《应用一元一次方程——追赶小明》综合练习
第五章 5.6应用一元一次方程-追赶小明同步练习-2021-2022学年北师大版数学七年级上学期
初中数学北师大版七年级上学期第五章 5.6应用一元一次方程——追赶小明一、单选题1.一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x米/分,则所列方程为()A. B.C. D.2.中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A. 96里B. 48里C. 24里D. 12里3.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.则火车的长度为()A. 180mB. 200mC. 240mD. 250m4.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A. 200sB. 205sC. 210sD. 215s5.小明和小亮两人在长为50m的直道AB(A、B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步速度为5m/s,小亮跑步速度为4m/s,则起跑后60s内,两人相遇的次数为()A. 3B. 4C. 5D. 66.甲车与乙车同时从A地出发去往B地,如图所示,折线O-A-B-C和射线OC分别是甲、乙两车行进过程中路程与时间的关系,已知甲车中途有事停留36分钟后再继续前往C地,两车同时到达C地,则下列说法:①乙车的速度为70千米/时;②甲车再次出发后的速度为100千米/时;③两车在到达B地前不会相遇;④甲车再次出发时,两车相距60千米。
北师大课标版七年级数学上册《应用一元一次方程—追赶小明》习题2(精品习题)
《应用一元一次方程—追赶小明》习题
1、甲、乙两人练习赛跑,甲每秒跑4米,乙每秒跑5.5米,甲先跑6米,乙开始跑,设乙x秒后追上甲,依题意列方程得( )
A、5.546
=-
x x
B、5.546
=+
x x
C、5.546
-=
x x
D、5.546
=-
x
2、在800米的跑道上有两人练习长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向出发,t分钟后第一次相遇,则t等于( )
A、10分钟
B、15分钟
C、20分钟
D、0分钟
3、两列火车在一段双轨道上行驶,A列车全长180米,车速为20米∕秒,B列车全长160米,车速为24米∕秒.
(1)若两列车同向行驶,求B列车由追上A列车至完全超过A 列车(即错车)所用时间;
(2)若两列车相向而行,求两列车从车头相遇到车尾相离所用的时间.
4、某通讯员骑车用14千米∕时的速度沿原路追赶以5千米∕时的速度并已经行走了18分钟的学生队伍,设需x小时追上,
那么依题意列方程得______________________.
5、甲、乙两人同时由A地步行去B地,甲每小时走6千米,乙每小时走3千米,当甲到达B地时,乙距B地还有9千米,求甲的速度?
6、小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.。
北师大版七年级数学上册《5.6应用一元一次方程:追赶小明(2)》同步练习及答案
北师大版七年级数学上册《5.6应用一元一次方程:追赶小明(2)》同步练习及答案一、填空题1 、甲的速度是5千米/时,乙的速度是6千米/时,两人分别从A、B两地同时出发,相向而行,若经过t小时相遇,则A、B的距离是___________千米;若经过x小时还差10千米相遇,则A、B的距离是___________千米。
2、若一艘轮船在静水中的速度是7千米/时,水流速度是2千米/时,那么这艘船逆而上的速度是___________千米/时,顺流而下的速度是_________千米/时.3、环形跑道400米,小明跑步每秒行9米,爸爸骑车每秒行16米,两人同时同地反向而行,经过_________秒两人相遇?4、甲、乙两站相距36千米,一列慢车从甲站出发,每小时行52千米,一列快车从乙站出发,每小时行70千米,两车同时开出,同向而行,快车在后,________小时追上慢车。
5、一列长a千米的队伍以每分钟60千米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程为_____________千米6、在一段双轨铁道上,两人辆火车迎头驶过,A列车车速为20米/秒,B列车车速为25米/秒,若A列车全长200米,B列车全长160米,两列车错车的时间为____秒。
