遥感信息提取资料
遥感数据处理中的特征提取与分类方法
遥感数据处理中的特征提取与分类方法引言遥感技术的发展使得人们能够通过航天器远距离获取地球表面的图像数据,并进行各种分析和应用。
遥感数据处理是指对这些获取到的数据进行预处理、特征提取和分类,以实现对地球表面特定区域的信息提取和解读。
本文将探讨遥感数据处理中的特征提取与分类方法。
一、特征提取方法1. 光谱特征提取光谱特征提取是遥感数据处理中最常用的方法之一。
通过分析地球表面的反射、辐射和发射光谱信息,可以获取不同物体或地物的光谱特征。
这些特征包括反射率、辐射亮度、辐射强度等。
2. 纹理特征提取纹理特征提取是通过分析地物表面纹理的空间分布和统计特性来获取特征信息的方法。
纹理特征包括灰度共生矩阵、方差、平均灰度等。
这些特征可以用于界定地物的边界、形状和空间分布特征。
3. 结构特征提取结构特征提取是通过分析地物的几何形状和排列方式来获取特征信息的方法。
结构特征包括面积、周长、长度、宽度、密度等。
这些特征可以用于判断地物的类型和分类。
二、分类方法1. 监督分类方法监督分类方法是基于已知地物类型的样本数据进行训练和分类的方法。
这种方法需要先收集一定数量的地物样本数据,并标注其类别信息。
然后,通过对样本数据进行统计分析和特征提取,建立分类模型,对未知地物进行分类。
2. 无监督分类方法无监督分类方法是不依赖已知样本数据进行分类的方法。
无监督分类方法主要依靠对地物间的相似性和差异性进行统计分析,通过将地物划分为具有相似特征的类别,实现分类。
3. 半监督分类方法半监督分类方法是监督分类方法和无监督分类方法的结合,充分利用已知样本数据和未知样本数据进行分类。
半监督分类方法首先使用无监督方法对未知样本数据进行聚类,然后使用监督方法对聚类结果进行分类。
结论遥感数据处理中的特征提取与分类方法是实现对地球表面信息提取和解读的关键环节。
光谱特征、纹理特征和结构特征的提取可以有效地表示地物的特点和特征。
监督分类、无监督分类和半监督分类方法可以根据不同的需求和数据情况进行选择和应用。
植被信息遥感提取方法
植被信息遥感提取是一种利用遥感技术来获取地表植被信息的方法。
这种方法通过卫星或无人机拍摄地表图像,然后利用图像处理技术和计算机视觉技术,提取出植被的特征信息,如植被覆盖率、植被类型、植被生长状态等。
以下是植被信息遥感提取的基本方法:
1. 图像获取:使用卫星或无人机拍摄地表图像,获取不同分辨率、不同光谱特性的图像数据。
这些图像数据可以提供丰富的植被信息,为后续的植被信息提取提供基础。
2. 图像预处理:对获取的图像进行预处理,包括去噪、增强、裁剪等操作,以提高图像的质量和可读性,为后续的植被信息提取提供更好的基础。
3. 特征提取:利用图像处理技术和计算机视觉技术,从图像中提取植被的特征信息。
常用的特征包括植被覆盖率、植被类型、植被生长状态等。
这些特征可以通过不同的算法和方法进行提取,如基于光谱特征的方法、基于纹理特征的方法、基于机器学习的方法等。
4. 分类识别:将提取的特征进行分类识别,确定植被的类型和生长状态。
常用的分类方法包括监督学习、非监督学习等。
通过对图像中的植被进行分类,可以得到各种植被的信息,如草地的面积、森林的覆盖率等。
5. 结果评估:对植被信息提取的结果进行评估,以确保提取结果的准确性和可靠性。
评估的方法包括人工目视检查、统计分析等。
评估结果可以用于优化植被信息提取的方法和算法,提高结果的准确性和可靠性。
总的来说,植被信息遥感提取是一种综合利用遥感技术、图像处理技术和计算机视觉技术的方法,可以快速、准确地获取地表植被的信息。
这种方法在农业、林业、环境监测等领域具有广泛的应用价值。
遥感数据获取和处理的方法与技巧
遥感数据获取和处理的方法与技巧遥感技术是一种通过远距离获取地球表面信息的技术,具有广泛的应用领域,包括土地利用规划、环境监测、资源调查等。
本文将介绍遥感数据获取和处理的方法与技巧,以帮助读者更好地理解和应用遥感技术。
一、遥感数据获取的方法与技巧1. 遥感平台的选择遥感数据的获取可以通过不同的平台进行,包括卫星遥感和航空遥感。
卫星遥感是通过卫星搭载的传感器获取数据,适用于大范围的地表信息获取;而航空遥感则是通过飞机或无人机搭载的传感器获取数据,适用于局部区域的高分辨率影像获取。
在选择遥感平台时,需要根据具体应用需求和预算进行评估和选择。
2. 数据源的选择遥感数据的获取可以通过不同的数据源进行,包括光学遥感数据和雷达遥感数据。
光学遥感数据通过感知可见光和红外辐射,适用于获取地表的光谱和形态信息;而雷达遥感数据通过感知微波辐射,适用于获取地表的高度和形变信息。
在选择数据源时,需要根据应用需求和研究目标进行评估和选择。
3. 数据获取的预处理在进行遥感数据获取之前,需要进行数据获取的预处理工作。
这包括确定获取的数据范围、选择合适的获取时间和天气条件,以及进行辐射校正和几何校正等工作。
预处理的目的是消除图像中的噪声、改善数据质量,并使数据能够更好地用于后续分析和处理。
二、遥感数据处理的方法与技巧1. 影像分类与解译遥感数据处理的核心任务之一是影像分类与解译。
