电磁感应现象中的力学问题(1)

合集下载

高考物理电磁感应知识点归纳

高考物理电磁感应知识点归纳

高考物理电磁感应知识点归纳高考物理电磁感应知识点归纳1.电磁感应现象电磁现象:利用磁场产生电流的现象称为电磁感应,产生的电流称为感应电流。

(1)产生感应电流的条件:通过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条件:无论回路是否闭合,只要通过线圈平面的磁通量发生变化,线路中就会产生感应电动势。

导体中产生感应电动势的部分相当于电源。

(3)电磁感应的本质是产生感应电动势。

如果回路闭合,会有感应电流;如果回路不闭合,只会有感应电动势而没有感应电流。

2.磁通量(1)定义:磁感应强度b与垂直于磁场方向的面积s的乘积称为通过这个表面的磁通量,定义公式为=BS。

如果面积S不垂直于B,则B应乘以垂直于磁场方向的投影面积S,即=BS,SI单位:Wb。

在计算磁通量时,应该是通过某一区域的磁感应线的净数量。

每张脸都有正面和背面;当磁感应线从表面的正方向穿透时,通过表面的磁通量为正。

相反,磁通量是负的。

磁通量是穿过正面和背面的磁感应线的代数和。

3.楞次定律(1)楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于感应电流方向的一般判断,而右手定则只适用于剪线时磁感应线的运动,用右手定则比楞次定律更容易判断。

(2)理解楞次定律(1)谁阻碍谁——感应电流的磁通量阻碍了感应电流的磁通量。

阻碍——阻碍的是通过回路的磁通量的变化,而不是磁通量本身。

如何阻碍——当一次磁通增加时,感应电流的磁场方向与一次磁场方向相反;当一次磁通量减少时,感应电流的磁场方向与一次磁场的方向相同,即,一次磁通量增加,一次磁通量减少。

阻塞-阻塞的结果不是停止,而是增加和减少。

(3)楞次定律的另一种表述:感应电流总是阻碍其产生的原因,表现形式有三种:(1)阻碍原始磁通量的变化;阻碍物体之间的相对运动;阻止一次电流(自感)的变化。

4.法拉第电磁感应定律电路中感应电动势的大小与通过电路的磁通量的变化率成正比。

表达式E=n/t当导体切割磁感应线时,感应电动势公式为E=BLvsin。

电磁感应中的力学问题

电磁感应中的力学问题

电磁感应中的力学问题电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力. 本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力. [解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =StB∆∆+B lv 而ktBtt t B t B ktB =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,REI=作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ① 杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③ 杆受到的安培力为F 安=IBL ④ 根据牛顿第二定律,有F -F 安=ma ⑤联立以上各式,得at Rl B ma F 22= ⑥由图线上各点代入⑥式,可解得 a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m =0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t 由法拉第电磁感应定律,回路中的感应电动势 E =B △S/△t =B ι(νl 一ν2) 回路中的电流 i =E /2 R杆甲的运动方程 F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2 联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2 ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s 练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( ).R lvB A 2.R vBlB R lvB C 2 RvBl D 2图1图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( ). A·线圈可能一直做匀速运动 B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( ).图3A B CD4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大图45、如图所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度Vm ,则( ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( ).图7A 、2222/)(L B fR v L B v m -= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m+= 答案: 1 .A 2. D 3. A 4. D 5.B 6.BC 7. C8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2) (1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大? (3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动). (2)感应电动势E —vBL ,感应电流I=E/R安培力RLvB BIL F m22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RLvB BIL F +==22)(22f F l B Rv -=由图线可以得到直线的斜率k=2)(12T kLR B ==(3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlvR E I ==杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:R v L B mg ma 22sin -=θ R vL B g a 22sin -=θ(3)当RvL B mg 22sin =θ时,ab 杆达到最大速度mAX V22sin LB mgR V m θ=10.如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问: (1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少? (3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((dB r R f F v f r R v d B f BId F m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m))((--==回路中产生的感应电流为:BdfF r R E I -=+=则R 中消耗的电功率为:2222)(dB Rf F R I R P -== (3)当CD 速度为最大速度的1/3即m v v 31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为:)(31''f F d BI F A-== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。