二、选择题7、父子二人早上去公园晨练,父亲从家出了跑步到公园需30分钟,儿子只需20分钟,如果父亲比儿子早出发5分钟,儿子追上父亲需( )A、8分钟B、9分钟C、10分钟D、11分钟8、学校到县城有28千米,除公共汽车以外,还需步行一段路程,公共汽车的速度为36千米/时,步行的速度为4千米/时,全程共需1小时,则步行所用时间是( )9、某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,则在水中的速度是( )千米/时A、2B、4C、18D、3610、一个两位数的十位上的数字与个位上数字之和为8,把这个数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,则这个两位数是( )A、26B、62C、71D、53三、解答下列各题11、某行军纵队以7千米/时的速度行进,队尾的通讯员以11千米/时的速度赶到队伍前送一封信,送到后又立即返回队尾,共用13.2分钟,求这支队伍的长度。
北师大版-数学-七年级上册-5.6应用一元一次方程--追赶小明课时练习(含解析)
5.6应用一元一次方程--追赶小明同步练习一、选择题1.小明在某月的日历上圈出相邻的三个数,算出这三个数的和是75,则这三个数的排列方式一定不可能是()A.B.C.D.答案:B解析:解答:A.设最小的数是x.x+x+1+x+2=75,x=24.故本选项错误;B.设最小的数是x.x+x+7+x+14=75,x=18,此时最下面的数为18+14=32,不符合题意.故本选项正确;C.设最小的数是x.x+x+1+x+1+7=75,x=22,故本选项错误;D.设最小的数是x.x+x+7+x+7+1=75,x=20,故本选项错误.故选B.分析:日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.2.某商店在一次买卖中,同时卖出两种货物,每种货物的售价均为1200元.若按成本计算,一种货物盈利20%,另一种亏本20%,则这次交易商店()A.赔100元B.赚50元C.赚100元D.不赔不赚答案:A解析:解答:设第一种货物的成本为x元,第二种货物的成本为y元,根据题意可得:x(1+20%)=1200,y(1-20%)=1200,解得:x=1000,y=1500,则两种货物的售价和为1200×2=2400元,成本价和为1000+1500=2500元,则此买卖中他赔了2500-2400=100元.故选A.分析:设第一种货物的成本为x元,第二种货物的成本为y元,根据进价+盈亏数=售价可得两种货物的进价,比较两种货物进价和与售价和的差,即可知此买卖的盈亏金额.3.1份试卷只有25道选择题,做对一题得4分,不做或做错一题扣1分,某同学做完全部试题得85分,他做对了的题数是()A.19题B.20题C.21题D.22题答案:D解析:解答:设他做对了x道题,根据题意得:4x-(25-x)=85,去括号得:4x-25+x=85,移项合并得:5x=110,解得:x=22,则他做对了22道题.故选D.分析:设他做对了x道题,根据得分规则列出方程,求出方程的解即可得到结果.4.如图,甲、乙两人同时沿着边长为100m的正方形广场ABCD,按A→B→C→D→A…的顺序跑,甲从A出发,速度为82m/min,乙从B出发,速度为90m/min,则当乙第一次追到甲时,他在正方形广场()A.AB边B.BC边C.CD边D.AD边答案:C解析:解答:设当乙第一次追到甲时乙用了x分钟,由题意,得90x=82x+300,解得:752x .∴乙行驶的路程为:90×752=3375米.∴乙行驶的边数为:3375÷100=33.75≈34边.∵34÷4=8余2.∴乙走了8圈多两边追到甲,∴乙第一次追到甲时,他在正方形广场的CD边上.故选:C.分析:设当乙第一次追到甲时乙用了x分钟,由甲走的路程+300=乙走的路程建立方程求出其解即可.5.三个连续奇数的和为15,则这三个奇数两两相乘之和是()A.143B.71C.45D.29答案:B解析:解答:设中间一个数为x,则前一个数为x-2,后一个数为x+2,x-2+x+x+2=15,解得:x=5.故其他两个奇数为3和7,三个奇数的积为3×5+3×7+5×7=71.故选:B.分析:由于是三个连续的奇数,设中间一个奇数为x,则前一个奇数为x-2,后一个奇数为x+2,根据题意列过程解答后求得三个数后,再将这三个奇数两两相乘求和即可.6.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了()A.17道B.18道C.19道D.20道答案:C解析:解答:设该同学做对了x题,根据题意列方程得:4x-(25-x)×1=70,解得x=19.故选C.分析:设某同学做对了x道题,那么他做错了25-x道题,他的得分应该是4x-(25-x)×1,据此可列出方程.7.