影像分类是将遥感图像中的像素根据其特征进行划分,并将其归类到不同的地物类型中;而影像解译则是通过对图像中不同地物的特征进行分析和解释,推断其类型和特征。
影像分类与解译可以利用传统的机器学习算法,如最大似然法和支持向量机等,也可以利用深度学习算法,如卷积神经网络等。
2. 特征提取与分析特征提取与分析是遥感数据处理的另一个重要任务。
特征提取是将遥感数据中有用的信息提取出来,如纹理特征、形状特征等;而特征分析则是对提取出的特征进行统计和分析,从而揭示地物的空间分布和变化规律。
基于遥感大数据的信息提取技术综述
基于遥感大数据的信息提取技术综述一、本文概述随着遥感技术的迅猛发展和大数据时代的到来,遥感大数据已经成为了地理信息科学领域的重要研究内容。
遥感大数据的信息提取技术,不仅对于提升遥感数据的利用率、挖掘遥感信息的深层次价值具有重要意义,同时也是实现地球科学定量化、精准化研究的关键手段。
本文旨在综述遥感大数据信息提取技术的最新研究进展,包括遥感大数据的特点、信息提取的主要方法、应用领域以及面临的挑战与未来发展趋势。
通过对遥感大数据信息提取技术的全面梳理和评价,旨在为相关领域的研究人员和实践者提供有益的参考和启示,推动遥感大数据信息提取技术的持续创新和发展。
二、遥感大数据概述遥感大数据,指的是通过遥感卫星、无人机、地面传感器等多元化遥感平台获取的海量数据。
这些数据不仅包括传统的光学影像,还涉及雷达、激光扫描、红外等多源、多时相、多分辨率的数据类型。
遥感大数据的特点主要体现在数据量庞大、数据结构复杂、数据动态性强以及价值密度高但价值发现难等方面。
随着遥感技术的发展,特别是高分辨率对地观测技术的广泛应用,遥感大数据已经成为地理信息科学、地球科学、环境科学等领域研究的重要数据源。
遥感大数据的获取不仅提高了我们对地球表面及其环境的认知深度,也为资源监测、城市规划、灾害预警、环境保护等实际应用提供了强有力的数据支持。
在遥感大数据的处理与分析方面,传统的数据处理方法已经难以应对如此庞大和复杂的数据量。
发展基于云计算、大数据挖掘、机器学习等先进技术的遥感大数据处理框架和算法,成为遥感大数据领域的研究热点。
这些新技术和方法的应用,不仅可以提高遥感大数据的处理效率,还能发现隐藏在数据中的深层次信息和价值,推动遥感大数据在各领域的应用和发展。
遥感大数据作为信息提取的重要基础,其处理和分析技术的持续创新将为后续的信息提取提供更为准确、快速和全面的数据支持。
对遥感大数据的深入研究和探索,对于推动遥感技术的发展和应用,具有非常重要的意义。
遥感影像信息提取方法
遥感影像信息提取方法遥感影像就像是地球的超级照片,从太空或者高空给我们展示地球的模样。
那怎么从这复杂的影像里提取有用的信息呢?有一种方法是目视解译。
这就像是我们看一幅画,用自己的眼睛去识别里面的东西。
比如说,在遥感影像里看到一大片绿色,形状像树,那可能就是森林啦。
有经验的解译者就像厉害的侦探,能从影像的颜色、形状、纹理这些蛛丝马迹里判断出是城市、农田还是山脉。
不过呢,这个方法比较依赖人的经验,而且要是影像特别复杂,就很容易出错,眼睛也会看累的,就像看一幅超级复杂的拼图看久了一样。
还有基于像元的分类方法。
影像都是由一个个像元组成的呀,每个像元都有自己的数值。
我们可以根据像元的数值特征来分类。
就好比把一群小朋友按照身高、体重这些数值来分成不同的小组。
像监督分类,我们得先找一些已知类型的样本,就像先认识几个有代表性的小朋友,然后根据这些样本的特征去给其他像元分类。
非监督分类呢,就像是让像元们自己抱团,根据它们数值的相似性自动分成不同的类别。
但是这种方法也有小缺点,有时候像元的数值会受到很多因素影响,可能就分错类了。
决策树分类法也很有趣。
它就像一棵大树,有很多分支。
每个分支都是一个判断条件。
比如说,先判断影像里这个地方的植被指数,如果植被指数高,再判断别的特征。
这样一层一层判断下去,就像走迷宫一样,最后确定这个地方是什么类型的地物。
这种方法很直观,不过要是树的结构没设计好,就像迷宫的路线画错了,那结果也会不对。
还有面向对象的分类方法。
它不是只看像元,而是把影像里相似的像元组合成一个个对象。
这就好比把一群志同道合的小朋友组成一个小团队。
然后根据这些对象的特征来分类。
这样能更好地利用影像里地物的形状、大小等信息,比只看像元要聪明一些。
但是它的计算量可能比较大,就像要组织很多小团队,比较费精力。
遥感影像信息提取的方法各有各的优缺点,就像不同的小工具,我们要根据具体的任务和影像的特点来选择合适的方法,这样才能从遥感影像这个大宝藏里挖到最有用的信息呢。
使用卫星遥感图像进行地理信息提取的方法
使用卫星遥感图像进行地理信息提取的方法卫星遥感图像在地理信息提取方面的应用越来越广泛。
它可以通过获取遥感图像中的地物信息,提供高精度的地理数据,帮助各行各业做出更好的决策。
本文将探讨使用卫星遥感图像进行地理信息提取的方法。
在使用卫星遥感图像进行地理信息提取之前,首先需要对遥感图像进行预处理。
这包括图像去噪、辐射校正和几何校正等操作。
图像去噪可以降低图像中由于遥感仪器等原因导致的噪声,使图像质量更好。
辐射校正是为了消除图像中的辐射差异,得到更精确的辐射亮度信息。