电磁感应规律综合应用的常见题型

电磁感应规律综合应用的常见题型

RC电磁感应规律综合应用的常见题型1、电磁感应中的电路问题2、电磁感应中的力学问题3、电磁感应中的能量问题4、电磁感应中的图象问题1电磁感应中的电路问题例1、圆环水平、半径为a 、总电阻为2R ;磁场竖直向下、 磁感强度为B ;导体棒MN 长为2a 、电阻为R 、粗细均匀、与圆环始终保持良好的电接触;当金属棒以恒定的速度v 向右移动经过环心O 时,求:(1)棒上电流的大小和方向及 棒两端的电压UMN (2)在圆环和金属棒上消耗的总的 热功率。

例2、线圈50匝、横截面积20cm2、电阻为1Ω;已知电 阻R=99Ω;磁场竖直向下,磁感应强度以100T/s 的变化 度均匀减小。

在这一过程中通过电阻R 的电流多大小和 方向?2、电磁感应中的力学问题例1、已知:AB 、CD 足够长,L ,θ,B ,R 。

金属棒ab 垂直 于导轨放置,与导轨间的动摩擦因数为μ,质量为m ,从 静止开始沿导轨下滑,导轨和金属棒的电阻阻都不计。

求 ab 棒下滑的最大速度例2、如图B=0.2T ,金属棒ab 向右匀速运动,v=5m/s ,L=40cm ,电阻R=0.5Ω,其余电阻不计,摩擦也不计,试求:①感应电动势的大小 ②感应电流的大小和方向 ③使金属棒匀速0 4 8 1216 20 24 28B 运动所需的拉力 ④感应电流的功率 ⑤拉力的功率例3、导轨光滑、水平、电阻不计、间距L=0.20m ;导体棒长也为L 、电阻不计、垂直静止于导轨上;磁场竖直向下且B=0.5T ;已知电阻R=1.0Ω;现有一个外力F 沿轨道拉杆 ,使之做匀加速运动,测得F 与时间t 的关系如图所示,求杆的质量和加速度a 。

3、电磁感应中的能量问题 例1、θ=30º,L=1m ,B=1T ,导轨光滑电阻不计,F 功率恒定且为6W ,m=0.2kg 、R=1Ω,B tt t tA B C Dab由静止开始运动,当s=2.8m时,获得稳定速度,在此过程中ab产生的热量Q=5.8J,g=10m/s2,求:(1)ab棒的稳定速度(2)ab棒从静止开始达到稳定速度所需时间。

原创3:专题十 电磁感应中的动力学和能量问题

原创3:专题十 电磁感应中的动力学和能量问题

(2)撤去外力时导体棒的速度为 v,在导体棒匀加速过程 中,由运动学公式得 v2=2ax⑤
撤去外力后,克服安培力做的功为 W,由动能定理得 W=12mv2-0⑥ 撤去外力后回路中产生的焦耳热 Q2=W 联立以上各式解得 Q2=1.8 J.
(3)由题意可知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2 =2∶1,可得Q1=3.6 J, 棒在运动的整个过程中,由功能关系得
杆受到的安培力 F 安=BIl=7.5-3.75x 由平衡条件得 F=F 安+mgsinθ F=12.5-3.75x(0≤x≤2). 画出的 F-x 图象如图所示
(3)外力 F 做的功 Wf 等于 F-x 图线下所围的面积,即 Wf =5+212.5×2 J=17.5 J
而杆的重力势能增加量 ΔEp=mg OP sinθ 故全过程产生的焦耳热 Q=Wf-ΔEp=7.5 J.
A.P=2mgvsinθ B.P=3mgvsinθ C.当导体棒速度达到v2时加速度大小为g2sinθ D.在速度达到2v以后匀速运动的过程中,R上产生的 焦耳热等于拉力所做的功
解析:对导体棒受力分析如图.当导体棒以 v 匀速运动 时(如图甲),应有:mgsinθ=F 安=BIL=B2RL2v;当加力 F 后 以 2v 匀速运动时(如图乙),F+mgsinθ=2BR2L2v,两式联立得 F=mgsinθ,则 P=F·2v=2mgvsinθ,A 正确、B 错误;
WF=Q1+Q2=5.4 J. 【答案】 (1)4.5 C (2)1.8 J (3)5.4 J
变式训练2 在如图所示的倾角为θ的光滑斜面上,存在着两个 磁感应强度大小为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向 上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个 质量为m、电阻为R、边长也为L的正方形导线框,由静止开始 沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1 做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又 恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间 位置的过程中,线框的动能变化量为ΔEk,重力对线框做功大小 为W1,安培力对线框做功大小为W2,下列说法中正确的有( )

