bolt) ┃M20×1.5×80 ┃ 1 6 ┃┣━━━━━━━━━━━━╋━━━━━━━━━╋━━━━━━━━┫┃螺母(nut) ┃M20×1.5 ┃ 1 6 ┃┣━━━━━━━━━━━━╋━━━━━━━━━╋━━━━━━━━┫┃键(key) ┃90x40x25 ┃ 4 ┃┣━━━━━━━━━━━━╋━━━━━━━━━╋━━━━━━━━┫┃螺栓(bolt) ┃MlOx25 ┃ 4 ┃┗━━━━━━━━━━━━┻━━━━━━━━━┻━━━━━━━━┛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车设计课程设计说明书设计题目:上海大众-桑塔纳志俊万向传动轴设计姓名许建伟学院交通学院专业机械本班级1105班学号20112814578指导教师孙宏图、王昕彦2014年11月28日目录1前言2设计说明书2.1原始数据2.2设计要求3万向传动轴设计3.1万向节结构方案的分析与选择3.1.1十字轴式万向节3.1.2准等速万向节3.2万向节传动的运动和受力分析3.2.1单十字轴万向节传动3.2.2双十字轴万向节传动3.2.3多十字轴万向节传动4 万向节的设计与计算4.1 万向传动轴的计算载荷4.2传动轴载荷计算4.3计算过程5 万向传动轴的结构分析与设计计算5.1 传动轴设计6 法兰盘设计前言万向传动轴在汽车上应用比较广泛。

发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。

本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。

传动轴是由轴管、万向节、伸缩花键等组成。

伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。

传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。

在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

2 设计说明书2.1 原始数据最大总质量:1210kg发动机的最大输出扭矩:Tmax=140N·m(n=3800r/min);轴距:2656mm;前轮胎选取:195/60 R14 、后轮胎规格:195/60 R14长*宽*高(mm):4687*1700*1450前轮距(mm);1414后轮距(mm):1422最大马力(pa):952.2 设计要求1.查阅资料、调查研究、制定设计原则2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。

3.万向传动轴设计和主要技术参数的确定(1)万向节设计计算(2)传动轴设计计算(3)完成空载和满载情况下,传动轴长度与传动夹角变化的校核4.绘制万向传动轴装配图及主要零部件的零件图3 万向传动轴设计3.1 万向节结构方案的分析与选择3.1.1 十字轴式万向节普通的十字轴式万向节主要由主动叉、从动叉、十字轴、滚针轴承及其轴向定位件和橡胶密封件等组成。

目前常见的滚针轴承轴向定位方式有盖板式(图3—1a、b)、卡环式(图3—1c、d)、瓦盖固定式(图3—1e)和塑料环定位式(图3—1f)等。

盖板式轴承轴向定位方式的一般结构(图3—1a)是用螺栓1和盖板3将套筒5固定在万向节叉4上,并用锁片2将螺栓锁紧。

它工作可靠、拆装方便,但零件数目较多。

有时将弹性盖板6点焊于轴承座7底部(图3—1b),装配后,弹性盖板对轴承座底部有一定的预压力,以免高速转动时由于离心力作用,在十字轴端面与轴承座底之间出现间隙而引起十字轴轴向窜动,从而避免了由于这种窜动造成的传动轴动平衡状态的破坏。

卡环式可分为外卡式(图 3—1c)和内卡式(图3—1d)两种。

它们具有结构简单、工作可靠、零件少和质量小的优点。

瓦盖固定式结构(图4—1e)中的万向节叉与十字轴轴颈配合的圆孔不是一个整体,而是分成两半用螺钉联接起来。

这种结构具有拆装方便、使用可靠的优点,但加工工艺较复杂。

塑料环定位结构(图3—1f)是在轴承碗外圆和万向节叉的轴承孔中部开一环形槽,当滚针轴承动配合装入万向节叉到正确位置时,将塑料经万向节叉上的小孔压注到环槽中,待万向节叉上另一与环槽垂直的小孔有塑料溢出时,表明塑料已充满环槽。