几何校正则是为了修正图像的几何变形,如投影畸变和平面畸变等,使图像在地理空间中具有准确的位置信息。
一种常用的方法是基于像素的分类。
此方法通过将遥感图像中的像素根据其特征划分到不同的类别中,实现地物的提取。
这种方法可以利用各种图像处理技术,如阈值分割、聚类、分类器等。
阈值分割是根据图像中像素的亮度特征,将图像划分为目标和背景两个部分。
聚类是将图像中的像素划分为多个簇,每个簇代表一个地物类别。
分类器则是根据已知地物的样本,通过机器学习等算法训练出一个分类模型,用于对新的图像进行分类。
另一种常见的方法是基于对象的分类。
与像素级的分类不同,对象级分类将图像中的像素组织成具有一定空间连续性的对象,然后根据对象的属性进行分类。
对象可以是任意形状和大小的地物,如建筑物、道路、森林等。
这种方法需要进行一系列的图像分割操作,将图像分割成一组相互独立的对象。
然后,通过提取对象的特征,如形状、纹理、颜色等,将它们划分到不同的类别中。
对象级分类相比像素级分类,在保留图像空间信息方面更加准确,适用于复杂地物的提取。
除了基于分类的方法,还可以利用卫星遥感图像进行地理信息的提取。
这种方法通过分析图像中的光谱信息,获取地物的属性。
遥感图像可以提供多个波段的光谱信息,如可见光、红外和热红外等。
通过分析不同波段之间的光谱差异,可以获取地物的特征。
例如,植被在可见光和红外光波段表现出不同的反射特性,可以通过分析这些特性来提取植被覆盖的信息。
浅谈遥感卫星影像数据信息提取
浅谈遥感卫星影像数据信息提取摘要:在应用航天遥感时用到的数据一般分为两种形式,即遥感影像和数据图像,这两种数据形式无论使用哪种,影像都是记录在感光的胶片和相纸上的,数据影像是通过数字磁带进行记录的,记录的图像的颜色是离散变化的,而遥感影像是通过对地表进行拍摄和扫瞄来记录数据,遥感影像获得的影像数据有黑白和彩色两种,一般比较常使用的是彩色。
获取遥感影像的方式有很多种,这篇文章就是对影响遥感影像的数据信息提取方式进行了简要的分析。
关键词:遥感卫星;信息提取;影像数据一、遥感影像简介所谓的遥感反映的就是接收所要探测的目标物的电磁辐射信息的强弱程度,接收方式一般分为主动接受和被动接收,把这种接收到的信息转化成图像的形式,然后再通过相片或者是数字图像的形式表现出来,遥感影像有单波段影像、多波段影像、彩色合成影像等。
多波段影像是利用多波段的遥感器对于同一个地区进行同步的拍摄获得的若干幅波段不同的影像,相比于单波段的影像,这种多波段影响的蕴含的信息量更大,光谱的分辨率也比较高,还能够通过影响的增强技术,得到彩色的合成影像,可以很大程度上提高对地面上物体的识别能力。
那么很明显,彩色合成影像就是通过多个波段的黑白影像合成的,这种彩色的合成影像被广泛的使用在地学研究、环境监测或者是资源调查上。
遥感卫星影像在对遥感影像的信息进行处理时,主要是利用影像中的一些特征,比如光谱特征、空间特征或者是时间特性。
在这些影像的特征之外,色调是与物体的波谱特征有关系的,其他的一些要素特征都和物体的空间特征有关系。
物体的大小是与物体的影像比例有非常大的关系的,每一个物体影像的形状都是这个物体固有的特征,而影像上的纹理则是因为在一组影像上色调的变化造成的,给人视觉上留下的印象是不同的,可以帮助观察者来区分物体或者是不同的现象。
在对影像进行提取时方式有很多种,下边对于影像信息的提取进行详细分析。
二、遥感信息提取方式对于遥感信息的提取方式有很多种,最常用的提取方式主要包括目视翻译和计算机的信息提取。
全国土地利用数据遥感信息提取土地利用数据说明
全国土地利用数据遥感信息提取土地利用数据说明北京揽宇方圆信息技术有限公司是中国科学院系统的遥感影像数据服务企业,专注于遥感影像数据一站式的基础卫星数据服务、卫星影像数据处理服务。
土地利用数据时间:1985年、1990年、1995年、2000年、2005年、2010年、2015年土地利用数据源:Landsat TM影像Landsat ETM影像土地利用数据遥感信息的提取:根据影像光谱特征,利用ARCGIS、易康软件、ENVI软件等,同时参照有关地理图件,对地物的几何形状,颜色特征、纹理特征和空间分布情况进行分析,提取土地利用信息。
土地利用/覆被变化信息的提取。
采用arcgis与易康结合,它通过分析地物光谱特征和其他图像特征,充分利用高程、坡度等地理辅助信息可以有效地提高分类精度,比较适合于地形破碎、地物分布复杂的地区。
基于Landsat TM遥感影像,采用全数字化人机交互遥感快速提取方法,同时参考国内外现有的土地利用/土地覆盖分类体系,以及遥感信息源的实际情况,将遥感影像进行解译并进行验证将土地利用数据类型划分为6个一级分类,24个二级分类以及部分三级分类的土地利用/土地覆盖数据产品,并结合本项目制定土地利用数据产品分类体系。
目视解译侧重于人的知识的参与,为了减少由于不同人员的主观差异性所造成的误差,提高遥感判读精度,因此建立统一解译标志是十分必要的。
根据影像光谱特征,结合野外实测资料,同时参照有关地理图件,对地物的几何形状,颜色特征、纹理特征和空间分布情况进行分析。
一、TM影像数据的预处理。