某牧场,放养的鸵鸟和奶牛一共70只,已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多()B.14只C.15只D.13只答案:B解析:解答:设奶牛的头数为x,则鸵鸟的头数为70-x,故:4x+2(70-x)=196,解得x=28,故70-2x=14,故选B.分析:设出奶牛的头数,表示出鸵鸟的头数,根据鸵鸟和奶牛的腿数之和为196条,列出方程.8.某品牌商品,按标价九折出售,仍可获得20%的利润,若该商品标价为28元,则商品的进价为()A.21元B.19.8元C.22.4元D.25.2元答案:A解析:解答:设商品进价为x元,由题意得:90%×28=x+20%x,解得x=21.故选:A.分析:首先设商品进价为x元,由题意得等量关系:进价+进价×利润率=标价×打折,根据等量关系列出方程即可.9.某种电脑的价格一月份下降了10%,二月份上升了10%,则二月份的价格与原价相比()A.不增也不减B.增加1%C.减少9%答案:D解析:解答:设x为原价格,那么一月份:(x×0.9)=0.9x,二月份价格为:0.9x×1.1=0.99x,那么二月份价格:x-0.99x=0.01x即减少1%.故选D.分析:可设原价为x则一月份价格=(1-10%)x=90%x,二月份价格=90%x(1+10%)=99%x,则与原价相比减少了x-99%x=1%x,即减少了1%.10.若某商品降价20%后,要恢复原价,则应提价()A.15%B.20%C.22.5%D.25%答案:D解析:解答:设先设商品的原价为x,则商品降价20%后的价格为(1-20%)x,再设提价的百分数为y.x=x(1-20%)×(1+y),整理得:1=(1-20%)×(1+y),解得:y=25%.故选:D.分析:先设商品的原价为x,则商品降价20%后的价格为(1-20%)x,再设提价的百分数为y,然后根据等量关系列方程解答.11.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是()A.5.4米B.7米C.5.08米D.6.67米答案:C解析:解答:水箱上升3×3×3÷(5×5)=1.08(米)水面的高度将是:4+1.08=5.08(米).故选C.分析:此题的关键是把握小正方形的体积,它相当于底面是边长为5米的正方形的水箱上升x米的体积,求出x,再加上4米即可.12.一个蓄水池有甲、乙两个进水管,单独开甲管20小时可以注满水池,单独开乙管12小时可以注满水池,那么两管齐开注满水池,需要()A.15小时B.6小时C.7.5小时D.8小时答案:C解析:解答:把满蓄水池看成单位1,则甲管的水速为120,乙管的水速为112设两管齐开需x小时,则(120+112)x=1解得x=7.5 故选C.分析:把满蓄水池看成单位1,则甲管的水速为120,乙管的水速为112,根据等量关系:(甲速+乙速)×所需时间=1,设未知数,列方程求解即可.13.小刘用84米长的铁丝围成一个长方形,要使长比宽多4米,则长方形的长为()A.29B.27C.25D.23答案:D解析:解答:设长方形的宽为x米,则长为(x+4)米.2(x+4+x)=84解得x=19,∴x+4=19+4=23故长方形的长为23米.故选:D.分析:可设宽为未知数,进而表示出长,等量关系为:2(长+宽)=84,把相关数值代入可求得宽,进而求得长即可.14.整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,则应先安排几个人工作?()A.3B.4C.5D.6答案:A解析:解答:由题意可得,每个人每小时完成1 48,设应先安排x人工作,则148x×4+148×(x+3)×6=1,解得:x=3.答:应先安排3人工作.故选A.分析:根据题意可得,每个人每小时完成148,设应先安排x人工作,根据题意的工作方式可得出方程,解出即可.15.甲乙二人在400米的环形跑道上练习同向竞走.乙每分钟走80米,甲每分钟走100米,现在甲在乙前100米,多少分钟后两人相遇?()A.5分钟B.20分钟C.15分钟D.10分钟答案:C解析:解答:设x分钟后两人相遇,根据题意得100x-80x=300,解得x=15.答:15分钟后两人相遇.故选C.分析:设x分钟后两人相遇,等量关系是:甲行路程-乙行路程=300米,依此列出方程,解方程即可.二、填空题16.一种运动鞋每双按成本价提高25%后标价,后因处理库存每双按标价的9折出售,若毎双鞋的出售价是90元,则每双鞋的成本价是_____元.答案:80解析:解答:设这件商品的成本价为x元,由题意得:0.9x(1+25%)=90,解得:x=80.故答案为:80.分析:设这件商品的成本价是x元,根据题意列方程0.9x(1+25%)=90,解得即可.17.在某张日历表上,前三个星期日的日期之和等于42,则该月的1日是星期_____.