电磁感应综合力学问题

电磁感应综合力学问题
kg,斜面上ef线 ef∥gh∥ab) M=2 kg,斜面上ef线(ef∥gh∥ab)的右方有垂直斜面向上的匀强 α 斜面上ef 磁场,磁感应强度B T.如果线框从静止开始运动 如果线框从静止开始运动, 磁场,磁感应强度B=0.5 T.如果线框从静止开始运动,进入磁场
最初一段时间是匀速的, 线和gh线的距离s gh线的距离 m(取 最初一段时间是匀速的,ef 线和gh线的距离s=11.4 m(取g=10 ).求 m/s2).求: (1)线框进入磁场时匀速运动的速度 线框进入磁场时匀速运动的速度v (1)线框进入磁场时匀速运动的速度v. (2)ab边由静止开始运动到gh线所用的时间t (2)ab边由静止开始运动到gh线所用的时间t. ab边由静止开始运动到gh线所用的时间 线框的运动可分为进入磁场前、 思路点拨 线框的运动可分为进入磁场前、 进入磁场中、完全进入磁场后三个阶段 分 进入磁场中、完全进入磁场后三个阶段,分 析每个阶段的受力,确定运动情况 确定运动情况. 析每个阶段的受力 确定运动情况
(1)导体处于平衡态 导体处于平衡态——静止或匀速直线运动状态. 静止或匀速直线运动状态. 导体处于平衡态 静止或匀速直线运动状态 处理方法:根据平衡条件 合外力等于零列式分析. 处理方法:根据平衡条件——合外力等于零列式分析. 合外力等于零列式分析 (2)导体处于非平衡态 导体处于非平衡态——加速度不等于零. 加速度不等于零. 导体处于非平衡态 加速度不等于零 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析. 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析.
M R P a N
m r
b
B
F Q
②感应电流的大小和方向
③使金属棒匀速运动所需的拉力 ④感应电流的功率 ⑤拉力的功率

电磁感应中的动力学问题

电磁感应中的动力学问题
分析:ab 在F作用下向右加速运动,切割磁感应线,产生感应 电流,感应电流又受到磁场旳作用力f,画出受力图:
a=(F-f)/m
v
E=BLv
I= E/R
f=BIL
最终,当f=F 时,a=0,速度到达最大,
F=f=BIL=B2 L2 vm /R
a
vm=FR / B2 L2
vm称为收尾速度.
R f1
F
F
f2
合力减小,加速度a 减小,速度v 增大,I 和 F 增大
当 F+f=mgsinθ时 ab棒以最大速度v m 做匀速运动
F=BIL=B2 L2 vm /R
F
N
· f a
B
= mgsinθ- μ mgcosθ
vm= mg (sinθ- μ cosθ)R/ B2 L2
θ
mg
文档仅供参考,如有不当之处,请联系改正。
K
a
b
解: ab 棒由静止开始自由下落0.8s时速度大小为 文档仅供参考,如有不当之处,请联系改正。 v=gt=8m/s
则闭合K瞬间,导体棒中产生旳感应电流大小 I=Blv/R=4A
ab棒受重力mg=0.1N, 安培力F=BIL=0.8N. 因为F>mg,ab棒加速度向上,开始做减速运动,
产生旳感应电流和受到旳安培力逐渐减小,
电磁感应中产生旳感应电流在磁场中将受 文档仅供参考,如有不当之处,请联系改正。 到安培力旳作用,所以,电磁感应问题往往跟 力学问题联络在一起,处理此类电磁感应中旳 力学问题,不但要应用电磁学中旳有关规律, 如楞次定律、法拉第电磁感应定律、左右手定 则、安培力旳计算公式等,还要应用力学中旳 有关规律,如牛顿运动定律、动量定理、动能 定理、动量守恒定律、机械能守恒定律等。要 将电磁学和力学旳知识综合起来应用。