这种结构轴向定位可靠,十字轴轴向窜动小,但拆装不方便。

为了防止十字轴轴向窜动和发热,保证在任何工况下十字轴的端隙始终为零,有的结构在十字轴轴端与轴承碗之间加装端面止推滚针或滚柱轴承。

滚针轴承的润滑和密封好坏直接影响着十字轴万向节的使用寿命。

毛毡油封由于漏油多,防尘、防水效果差,在加注润滑油时,在个别滚针轴承中可能出现空气阻塞而造成缺油,已不能满足越来越高的使用要求。

结构较复杂的双刃口复合油封(图3—2a),其中反装的单刃口橡胶油封用作径向密封,另一双刃口橡胶油封用作端面密封。

当向十字轴内腔注入润滑油时,陈油、磨损产物及多余的润滑油便从橡胶油封内圆表面与十字轴轴颈接触处溢出,不需安装安全阀,防尘、防水效果良好。

在灰尘较多的条件下使用时,万向节寿命可显著提高。

图3—2b 为一轿车上采用的多刃口油封,安装在无润滑油流通系统且一次润滑的万向节上。

十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低。

但所连接的两轴夹角不宜过大,当夹角由4°增至16°时,十字轴万向节滚针轴承寿命约下降至原来的1/4。

3.1.2 准等速万向节双联式万向节是由两个十字轴万向节组合而成。

为了保证两万向节连接的轴工作转速趋于相等,可设有分度机构。

偏心十字轴双联式万向节取消了分度机构,也可确保输出轴与输入轴接近等速。

五分度杆的双联式万向节,在军用越野车的转向驱动桥中用得相当广泛。

此时采用主销中心偏离万向节中心1.0~3.5mm的方法,使两万向节的工作转速接近相等。

双联式万向节的主要优点是允许两轴间的夹角较大(一般可达50°,偏心十字轴双联式万向节可达60°),轴承密封性好,效率高,工作可靠,制造方便。

缺点是结构较复杂,外形尺寸较大,零件数目较多。

当应用于转向驱动桥时,由于双联式万向节轴向尺寸较大,为使主销轴线的延长线与地面交点到轮胎的接地印迹中心偏离不大,就必须用较大的主销内倾角。

综上考虑成本、传递转矩的大小以及等速要求等,故选择十字轴万向节。

此外,由于传动轴长度不超过1.5m,从总布置上考虑,选择一根传动轴,万向节用两个,而在传动轴上就无需加设中间支承了。

3.2 万向节传动的运动和受力分析3.2.1单十字轴万向节传动当十字轴万向节的主、从动轴之间的夹角为α时,主、从动轴的角速度1ω、2ω之间存在如下关系12212cos sin 1cos ϕααωω-= 式中,ϕ1为主动叉转角。

由于12cos ϕ是周期为2π的周期函数,所以12ωω也为同周期的周期函数。

如果1ω保持不变,则2ω每周变化两次。

因此主动轴以等速动时,从动轴时快时慢,此即普通十字轴传动的不等速性。

十字轴万向节传动的不等速性可用转速不均匀系数K 表示ααωωωtan sin 1min2max 2=-=K 普通十字轴万向节的主动轴和从动轴转角间的关系式为 αϕϕcos tan tan 21= 式中, ϕ1为主动轴转角,ϕ2为传动轴转角,α为主动轴与从动轴之间的夹角。

该式表示普通万向节传动的输入轴和输出轴的转角随两轴夹角的变化关系。

(如图)附加弯曲力偶矩的分析:当主动叉处于ϕ1=0和π位置时(图a ),由于1T 作用在十字轴轴线平面上,故1T 必为零;而2T 的作用平面与十字轴不共平面,必有2T 存在,且矢量2T 垂直矢量2T ,合矢量指向十字轴平面的法线方向,与1T 大小相等,方向相反。