答案:一解析:解答:设第一个星期日为x号,依题意得:x+x+7+x+14=42,解得x=7,则该月的1日是星期一;故答案是:一.分析:根据每两个相邻的星期天相隔7天,然后设出未知数,根据它们的日期之和为42,列方程计算即可得出答案.18.商品以八折的优惠价出售一件少收入15元,那么这件商品的原价是_____元.答案:75解析:解答:这件商品的原价为x元,根据题意得x-0.8x=15,解得x=75.答:件商品的原价为75元.故答案为75.分析:一件商品的原价为x元,则把八折为0.8x,利用两者之差为15列方程,然后解方程即可.19.小华到新华书店购买一套丛书,该丛书八五折销售(即按原价的85%销售)比打九折销售时少3元钱,那么这套丛书的原价是_____元.答案:60解析:解答:设这套丛书的原价是x元,根据题意得:90%x-85%x=3,即5%x=3,解得:x=60,则这套丛书的原价是60元.故答案为:60.分析:设这套丛书的原价是x元,根据题意列出方程,求出方程的解即可得到结果.20.小明与小彬骑自行车去郊外游玩,事先决定早晨8点出发,预计每小时骑7.5千米,上午10时可到达目的地.出发前他们决定上午9点到达目的地,那么实际每小时要骑_____千米.答案:15解析:解答:设实际每小时要骑x千米,根据题意得:7.5×(10-8)=(9-8)x,解得:x=15,则实际每小时骑15千米.故答案为:15.分析:设实际每小时要骑x千米,根据题意列出方程,求出方程的解即可得到结果.三、解答题21.2010年6月1日中国总理温家宝在东京接受NHK电视台专访时表示,促进社会公平正义,首先是教育,教育公平是最大的公平.为满足市民对优质教育的需求,缩小城乡差距,最大限度的促进教育公平.宝应县县政府决定改变办学条件,计划拆除一部分乡镇旧校舍、建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.计划在年内拆除全县旧校舍与建造新校舍共72000平方米,在实施中新建校舍只完成了计划的80%,拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积分别是多少平方米?答案:原计划拆、建面积分别是48000平方米、24000平方米解答:设原计划拆面积为x平方米,则原计划建面积为(72000-x)平方米,则:(1+10%)x+80%×(72000-x)=72000,解得:x=48000,则72000-x=24000,所以原计划拆、建面积分别是48000平方米、24000平方米.(2)若每绿化一平方米的新校舍需200元,那么在实际完成的拆、建中节余的资金用来绿化新校舍大约是多少平方米?答案:14880平方米.解答:设在实际完成的拆、建中节余资金y元,则:y=48000×80+24000×700-48000×110%×80-24000×80%×700=2976000(元),则节余的资金可用来绿化新校舍29760001488010200y==(平方米),所以在实际完成的拆、建中节余的资金用来绿化新校舍大约是14880平方米.解析:分析:(1)要求原计划拆、建面积,就要先设出未知数,再通过理解题意可知本题的等量关系,即实际拆、建面积之和=原计划拆、建面积之和=72000平方米,再根据这个等量关系列方程求解;(2)先分别求出计划与实际完成的拆、建所花资金,进而求出节余的资金,再除以每绿化一平方米的新校舍所需的钱数便可得出所求.22.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?答案:该车间分配30名工人生产A种工件,45名工人生产B种工件才能保证连续安装机械时两种工件恰好配套.解答:设该车间分配x名工人生产A种工件,(75-x)名工人生产B种工件才能保证连续安装机械时两种工件恰好配套,根据题意得2×15x=20(75-x),解得:x=30,则75-x=45,答:该车间分配30名工人生产A种工件,45名工人生产B种工件才能保证连续安装机械时两种工件恰好配套.解析:分析:设该车间分配x名工人生产A种工件,(75-x)名工人生产B种工件才能保证连续安装机械时两种工件恰好配套,根据题意列出方程,求出方程的解即可得到结果.23.两个三位整数,它们的和加1得1000,如果把大数放在小数的左边,并在这两数之间点上一个小数点,则所成的数正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求这两个数.答案:大数是857,小数是142.解答:设大数为x ,则小数为999-x .由题意得999699910001000x x x x -+=-+(), 解这个方程得:x =857,则999-x =142.答:大数是857,小数是142.