电磁感应中的动力学问题(上)

电磁感应中的动力学问题(上)

02
电磁感应基础
法拉第电磁感应定律
总结词
法拉第电磁感应定律描述了磁场变化时会在导体中产生电动势的物理现象。
详细描述
法拉第通过实验发现,当磁场相对于导体发生变化时,会在导体中产生电动势, 进一步导致电流的产生。这个定律是电磁感应现象的基本规律,为电磁感应中 的动力学问题提供了理论基础。
楞次定律
总结词
04
电磁感应中的动力学问题
电磁力对物体运动的影响
80%
洛伦兹力
在电磁场中,带电粒子受到的力 称为洛伦兹力,它对物体的运动 轨迹和速度产生影响。
100%
电磁阻尼
当物体在变化的磁场中运动时, 会受到电磁阻尼作用,使物体的 速度逐渐减小。
80%
电磁驱动
当变化的磁场作用于导体时,会 在导体中产生感应电流,这个电 流又会受到磁场的作用力,从而 使物体运动。
ቤተ መጻሕፍቲ ባይዱ
能量守恒定律
总结词
能量守恒定律是描述自然界中能量不会 消失也不会凭空产生的规律。
VS
详细描述
能量守恒定律表述为能量既不会凭空产生 ,也不会凭空消失,它只会从一种形式转 化为另一种形式,或者从一个物体转移到 另一个物体,而能量的总量保持不变。这 个定律是自然界中最基本的定律之一,适 用于任何形式的能量转换和转移过程。
电磁炮的应用包括军事打击、 反导系统和太空探索等,其发 展对于提高武器性能和战略威 慑力具有重要意义。
电磁悬浮的应用与原理
电磁悬浮是一种利用电磁感应原理实 现物体悬浮的技术,具有无接触、低 磨损、高稳定性和长寿命等优点。
电磁悬浮的应用包括磁悬浮列车、磁 悬浮轴承、磁悬浮陀螺仪等,对于提 高运输效率、减小机械磨损和实现高 精度测量具有重要意义。

电磁感应力学专题(学生做练习用)

电磁感应力学专题(学生做练习用)

电磁感应中的力学问题1.如图5-2-6甲,闭合线圈从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,在边刚进入磁场到边刚进入磁场的这段时间内,线圈运动的速度图象可能是图5-2-6乙中的哪些图 (ACD )2,如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金导轨相距1m ,导轨平面与水平面成θ=37o 角,下端连接阻值为R 的电阻,匀强磁场方向与导轨平面垂直,质量为0.2kg ,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g =10m/s 2,sin37o=0.6,cos37o =0.8)解答:(1)金属棒开始下滑的初速度为零,根据牛顿第二定律mg sin θ-μmg cos θ=ma ①由①式解得: a =4m/s 2 ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡mg sin θ-μmg cos θ-F =0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率Fv =P ④由③④两式解得 10P v F==m/s ⑤ (3)设电路中电流为I ,两导轨间金属棒长为l ,磁场的磁感应强度为BBlv I R= ⑥ P =I 2R ⑦由⑥⑦两式解得0.4B vl==T ⑧ 磁场方向垂直导轨平面向上. 3.如图11, 电动机用轻绳牵引一根原来静止的长l =1m ,质量m =0.1kg 的导体棒AB ,导体棒的电阻R =1Ω,导体棒与竖直“∏”型金属框架有良好的接触,框架处在图示方向的磁感应强度为B =1T 的匀强磁场中,且足够长,已知在电动机牵引导体棒时,电路中的电流表和电压表的读数分别稳定在I=1A 和U =10V ,电动机自身内阻r =1Ω,不计框架电阻及一切摩擦,取g =10m/s 2,求:导体棒到达的稳定速度?4.5m/sB b cA B C D 图5-2-6 甲 乙4.如图5-2-7,在光滑的水平面上有一半径为r =10cm ,电阻R=1Ω,质量m =1kg 的金属圆环,以速度v =10m/s 向一有界磁场滑去,匀强磁场垂直纸面向里,B =0.5T ,从环刚进入磁场算起,到刚好有一半进入磁场时,圆环释放了3.2J 的热量,求:⑴此时圆环中电流的瞬时功率;⑵此时圆环运动的加速度.0.36W ,0.6m/s 2 方向向左5、如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度ef 与fg 均为L.一个质量为m ,边长为L 的正方形线框以速度v 进入上边磁场时,即恰好做匀速直线运动。