遥感数据处理主要包括大气校正、几何校正和图像增强,并利用行政边界矢量图对影像进行裁剪。
二、土地利用变化信息提取。
首先对其中的一期影像分别采用人工解译的方法,然后利用易康开始分类。
三、数据集成对数据形式特征(如格式、单位、分辨率、精度)等和内部特征(特征、属性、内容等)做出全部或部分的调整、转化、合成、分解等操作,形成充分兼容的数据库。
《遥感信息的获取和处理》 讲义
《遥感信息的获取和处理》讲义一、引言遥感技术作为一种非接触式的探测手段,能够从远距离获取地球表面的各种信息。
这些信息对于资源调查、环境监测、城市规划等众多领域都具有极其重要的价值。
要想充分利用遥感技术所获取的信息,就必须了解其获取和处理的方法。
接下来,让我们一起深入探讨遥感信息的获取和处理。
二、遥感信息的获取(一)遥感平台遥感平台是搭载传感器的工具,常见的遥感平台包括卫星、飞机和无人机等。
卫星遥感平台具有覆盖范围广、重复观测周期短等优点,能够获取大面积的地球表面信息。
例如,陆地卫星系列可以提供多光谱、高分辨率的影像,用于土地利用、植被监测等方面。
飞机遥感平台则具有灵活性高、可以根据特定需求进行飞行任务规划的特点。
它适用于小范围、高精度的遥感数据获取,比如在地质勘探、城市规划中发挥重要作用。
无人机遥感平台近年来发展迅速,其操作简便、成本相对较低,能够在复杂地形和近地面获取高分辨率的影像数据。
传感器是遥感系统中用于收集和记录电磁辐射能量的装置。
根据工作原理的不同,传感器可分为光学传感器和微波传感器。
光学传感器利用可见光、近红外和短波红外等波段的电磁波进行成像。
常见的有电荷耦合器件(CCD)传感器和互补金属氧化物半导体(CMOS)传感器。
它们能够获取色彩丰富、细节清晰的影像,广泛应用于农业、林业和生态环境监测等领域。
微波传感器则通过发射和接收微波信号来获取信息,不受天气和光照条件的限制,具有穿透云雾、雨雪的能力。
合成孔径雷达(SAR)就是一种重要的微波传感器,在灾害监测、海洋监测等方面有着独特的优势。
(三)遥感数据的类型遥感数据主要包括图像数据和非图像数据。
图像数据是最常见的遥感数据类型,如多光谱图像、高光谱图像和全色图像等。
多光谱图像包含多个波段的信息,能够反映地物的不同特征;高光谱图像具有数百个甚至上千个波段,能够提供更丰富的光谱信息,有助于地物的精细分类;全色图像则具有较高的空间分辨率,能够清晰地显示地物的细节。
如何进行多源遥感数据的测绘信息提取
如何进行多源遥感数据的测绘信息提取遥感技术的广泛应用,为我们获取各种地理信息提供了新的途径。
其中,多源遥感数据的测绘信息提取是一个具有挑战性和重要性的问题。
本文将探讨如何进行多源遥感数据的测绘信息提取,并介绍相关方法和技术。
多源遥感数据的测绘信息提取是指利用来自不同传感器、不同时间和不同分辨率的遥感数据,以获得更全面、准确的地理信息。
这种方法有助于解决单一数据源的局限性,提高遥感应用的效果。
在进行多源遥感数据的测绘信息提取时,需要考虑以下几个方面。
首先,需要进行数据预处理。
不同传感器和数据源的数据存在一定的差异,如分辨率、波段组合等方面的差异。
因此,在进行信息提取前,需要对不同数据进行校准、配准和融合处理,以确保数据在空间和时间上的一致性。
同时,还需要考虑数据的质量和可用性,排除低质量和无效数据的影响。
其次,需要选择适当的方法和技术。
在进行多源遥感数据的测绘信息提取时,可以结合多种方法和技术,如遥感图像分类、目标检测、变化检测等。
具体的选择取决于所需提取的信息类型和应用场景。
例如,可以使用监督分类方法对遥感图像进行像元级别的分类,以提取地物类型信息;可以利用目标检测算法,在多个数据源中检测特定的地物或目标;还可以通过比较不同时间的遥感图像,进行变化检测,以获取地物变化信息。
第三,需要进行精确的地物提取和分析。
多源遥感数据的测绘信息提取并非简单的图像处理过程,还需要结合地形、土壤、植被等环境因素,对地物进行精确的提取和分析。
这可以通过使用高分辨率遥感影像、地面测量和地理信息系统等辅助技术来实现。
同时,还可以借助计算机视觉和人工智能等新兴技术,自动化地进行图像分析和地物提取,提高效率和准确性。
最后,需要进行结果验证和应用。
多源遥感数据的测绘信息提取是一个复杂的过程,不可避免地存在一定的误差和不确定性。
因此,在获得测绘信息后,需要对结果进行验证和评估。
可以通过现地调查、对比分析和核实数据等方式,验证提取结果的准确性和可靠性。
利用遥感影像进行测绘数据提取的方法
利用遥感影像进行测绘数据提取的方法近年来,随着遥感技术的不断发展,越来越多的测绘工作开始依赖遥感影像进行数据提取。
遥感影像具有高分辨率、广覆盖等优势,能够为测绘工作提供丰富的数据来源。
本文将介绍利用遥感影像进行测绘数据提取的一些常见方法,包括图像分类、目标检测和高程提取。
一、图像分类图像分类是利用计算机对遥感影像进行自动分类的方法。
通过对图像进行光谱分析和空间特征提取,可以将图像中的各类地物分割出来,并进行分类操作。
图像分类的步骤包括预处理、特征提取、分类器训练和分类结果验证等。
在图像分类中,特征提取是一个关键的环节。
常见的特征包括光谱特征、纹理特征和形状特征等。