解析:分析:根据题意,有两个三位数,它们的和是999,设大数为X ,小数为999-X ,大数放在小数左边,并在两数中点一个小数点,即大数没有变,小数的小数点左移三位,即除以1000;同理较小数放在较大数的左边,中间点一个小数点,即小数没有变,大数的小数点左移三位,即除以1000.再根据x 倍的关系列方程解答.求出这两个三位数. 24.鸡兔同笼是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数有94只脚.问笼中各有几只鸡和兔?答案:鸡有23只,兔有12只.解答:设鸡有x 只,则兔有(35-x )只,由题意得:2x +4(35-x )=94,解得:x =23,则35-x =12.答:鸡有23只,兔有12只.解析:分析:设鸡有x 只,则兔有(35-x )只,根据鸡有2只脚,兔有4只脚,笼子里面总共94只脚,可得出方程,解出即可.25.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,值多少钱?答案:654元解答:(1)设用466元的商品原价为x元,根据题意得:500×(1-10%)+(x-500)×(1-20%)=466,解得:x=520,答:此人两次购物其物品如果不打折,值134+520=654(元);(2)在此活动中,他节省了多少钱?答案:54元解答:根据题意得:654-(134+466)=54(元),答:在此活动中,他节省了54元;(3)若此人将两次购物的钱合起来购相同的商品是更节省还是亏损?说明你的理由.答案:将两次购物的钱合起来购相同的商品更节省,理由为:根据题意得:500×0.9+154×0.8=573.2,而分开买费用为134+466=600,∵573.2<600,∴将两次购物的钱合起来购相同的商品更节省.解析:分析:(1)134元不打折,设用466元的商品原价为x元,根据题意列出方程,求出方程的解确定出原价,即可确定出此人两次购物其物品如果不打折值的钱数;(2)根据不打折的钱数减去打折后的钱数即可得到结果;(3)更节省,求出两次购物的钱合起来购相同的商品打折后的钱数,与分开卖的钱数比较即可得到结果.。
初一上册应用一元一次方程-追赶小明练习题含解析北师大版
初一上册应用一元一次方程-追赶小明练习题(含解析北师大版)(30分钟50分)一、选择题(每小题4分,共12分)1.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是( )A.18千米/时B.15千米/时C.12千米/时D.20千米/时2.在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是( )A.1.6秒B.4.32秒C.5.76秒D.345.6秒3.A,B两地相距450千米,甲、乙两车分别从A,B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是( )A.2或2.5B.2或10C.10或12.5D.2或12.5二、填空题(每小题4分,共12分)4.我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔追上乌龟大概需要分钟.5.成渝铁路全长504千米,一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发小时后两车相遇(沿途各车站的停留时间不计).6.从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加了20千米,只需5小时即可到达.甲乙两地的路程是千米.三、解答题(共26分)7.(8分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?8.(8分)如图所示,甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒钟跑6米,甲的速度是乙的倍.(1)如果甲、乙在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?【拓展延伸】9.(10分)甲步行上午6时从A地出发,于下午5时到达B地;乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙是在什么时间追上甲的?答案解析1.【解析】选B.设轮船在静水中的速度是x千米/时,由题意得:3(x-3)=2(x+3),解方程得:x=15.2.【解析】选C.设需要花费的时间为x秒,110千米/小时=米/秒,100千米/小时=米/秒,根据轿车走的路程等于超越卡车的路程加上两车的车身长,可得方程:x=x+12+4,解方程得:x=5.76.3.【解析】选A.