这样,从动叉上的附加弯矩2T =1T αsin 。

当主动叉处于ϕ1=π/2和3π/2位置时(图b ),同理可知2T 为零,主动叉上的附加弯矩1T =1T αtan 。

3.2.2双十字轴万向节传动当输入与输出轴之间存在夹角α时,单个十字轴万向节的输出轴相对输入轴是不等速旋转的。

为使处于同一平面的输出轴与输入轴等速旋转,可采用双万向节传动,但必须保证与传动轴相连的两万向节叉布置在同一平面内,且使两万向节夹角α1和α2相等(图a 、c )。

当输入轴与输出轴平行时,直接连接传动轴的两万向节叉所受的附加弯矩彼此平衡,传动轴发生如图4-2b 中双点划线所示的弹性弯曲,从而引起传动轴的弯曲振动。

当输入轴与输出轴的轴线相交时(图4-2c ),传动轴两端万向节叉上所受的附加弯矩方向相同,不能彼此平衡,传动轴发生如图4-2d 中双点划线的弹性弯曲,因此对两端的十字轴产生大小相等、方向相反的径向力。

此力作用在滚针轴承碗的底部,并在输入轴与输出轴的支承上引起反力。

3.2.3多十字轴万向节传动多万向节传动的运动分析是建立在单十字轴万向节运动分析的基础上的。

下面分析三万向节的等速条件(如图)。

多万向节传动的从动叉相对主动叉的转角差)(rad ϕ∆的计算公式与单万向节相似,可写成 )(2sin 412θϕαϕ+=∆e式中,e α为多万向节传动的当量夹角;θ为主动叉的初相位角;1ϕ为主动轴转角。

假如多万向节传动的各轴轴线均在同一平面,且各传动轴两端万向节叉平面之间的夹角为零或π/2,则当量夹角e α为••••••±±±=232221ααααe式中的正负号确定:当第一万向节的主动叉处在各轴轴线所在的平面内,在其余的万向节中,如果其主动叉平面与此平面重合定义为正,与此平面垂直定义为负。

为使多万向节传动输出轴与输入轴等速,应使e α=0。

万向节传动输出轴与输入轴的转角差会引起动力总成支承和悬架弹性元件的振动,还能引起与输出轴相连齿轮的冲击和噪声及驾驶室内的谐振噪声。

因此在设计多万向节传动时,总是希望其当量夹角e α尽可能小。

一般设计时,应使空载和满载工况下的e α不大于︒3。

另外,对多万向节传动输出轴的角加速度幅值212ωαe 应加以限制。

对于乘用车,212ωαe 2/350s rad ≤;对于商用车,212ωαe 2/600s rad ≤。

表一 各种转速下推荐采用的最大夹角值4 万向节的设计与计算4.1 万向传动轴的计算载荷万向传动轴因布置位置不同,计算载荷也不同。

计算方法主要有三种,见表三。

T为发动机最大转矩(N.M);n为计算驱动桥数,取表中各计算式中,emax法见表四;i1为变速器一挡传动比;η为发动机到万向节传动轴之间的传动效率;k为液力变矩器变矩系数,k=[(k0-1)/2]+1,k0为最大变矩系数;G2为满载状态下一个驱动桥上的静载荷(N);m2ˊ为汽车最大加速度时的后轴负荷转移系数,乘用车:m2ˊ=1.2-1.4,商用车:m2ˊ=1.1—1.2;ϕ为轮胎与路面间的附着系数,对于安装一般轮胎的公路用汽车,在良好的混凝土或沥青路上,ϕ可取0.85,对于安装防侧滑轮胎的乘用车,ϕ可取1.25,对于越野车,ϕ可取1;r为ri为主减速器从动齿轮到车轮之间的车轮滚动半径(m);i0为主减速器传动比;m传动比;ηm 为主减速器主动齿轮到车轮之间的传动效率;G 1为满载状态下转向驱动桥上的静载荷(N );1'm 为汽车最大加速度时的前轴负荷转移系数,乘用车:1'm =0.80-0.85,商用车:1'm =0.75-0.90;F t 为日常汽车行驶的平均牵引力(N );i f 为分动器传动比,取法见表四;d k =3,性能系数t f =0的汽车:d k =1,t f >0的汽车:d k =2。

相关文档
最新文档