光谱特征是指地物在不同波段上的反射率或亮度值,通过对光谱曲线进行分析,可以获得地物的光谱特征。
纹理特征是指地物的细节和纹理特点,通过对图像进行纹理分析,可以提取出地物的纹理特征。
形状特征是指地物的形状特点,通过对地物的边界进行分析,可以提取出地物的形状特征。
二、目标检测目标检测是利用遥感影像进行目标识别和定位的方法。
目标检测可以用于自然资源调查、城市规划和环境监测等领域。
目标检测的关键是找到目标在图像中的位置,并进行标注和分类。
常见的目标检测方法包括目标区域提取、特征描述和目标分类等。
在目标检测中,目标区域提取是一个重要的步骤。
目标区域提取可以通过阈值分割、边缘检测和区域生长等方法实现。
阈值分割是指利用像素的灰度值进行分割,将灰度值大于阈值的像素设置为目标像素,灰度值小于阈值的像素设置为背景像素。
边缘检测是指通过计算像素间的差值来检测目标的边缘。
区域生长是指从某个种子点开始,根据像素的灰度值相似性来扩展目标区域。
三、高程提取高程提取是利用遥感影像来获取地表的高程信息。
高程提取可以用于地形测量、地形分析和地貌研究等方面。
高程提取的方法主要包括影像匹配和立体视觉等。
影像匹配是利用影像对中的像点对进行配对,从而获取地点的三维坐标。
常见的影像匹配方法包括基于特征点的匹配和基于区域的匹配。
遥感信息提取及应用
特征3
特征m
…
结果特征元
μc1
μc2
μc3
…
μc4
表示对应目标类中所选择的特征
面向基元的遥感信息提取流程
数据输入 认知基元 模糊分类 输出结果 基元特征库 专家决策知识库
对象识别规则
Level
尺度
提取目标
规则
备注
2
48
大面积分布,纹理特征明显的类别。
水体:波段2和波段3的比率,以及亮度值。 林地与已开发区域通过波段1的均值进行区分。
监督分类法:选择具有代表性的典型实验区或训练区,用训练区中已知地面各类地物样本的光谱特性来“训练”计算机,获得识别各类地物的判别函数或模式,并以此对未知地区的像元进行分类处理,分别归入到已知的类别中。
01
非监督分类:是在没有先验类别(训练场地)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度的大小进行归类合并(即相似度的像元归为一类)的方法。
02
图像分类中的有关问题—混合像元
选取的特征变量应有这样的性质,即对于不同类别的模式,特征量值相差较大;而对于同类模式,则应有大体接近或相同的特征值。
对于某一类模式而言,特征量及特征值应能充分地表明该模式属于该类而不属于其它类别地主要根据。
目视判读
单击此处添加文本具体内容,简明扼要地阐述你的观点
01
遥感影像的基本特征?
02
特征的表现方式—判读标志
03
判读标志:地物在图像上的各种特有的表现方式
景物特征和判读标志
形状
01
大小
02
图形与边界
03
阴影
04
位置
05
《遥感信息的获取和处理》 讲义
《遥感信息的获取和处理》讲义遥感信息的获取和处理讲义一、遥感的基本概念遥感,简单来说,就是不直接接触目标物体,通过传感器接收来自目标物体反射或发射的电磁波信息,从而获取有关目标物体的特征和状态的技术。
二、遥感信息的获取(一)遥感平台遥感平台是搭载传感器的工具,常见的有卫星、飞机、无人机等。
不同的遥感平台具有不同的高度、速度和覆盖范围,这会影响所获取遥感信息的分辨率、时效性和成本。
卫星遥感平台可以提供大范围、长时间序列的数据,但分辨率相对较低。
例如,气象卫星可以用于监测大范围的气象变化。
飞机遥感平台的灵活性较高,可以根据具体需求调整飞行高度和航线,获取较高分辨率的遥感数据,但成本相对较高,且覆盖范围有限。
无人机遥感平台则在近年来发展迅速,它具有操作灵活、成本较低、能够获取高分辨率数据等优点,适用于小范围、高精度的遥感监测任务。
(二)传感器传感器是遥感系统中用于接收和记录电磁波信息的关键设备。
常见的传感器包括光学传感器、红外传感器、微波传感器等。
光学传感器主要利用可见光和近红外波段的电磁波,能够获取清晰的地物图像,常用于土地利用、植被监测等领域。
红外传感器则对物体的热辐射敏感,可以用于监测地表温度、火灾等。
微波传感器具有穿透云雾、雨雪的能力,在全天候、全天时的监测中具有独特优势。
(三)电磁波谱电磁波谱是遥感信息获取的基础。
不同的地物在电磁波谱上具有不同的反射和发射特性。
可见光波段可以呈现地物的颜色和形态;近红外波段有助于区分植被和其他地物;热红外波段反映地物的温度;微波波段则适用于探测地下物体和海洋表面等。
通过选择不同波段的电磁波进行观测,可以获取地物的多方面信息。
三、遥感信息的处理(一)数据预处理获取的原始遥感数据往往需要进行预处理,以提高数据质量和可用性。
预处理包括辐射校正、几何校正等。
辐射校正用于消除传感器自身的误差和外界环境对辐射的影响,使得不同时间、不同地点获取的数据具有可比性。
几何校正则是将遥感图像中的地物位置与实际地理坐标对应起来,纠正由于传感器姿态、地形起伏等因素造成的图像变形。
遥感数据获取与处理的基本流程与技巧
遥感数据获取与处理的基本流程与技巧遥感技术是通过获取并分析从卫星、飞机或无人机等遥远距离采集的数据,从而获取有关地球表面特征和变化的信息。