(1)当甲,乙两车未相遇时,根据题意,得120t+80t=450-50,解方程得:t=2.(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解方程得t=2.5.4.【解析】设小白兔追上乌龟大概需要x分钟,根据题意可得101x=x+1000,解方程得x=10.答案:105.【解析】设慢车出发x小时后两车相遇,由题意得:90(x+1)+48x=504,解方程得:x=3.答案:36.【解析】设甲、乙两地的路程是x千米,根据题意列方程得:(+20)×5=x,解方程得:x=350.答案:3507.【解析】设王强以6米/秒的速度跑了x秒,则王强以4米/秒的速度跑了(10×60-x)秒.根据题意得:6x+4(10×60-x)=3000,解方程得:x=300,则6x=6×300=1800(米).答:王强以6米/秒的速度跑了1800米.8.【解析】(1)设经过x秒甲、乙两人首次相遇,由题意得:6×x+6x=400-8,解方程得x=28.答:经过28秒甲、乙两人首次相遇.(2)设经过y秒甲、乙两人首次相遇,由题意得:6×y=6y+400-8,解方程得:y=196.答:经过196秒甲、乙两人首次相遇.9.【解析】设乙出发后x小时追上甲,这时甲行走了(x+4)小时,若A到B全程为a,因甲、乙二人由A到B 分别用了11小时,5小时,所以甲、乙两人速度分别为,.由题意,得x=(x+4)(a≠0).即=.解得x=.即乙出发后小时追上甲,这时正好是下午1点20分.因此,乙是在下午1点20分追上甲的.。
北师大版七年级上册5.6 应用一元一次方程追赶小明同步测试(含答案)
5.6 应用一元一次方程——追赶小明(含答案)一.选择题:〔四个选项中只有一个是正确的,选出正确选项填在题目的括号内〕1.甲、乙两人练习赛跑,甲每秒跑4米,乙每秒跑5米,甲先跑6米,乙才开场跑,设乙开场跑后x 秒上甲,依题意可列方程〔 〕A .546x x =-B .546x x =+C .546x x -=D .546x =-2.甲、乙两人从同一地点去某地,假设甲先走2小时,乙从后面追赶,那么当乙追上甲时, 以下说法正确的选项是〔 〕A .甲、乙两人走的路程相等B .乙比甲多走2小时C .乙走的路程比甲多D .以上答案都不对3.在某公路上有相距90千米的两个车站A ,B ,某日8点整,甲、乙两车分别从A ,B 两站同时出发,相向而行;甲车的速度是70千米/小时,乙车的速度是80千米/小时,那么两车相遇的时刻是〔 〕A .8点20分B .8点36分C .8点50分D .9点整4.父子两人早上去公园晨练,父亲从家跑步到公园需30分钟,儿子只需20分钟,假如父亲比儿子早出发5分钟,那么儿子追上父亲需〔 〕A .8分钟B .9分钟C .10分钟D .11分钟5.甲、乙两同学从A 地出发到B 地去,甲每小时走6千米,乙每小时走8千米,甲先出发1小时,结果乙还比甲早到1.5小时;假设设A 地与B 地的间隔 为x 千米,那么以下方程正确的选项是〔 〕A . 1.5 1.568xx +=- B . 1.568x x =- C . 1.5 1.568x x -=+ D .6 1.58 1.5x x -=+ 6.小明同学骑车从学校到家,每分钟行120米,某天回家时,速度进步到每分钟150米,结果提早5分钟到家,设原来从学校到家骑x 分钟,那么列方程为〔 〕A .120x=150〔x +5〕B .120x=150〔x -5〕C .120〔x +5〕=150xD .120〔x -5〕=150x7.某江的水流速度为4千米/时,某轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用4小时,假设船速为30千米/时,那么A 港和B 港相距〔 〕千米A .440B .442C .450D .4608.在400米的环形跑道上有两人练习长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同向出发,〔 〕秒后,两人第一次相遇A .10B .15C .20D .309.我国古代名著?九章算术?中有一题:“今有起南海,七日至北海;雁起北海,九日至南海。
《应用一元一次方程——追赶小明》练习题
90 米/分. 速度是____
航行问题
6.(4 分)一轮船在甲、乙两码头间航行,顺流需 4 小时,已知甲、 乙间的路程是 80 千米,水流速度是 2 千米/时,则轮船在静水中的速
18 千米/时. 度为_____
7.(4 分)一艘轮船航行在甲、乙两个码头之间,已知水流速度是 3 千米/时,轮船顺水航行需用 5 小时,逆水航行需用 7 小时,甲、乙
x x 解得 x=286, 所以从甲到乙用了 =11 小时, 从乙到甲用了 =13 小 26 22 时,甲、乙两地的距离是 286 千米.