高考物理小一轮复习(假期之友)电磁感中的力学问题

高考物理小一轮复习(假期之友)电磁感中的力学问题

拾躲市安息阳光实验学校2011江苏高考物理小一轮复习(假期之友)--电磁感应中的力学问题【知识梳理】1.电磁感应与力学的联系在电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用。

因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学的有关规律,要将电磁学和力学知识综合起来应用。

电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.【典型例题】例1:下图中a1b1c1d1 和a2b2c2d2 为同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的a1b1段与a2b2段是竖直的,距离为l1,c1d1与c2d2段也是竖直的,距离为l2.x1y1与x2y2为两根用不可伸长的绝缘轻线相连接的金属杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R。

F为作用于金属杆x1y1上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

【分析与解】本题是电磁感应现象与物体的平衡相结合的问题,分析中应着重于两个方面,一是分析发生电磁感应回路的结构并计算其电流;二是分析相关物体的受力情况,并根据平衡条件建立方程。

设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.由法拉第电磁感应定律,回路中的感应电动势的大小E = B(l2-l1)v①回路中的电流REI=②电流沿顺时针方向.两金属杆都要受到安培力作用,作用于杆x1y1的安培力为f1 = B l1I③方向向上,作用于杆x2y2的安培力f2 = B l2I④方向向下.当杆做匀速运动时,根据牛顿第二定律有F-m1g-m2g + f1-f2=0 ⑤解以上各式,得)()(1221llBgmmFI-+-=⑥RllBgmmFv212221)()(-+-=⑦作用于两杆的重力的功率的大小P = (m1+m2)gv⑧电阻上的热功率Q =I2R⑨由⑥、⑦、⑧、⑨式,可得gmmRllBgmmFP)()()(21212221+-+-=,RllBgmmFQ21221])()([-+-=。

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

法拉第电磁感应的应用(一)

法拉第电磁感应的应用(一)

法拉第电磁感应的应用(一)【知识梳理】:电磁感应现象中的力学和能量问题;1.电磁感应中,导体运动切割磁感线而产生感应电流,感应电流在磁场中将受到安培力的作用,动态分析中,抓住“速度变化引起安培力的变化”,正确分析受力情况和运动情况.结合平衡问题和牛顿第二定律以及运动学公式求解.例题2.如图,光滑斜面的倾角α= 30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1 = l m ,bc 边的边长l 2= 0.6 m ,线框的质量m = 1 kg ,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M = 2 kg ,斜面上ef 线(ef ∥gh )的右方有垂直斜面向上的匀强磁场,磁感应强度B = 0.5 T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 的距离s = 11.4 m ,(取g = 10.4m/s 2),求:(1)线框进入磁场前重物M 的加速度; (2)线框进入磁场时匀速运动的速度v ;(3)ab 边由静止开始到运动到gh 线处所用的时间t ; (4)ab 边运动到gh 线处的速度大小和在线框由静止开始到运动到gh 线的整个过程中产生的焦耳热。

“思路分析”(1)线框进入磁场前,线框仅受到细线的拉力F T ,斜面的支持力和线框重力,重物M 受到重力和拉力F T 。

运用牛顿第二定律可得因为线框进入磁场的最初一段时间做匀速运动所以重物受力平衡(3)线框abcd 进入磁场前时,做匀加速直线运动;进磁场的过程中,做匀速直线运动;进入磁场后到运动到gh 线,仍做匀加速直线运动。