遥感数据的获取和处理流程至关重要,它对于解决环境问题、农业发展和城市规划等领域都具有极大的应用价值。
本文将介绍遥感数据获取与处理的基本流程与技巧。
一、遥感数据获取1. 数据源选择在进行遥感数据获取之前,我们首先需要选择合适的数据源。
常见的数据源包括卫星遥感数据、航空遥感数据和无人机遥感数据。
根据具体需求,我们可以选择高空分辨率的卫星影像数据,或者借助无人机获取更详细的区域影像数据。
2. 数据获取与下载数据获取的方式多种多样,可以通过官方网站或专业平台下载数据,也可以借助开放源数据或商业数据进行获取。
无论选择哪种方式,都需要注意数据的有效性和准确性。
3. 数据预处理获取到的遥感数据往往需要进行预处理,以去除噪音和不必要的信息,同时还需要进行大气校正、几何校正和辐射校正等处理步骤,以确保数据的质量和准确性。
二、遥感数据处理1. 影像处理遥感影像是遥感数据的重要组成部分,对于不同的应用需求,我们可以通过一系列的影像处理步骤来获取所需的信息。
常见的影像处理方法包括影像融合、图像增强、目标提取和分类等。
2. 特征提取通过遥感数据,我们可以获取到地表不同特征的信息,如植被覆盖、土地利用和水域分布等。
在进行特征提取时,我们可以运用不同的算法和工具,如主成分分析和分类器等,以提取出所需的特征信息。
3. 数据分析与应用在获取到处理后的遥感数据之后,我们可以进行多种数据分析和应用,如环境监测、资源调查和灾害评估等。
通过对遥感数据的分析,我们可以更好地了解地球表面的变化和特征,从而提供有针对性的解决方案。
三、遥感数据处理的技巧1. 选择适当的处理方法在进行遥感数据处理时,我们需要根据具体的应用需求选择合适的处理方法。
不同的处理方法对于不同的数据类型和问题具有不同的适用性,因此在选择处理方法时需要谨慎,充分考虑数据的特点和要求。
遥感信息提取
这种方法可以在一定程度上减少人工 设置特征和分类参数的繁琐过程,提
高分类精度
2
3
但是,它需要大量的训练数据和计算 资源,且对硬件要求较高
变化检测技术
1
变化检测技术是一种通过比较不同时间拍摄的 遥感影像,从而检测出地物变化的过程
2
它广泛应用于土地利用变化、城市规划、环境
保护等领域
3
变化检测技术可以通过不同的算法实现,例如 图像差分法、像素分类法、支持向量机等
遥感信息提取的方法和技术很多,下面 介绍几种常用的方法
目视解译
1 目视解译是指通过人工观察和分析遥感 影像,直接从影像中获取信息的过程
2 它是遥感信息提取最基本、最常用的方 法之一
3 目视解译的优点是简单、直观、灵活, 可以快速获取大量的信息
4 但是,它存在着主观性较强、精度较 低等缺点
计算机辅助分类
地物光谱数据库
➢ 地物光谱数据库是一种利 用地物光谱信息进行遥感 信息提取的方法。它通过 建立地物光谱数据库,为 遥感信息提取提供参考和 依据。这种方法可以提供 更准确的地物识别和分类 结果,但是需要大量的光 谱数据和计算资源
➢ 总之,遥感信息提取是遥 感技术应用的核心环节之 一,其方法和技术多种多 样。不同的方法和技术适 用于不同的应用场景和需 求,需要根据实际情况选 择合适的方法和技术。同 时,随着遥感技术的发展 ,新的方法和技术也不断 涌现,为遥感信息提取提 供了更多的选择和可能性
以上是几种常用的遥感信息提取 方法和技术。它们各有优缺点, 需要根据具体的应用场景和需求 选择合适的方法和技术。同时, 随着遥感技术的发展,新的方法 和技术也不断涌现,为遥感信息 提取提供了更多的选择和可能性
如何利用遥感技术进行地理信息提取
如何利用遥感技术进行地理信息提取利用遥感技术进行地理信息提取在当今科技高度发达的社会中,遥感技术的应用越来越广泛,其在地理信息提取方面发挥着至关重要的作用。
遥感技术通过接收地球上的电磁波,获取地理信息,可以快速、准确地提取各种地理要素,如土地覆盖、气候变化、自然资源等,为各行业提供了大量的宝贵数据。
本文将着重讨论如何利用遥感技术进行地理信息提取,以及其在不同领域的应用。
遥感技术是通过卫星、飞机等载体对地面进行观测和监测的技术。
地球上的物质和现象都会通过电磁波反射、辐射和散射等方式传播出去,并被遥感传感器接收。
根据不同的电磁波波段,遥感技术分为可见光、红外线、微波等多种类型。
在地理信息提取方面,首先需要确定提取的目标。
例如,我们可以通过遥感技术获取和分析一幅卫星图像,来确定特定地区的土地覆盖类型,如森林、草地、农田等。
通过卫星图像的像元值和植被指数计算,可以得到不同地区的植被覆盖率,进而为生态环境保护提供科学依据。
其次,地理信息提取需要对遥感数据进行预处理。
预处理包括图像校正、数据融合、噪声去除等步骤。
例如,在进行植被覆盖率提取时,需要进行影像校正,消除地形和大气效应对图像的干扰,确保提取结果的准确性和可靠性。
然后,采用合适的遥感数据处理方法进行地理信息提取。
遥感数据处理方法有很多种,如分类算法、特征提取、目标检测等。
其中,分类算法是最常用的方法之一。
通过将遥感图像中的各个像元划分到不同的类别中,实现对地理信息的提取。
例如,利用最大似然分类算法,可以根据不同波段的特征将土地覆盖类型进行分类,从而得到土地利用状况的信息。