解答题(共 60 分) 9.(8 分)从 A 地到 B 地,先下坡然后走平路,某人骑自行车以每 小时 12 千米的速度下坡,然后以每小时 9 千米的速度通过平路,到达 B 地共用 55 分钟.回来时以每小时 8 千米的速度通过平路,而以每小 时 4 千米的速度上坡,回到 A 地共用 1.5 小时.从 A 地到 B 地有多少 千米?
105 千米. 两地的距离为______
8.(8 分)已知船在静水中的速度是 24 千米/时,水流速度是 2 千 米/时,该船在甲、乙两地间行驶一个来回共用了 24 小时,求从甲到 乙(顺水)及从乙到甲(逆水)航行各用了多少时间?甲、 乙两地的距离是 多少? x x 解:设甲、乙两地距离是 x 千米,由题意得 + =24, 24+2 24-2
55 x 3 x 解:设平路长为 x 千米,由题意,得 12( - )=4( - ).解得 x 60 9 2 8
3 x =6.x+4( - )=6+3=9(千米).答:从 A 地到 B 地有 9 千米. 2 8
10.(8 分)已知环形跑道长 400 米,乙的速度为 80 米/分,甲的速 5 度是乙的4倍,且甲在乙前 100 米,多少分钟后,两人第一次相遇?
应用一元一次方程--追赶小明
那么他的速度为 200 米/分。
小明每天早上要在7:50之前赶到距家1000米的学校 上学.一天,小明以80米/分的速度出发.5分钟后,小明 的爸爸发现他忘了带语文书.于是,爸爸立即以180米/分 的速度去追小明。
(1)爸爸追上小明用了多长时间?
相遇问题:
A走的路程
相遇处
B走的路程
A
B
A与B之间相隔的路程
等量关系:
A走的路程+B走的路程=A与B之间相隔的路程
小 结:
1、这节课你学到了什么知识? 2、谈谈你的收获?
作业:P192 习题5.10 问题解决1
85×0.4
85x
110x
南京
北京
1170
解:设两车行驶了x小时相遇,
根据题意,得
85×0.4+85x+110x=1170
解得
x≈5.83
答:轿车行驶了约5.83小时两车相遇。
追及问题:
B
A与B之间相隔的路程 A
A后走的路程
B追A追到地方
B所走的路程
等量关系: A与B之间相隔的路程+A后走的路程=B所走的路程
根据题意,得 85x+110x=1170
化简
195x=1170
x=6
答:两车行驶了6小时相遇。
轿车方向
南京到北京的路程为1170公里。客车从南京开出,每小时
行驶85公里,轿车从北京开出,每小时行驶110公里,
(2)客车先开出24分钟,两车相向而行,轿车行驶了多少
小时两车相遇? (结果精确到0.01)
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
80×5
2023学年北师大版七年级数学上册《5-6应用一元一次方程—追赶小明》同步达标测试题(附答案)
2022-2023学年北师大版七年级数学上册《5.6应用一元一次方程—追赶小明》同步达标测试题(附答案)一.选择题(共10小题,满分40分)1.我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问银子共有几两?设银子共有x两,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.2.某种商品每件的进价为80元,标价为120元,为了拓展销路,商店准备打折销售,若使利润率为20%,设商店打x折销售,则依题意得到的方程是()A.120×﹣80=120×20%B.120x﹣80=120×20%C.120×﹣80=80×20%D.120x﹣80=80×20%3.某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/时,求两个码头之间的距离,若设两个码头之间的距离为x千米,则可得方程为()A.+4B.C.D.4.《九章算术》中有这样一道数学问题,原文如下:清明游园,共坐八船,大船满六,小船满四,三十八学子,满船坐观.请问客家,大小几船?其大意为:清明时节出去游园,所有人共坐了8只船,大船每只坐6人,小船每只坐4人,人刚好坐满,问:大小船各有几只?