“解答” (1)对线框,由F T – mg sin α= ma .平向右或有水平向右的分量,但安培力若有竖直向上的分量,应小于导体棒所受重力,否则导体棒会向上跳起而不是向右摆,由左手定则可知,磁场方向斜向下或竖直向下都成立,A 错;当满足导体棒“向右摆起”时,若磁场方向竖直向下,则安培力水平向右,在导体棒获得的水平冲量相同的条件下,所需安培力最小,因此磁感应强度也最小,B 正确;设导体棒右摆初动能为E k ,摆动过程中机械能守恒,有E k = mgl (1–cos θ),导体棒的动能是电流做功而获得的,若回路电阻不计,则电流所做的功全部转化为导体棒的动能,此时有W = IEt = qE = E k ,得W = mgl (1–cos θ),(1cos )mglq Eθ=-,题设条件有电源内阻不计而没有“其他电阻不计”的相关表述,因此其他电阻不可忽略,那么电流的功就大于mgl (1–cos θ),通过的电量也就大于(1cos )mglEθ-,C 错D 正确.“解答”BD“解题回顾”安培力的冲量与通过导线的电量相关,“冲量→电量”、“做功→能量”是力电综合的二条重要思路。

电磁感应中的力学问题2015最新

电磁感应中的力学问题2015最新

电磁感应中的力学问题 姓名:1、闭合电路中产生的感应电动势的大小,跟穿过这一闭合电路的下列哪个物理量成正比 ( )A 、磁通量B 、磁感应强度C 、磁通量的变化率D 、磁通量的变化量2、穿过一个电阻为R=1Ω的单匝闭合线圈的磁通量始终每秒钟均匀的减少2Wb ,则:( )A 、线圈中的感应电动势每秒钟减少2VB 、线圈中的感应电动势是2VC 、线圈中的感应电流每秒钟减少2AD 、线圈中的电流是2A3.下列几种说法中正确的是: ( )A 、线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大B 、穿过线圈的磁通量越大,线圈中的感应电动势越大C 、线圈放在磁场越强的位置,线圈中的感应电动势越大D 、线圈中的磁通量变化越快,线圈中产生的感应电动势越大4、如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab 以水平初速度v 0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将 ( )A.越来越大B.越来越小C.保持不变D.无法确定5、在图6中,闭合矩形线框abcd 位于磁感应强度为B 的匀强磁场中,ad 边位于磁场边缘,线框平面与磁场垂直,ab 、ad 边长分别用L 1、L 2表示,若把线圈沿v 方向匀速拉出磁场所用时间为△t ,则通过线框导线截面的电量是: ( )A 、12BL L R t ∆B 、12BL L R C 、12BL L t ∆ D 、12BL L6、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大7、如图所示,金属导轨MN 、PQ 之间的距离L=0.2m,导轨左端所接的电阻R=1Ω,金属棒ab 可 沿导轨滑动,匀强磁场的磁感应强度为B=0.5T, ab 在外力作用下以V=5m/s 的速度向右匀速滑 动,求金属棒所受外力的大小。

法拉第电磁感应定律(电路问题、力学问题、功能问题)

法拉第电磁感应定律(电路问题、力学问题、功能问题)

——电磁感应现象的电路问题在电磁感应现象中,有些问题往往可以归结为电路问题,在这类问题中,切割磁感线的导体或磁通量发生变化的回路就相当于电源,这部分的电阻相当于电源的内阻,其余部分相当于外电路。

解这类问题时,一般先画出等效电路图,然后应用电路的有关规律进行分析计算.【例1】如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一。

磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )A .2EB .3EC .32ED .E【例2】粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )【例3】如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时( )A .电阻R 1消耗的热功率为Fv /3B .电阻 R 2消耗的热功率为 Fv /6C .整个装置因摩擦而消耗的热功率为μmgvcosθD .整个装置消耗的机械功率为(F +μmgcosθ)v【例4】如图所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中用粗线表示),R l =4Ω、R 2=8Ω(导轨其他部分电阻不计).导轨OAC 的形状满足方程⎪⎭⎫ ⎝⎛=x y 3sin 2π(单位:m).磁感应强度B =0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v =5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:⑴外力F 的最大值;⑵金属棒在导轨上运动时电阻丝R l 上消耗的最大功率;⑶在滑动过程中通过金属棒的电流I 与时间t 的关系.【例5】如图所示,粗细均匀的金属环的电阻为R ,可绕轴O 转动的金属杆OA 的电阻R / 4,杆长为l ,A 端与环相接触,一阻值为R / 2的定值电阻分别与杆的端点O 及环边缘连接.杆OA 在垂直于环面向里的、磁感强度为B 的匀强磁场中,以角速度ω顺时针转动.求电路中总电流的变化范围.能力提升1.如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2 kg 、电阻为2 Ω的导体杆ab ,导轨间匀强磁场的方向垂直纸面向里.已知R 1=3 Ω,R 2=6 Ω,电压表的量程为0~10 V ,电流表的量程为0~3 A(导轨的电阻不计).求:(1)将R 调到30 Ω时,用垂直于杆ab 的力F =40 N ,使杆ab 沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab 的速度多大?(2)将R 调到3 Ω时,欲使杆ab 运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大?(3)在第(1)小题的条件下,当杆ab 运动达到最大速度时突然撤去拉力,则电阻R 1上还能产生多少热量?2.半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2, 两灯的电场均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计。