除了土地覆盖类型的提取,遥感技术还可以用于提取其他地理信息。
例如,在城市规划和环境监测中,可以利用遥感技术提取建筑物的分布情况、交通路网状况等。
通过对遥感图像中建筑物的形状、纹理、颜色等特征的分析,可以快速提取出城市建设和交通规划所需的地理信息,为城市的可持续发展提供科学依据。
此外,遥感技术还可以应用于农业、林业、水资源管理等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感图像信息提取方法综述0、遥感图像分析遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。
多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。
在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。
在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。
像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。
其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。
物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。
第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。
1、遥感信息提取方法分类常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。
1.1目视解译目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。
早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。
1)遥感影像目视解译原则遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。
一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。
在此基础上,再进行地质、地貌等专门要素的判读。
2)遥感影像目视解译方法(1)总体观察观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。
观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。
(2)对比分析对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。
多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。
各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。
对比分析可以增加不同物体在图像上的差别,以达到识别目的。
(3)综合分析综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。
间接判读标志之间相互制约、相互依存。
根据这一特点,可作更加深入细致的判读。
如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域的土质、地貌、植被等因素有关,长江、黄河河口泥沙沉积情况不同,正是因为流域内的自然环境不同所至。
地图资料和统计资料是前人劳动的可靠结果,在判读中起着重要的参考作用,但必须结合现有图像进行综合分析,才能取得满意的结果。
实地调查资料,限于某些地区或某些类别的抽样,不一定完全代表整个判读范围的全部特征。
只有在综合分析的基础上,才能恰当应用、正确判读。
(4)参数分析参数分析是在空间遥感的同时,测定遥感区域内一些典型物体(样本)的辐射特性数据、大气透过率和遥感器响应率等数据,然后对这些数据进行分析,达到区分物体的目的。
大气透过率的测定可同时在空间和地面测定太阳辐射照度,按简单比值确定。
仪器响应率由实验室或飞行定标获取。
利用这些数据判定未知物体属性可从两个方面进行。
其一,用样本在图像上的灰度与其他影像块比较,凡灰度与某样本灰度值相同者,则与该样本同属性;其二,由地面大量测定各种物体的反射特性或发射特性,然后把它们转化成灰度。
然后根据遥感区域内各种物体的灰度,比较图像上的灰度,即可确定各类物体的分布范围。
1.2计算机信息提取利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。
早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。
1.2.1自动分类常用的信息提取方法是遥感影像计算机自动分类。
首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。