专题10电磁感应中的动力学问题和能量问题

专题10电磁感应中的动力学问题和能量问题

电磁感应现象的定义
电磁感应现象的发现
电磁感应现象的应用
动力学问题的基本原理
电磁感应定律:法拉第电磁感应定律是电磁感应中的基本原理,它描述了磁场变化时在导体中产生感应电动势的现象。
动力学方程:在电磁感应中,由于磁场的变化,导体中的电荷会受到洛伦兹力的作用,从而产生加速度。因此,需要建立动力学方程来描述电荷的运动。
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
测量仪器误差
减小误差的方法
环境因素误差 减小误差的方法
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
选择高精度测量仪器
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
多次测量求平均值
阻尼效应:在电磁感应中,由于导体的电阻和电感的存在,电荷的运动会受到阻尼效应的影响。阻尼效应会导致电荷的运动逐渐减慢,直至停止。
能量转换:在电磁感应中,磁场能会转化为电能,而电能又会通过电阻和电感等元件转化为热能或其他形式的能量。因此,电磁感应中的动力学问题也涉及到能量转换的问题。
电磁感应与动力学问题的关系
解题思路和方法总结:总结典型例题的解题思路和方法,提炼出一般性的规律和技巧,帮助学生更好地理解和掌握电磁感应中的动力学问题。
实际应用举例:介绍电磁感应中的动力学问题在现实生活中的应用,如发电机、变压器等,增强学生对知识的理解和应用能力。
03
电磁感应中的能量问题
电磁感应中的能量转化
电磁感应中的能量损失与效率问题
电磁感应中的能量损失:主要来源于电阻发热、涡流损耗和磁滞损耗。
电磁感应中的效率问题:主要取决于电路的阻抗匹配和能量转换效率。
电磁感应中的能量损失与效率问题在现实生活中的应用:例如变压器、电动机等设备的效率问题,可以通过优化设计、选用合适的材料和改进工艺等方法来提高设备的效率和减少能量损失。

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题一、感应电流在磁场中所受的安培力1.安培力的大小:F=BIL= ⑴.由F=知,v 转变时,F 转变,物体所受合外力转变,物体的加速度转变,因此可用牛顿运动定律进行动态分析.⑵.在求某时刻速度时,可先依照受力情形确信该时刻的安培力,然后用上述公式进行求解.2.安培力的方向判定(1)右手定那么和左手定那么相结合,先用右手定那么确信感应电流方向,再用 左手定那么判定感应电流所受安培力的方向.(2)用楞次定律判定,感应电流所受安培力的方向必然和导体切割磁感线运动的方向垂直。

热点一 对导体的受力分析及运动分析从运动和力的关系着手,运用牛顿第二定律.大体方式是:受力分析→运动分析(确信运动进程和最终的稳固状态)→由牛顿第二定律列方程求解.运动的动态结构:如此周而复始的循环,循环终止时加速度等于零,导体达到平稳状态.在分析进程中要抓住a=0时速度v 达到最大这一关键.专门提示1.对电学对象要画好必要的等效电路图.2.对力学对象要画好必要的受力分析图和进程示用意二、电磁感应的能量转化1.电磁感应现象的实质是其他形式的能和电能之间的转化.2.感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.3.电流做功产生的热量用焦耳定律计算,公式为Q=I 2Rt热点二 电路中的能量转化分析从能量的观点着手,运用动能定理或能量守恒定律.大体方式是:受力分析→弄清哪些力做功,做正功仍是负功→明确有哪些形式的能参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.专门提示在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情形,因为安培力做的功是电能和其他形式的能之间彼此转化的“桥梁”.简单表示如下: 安培力做正功 电能 其他形式能.R L B R E BL v 22=⋅R LB 22安培力做副功其它形式能电能如何求解电磁感应中的力学问题,一直是高中物理教学的一个难点,也是近几年来高考的热点。

电磁感应问题归类解析

电磁感应问题归类解析

电磁感应问题归类解析摘要:电磁感应的综合问题实际上就是电学、磁学、力学与运动学的综合应用,解答此类问题的关键是要抓住知识点间的衔接。

比如:电路与欧姆定律是电与磁的衔接点;安培力是磁学与力学和运动学的衔接点。

除电磁感应和力学、电学的综合外,电磁学中的图象问题也是高考中的一个重点,本文据此部分出现的重点题型试举例说明。

关键词:物理教学;电磁感应;归类解析在多年的教学经验中,笔者总结了以下三种题型,对电磁感应问题进行归类解析。

通过自己的分析和总结,以期给同仁带来帮助。

题型一:电磁感应现象中的图象问题电流为顺时针方向……选项D正确。

方法总结:解决图象问题,首先要设法看懂图象,从中找出必要的信息,把图象反映的规律对应到实际过程中去;其次要根据实际过程进行抽象,用相应的图象去表达。

用到的方法:利用右手定则或楞次定律判定感应电流的方向,利用法拉第电磁感应定律判定电流的大小变化。

题型二:电磁感应现象中的力学问题电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决此类问题的一般思路是:先由法拉笫电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,再求出安培力,再后依照力学问题的处理方法进行,如进行受力情况分析、运动情况分析及功能关系分析等。

1.电磁感应中的平衡问题方法总结:解决电磁感应中平衡问题的基本方法还是力学的研究方法:确定研究对象;进行受力分析;根据平衡条件建立方程.只是受力中多了安培力,而安培力是由于感应电流产生的,故此类问题是将有关电磁感应规律、安培力公式和平衡条件相结合解题。

2.电磁感应中的运动问题在电磁感应中,由于磁场变化或导体杆的运动的速度的变化会引起感应电流的变化,感应电流的变化会引起安培力的变化,安培力的变化又可能引起合外力的变化,从而导致导体的加速度、速度等发生变化,而速度的变化反过来又影响感应电流、磁场力、合外力的变化,最终可能使导体达到稳定状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应现象中的力学问题(1)
一、E=n ΔΦ/Δt 的应用
例1:如图,竖直向上的匀强磁场的磁感应强度B 0=0.5T,并且以ΔB/Δt=0.1T/s 在增加,水平导轨不计电阻,且不计摩擦,宽为0.5m ,在导轨上搁一根电阻为r =0.1Ω的导体棒,且用水平细绳通过定滑轮吊着质量为M=0.2Kg 的重物,电阻R= 0.4Ω,则经过多长的时间才能吊起 重物?(图中d=0.8m )
二、E=BLv 的应用
例2:如图所示,ef,gh 为水平放置的足够长的平行光滑导轨,导轨间距为L ,外电阻为R ,质量为m 、电阻为r 的金属棒cd 垂直地放置导轨上,且与导轨接触良好,导轨的电阻不计,整个装置放在磁感应强度为B 的匀强磁场中。

现对金属棒施加一水平向右的恒定拉力F ,使棒从静止开始向右运动。

试解答以下问题。

(1)分析金属棒的运动情况
(2)金属棒达到的稳定速度v 1是多少?
(3)当速度是最大速度的一半时,加速度是多少?
(4)若金属棒以a 匀加速运动,拉力F 与时间的关系是什么?
练习:如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。

磁感应强度为B的匀强磁场方向垂直于纸面向外。

金属棒ab的质量为m,与导轨接触良好,不计摩擦。

从静止释放后ab保持水平而下滑。

试求ab下滑的最大速度v m
a b。

相关文档
最新文档