工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。
遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。
在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。
利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。
计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。
计算机图像分类方法,常见的有两种,即监督分类和非监督分类。
监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。
它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。
对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。
与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。
1.2.2纹理特征分析细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。
在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。
每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。
纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。
这个序列的基本部分通常称为纹理基元。
因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。
对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。
相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。
结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。
此外结构元统计法和文法纹理分析也是常用的提取方法。
结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。
在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。
目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。
共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。
1.2.3图像分割图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。
图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。
一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。
图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。
图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。
1)阈值与图像分割阈值是在分割时作为区分物体与背景象素的门限,大于或等于阈值的象素属于物体,而其它属于背景。
这种方法对于在物体与背景之间存在明显差别(对比)的景物分割十分有效。
实际上,在任何实际应用的图像处理系统中,都要用到阈值化技术。
为了有效地分割物体与背景,人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
2)梯度与图像分割当物体与背景有明显对比度时,物体的边界处于图像梯度最高的点上,通过跟踪图像中具有最高梯度的点的方式获得物体的边界,可以实现图像分割。
这种方法容易受到噪声的影响而偏离物体边界,通常需要在跟踪前对梯度图像进行平滑等处理,再采用边界搜索跟踪算法来实现。
3)边界提取与轮廓跟踪为了获得图像的边缘人们提出了多种边缘检测方法,如Sobel,Ca nnyedge,LoG。
在边缘图像的基础上,需要通过平滑、形态学等处理去除噪声点、毛刺、空洞等不需要的部分,再通过细化、边缘连接和跟踪等方法获得物体的轮廓边界。
4)Hough变换对于图像中某些符合参数模型的主导特征,如直线、圆、椭圆等,可以通过对其参数进行聚类的方法,抽取相应的特征。
5)区域增长区域增长方法是根据同一物体区域内象素的相似性质来聚集象素点的方法,从初始区域(如小邻域或甚至于每个象素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中从而逐步增长区域,直至没有可以归并的点或其它小区域为止。