若设有x只小船,则可列方程为()A.4x+6(8﹣x)=38B.6x+4(8﹣x)=38C.4x+6x=38D.8x+6x=385.如图,一个棱长为10cm的立方块固定在一个长、宽、高分别为20cm,20cm,30cm的长方体容器的底部,现将一个直径为20cm,高为20cm的圆柱形容器盛满水倒入长方体容器内,则此时长方体容器内水面的高度约为()cm(不计耗损,π取3)A.15B.17.5C.22.5D.306.父亲和女儿的年龄之和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的,则女儿现在的年龄是()岁.A.24B.26C.28D.307.某次篮球比赛计分规则为:胜一场积2分,负一场积1分,没有平场,八一队在篮球联赛共14场比赛中积23分,那么八一队胜了()场.A.6B.7C.8D.98.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件.现要用6m3钢材制作这种仪器,为了使制作的A、B部件恰好配套,设应用xm3钢材制作A部件,则可列方程为()A.40x×3=240×(6﹣x)B.40x=240×(6﹣x)×3C.40×(6﹣x)×3=240x D.40×(6﹣x)=240x×39.下图是某月的月历,在此月历上可以用一个“十”字图出5个数(如3,9,10,11,17)照此方法,若圈出的5个数中,最大数与最小数的和为38,则这5个数的和为()A.50B.85C.95D.10010.一商店以每件75元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商店卖这两件商品总的盈亏情况是()A.亏损10元B.盈利10元C.亏损20元D.不盈不亏二.填空题(共5小题,满分30分)11.用一根长为10米的铁丝围成一个长方形,使该长方形的长比宽多1.4米,则这个长方形的长为米.12.《诗经》是我国第一部诗歌总集,共分为《风》《雅》《颂》三部分.其中《颂》有40篇,比《风》的篇数少,《风》有篇.13.某市城区为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为立方米.14.A、B两地相距215千米,甲骑自行车从A地去B地,乙开汽车从B地去A地,若汽车的速度是自行车速度的4倍,若2小时后两车相距25千米,则自行车的速度为千米/时.15.有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的,则这个两位数是.三.解答题(共5小题,满分50分)16.2022年三八妇女节期间,太原市某单位送给该区所有中学女教师的礼物是每位老师一条“粉水晶樱花项链”,送给该区所有小学女教师的礼物是每位老师一条“天然淡水珍珠项链”,该单位用54800元购买了“粉水晶樱花项链”和“天然淡水珍珠项链”共400条,已知每条“粉水晶樱花项链”是130元,每条“天然淡水珍珠项链”140元,向该单位共买了“粉水晶樱花项链”和“天然淡水珍珠项链”各多少条?17.为响应国家节能减排政策,某班开展了节电竞赛活动.通过随手关灯、提高夏季空调温度、及时关闭电源等行为,小明和小玲两位同学半年共节电55度.据统计,节约1度电相当于节约0.4千克“标准煤”,在节电55度产生的节煤量中,小明“节煤量”的2倍比小玲多8千克.设小明半年节电x度.请回答下面的问题:(1)用含x的代数式表示小玲半年节电量为度,用含x的代数式表示这半年小明节电产生的“节煤量”为千克,用含x的代数式表示这半年小玲节电产生的“节煤量”为千克;(不需要化简)(2)请列方程求出小明半年节电的度数.18.将一段长为1.2千米河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24米,乙队每天整治16米,求甲、乙两队分别整治河道多少米?19.某服装厂生产一种西装和领带,西装每套定价300元,领带每条定价50元.厂方在国庆节期间开展促销活动期间,向客户提供两种优惠方案:国庆特惠方案一:买一套西装送一条领带;方案二:西装和领带都按定价的九折付款.(1)某客户要到该服装厂购买西装20套,领带30条.通过计算说明此时按哪种方案购买较为合算.(2)若客户要到该服装厂购买西装20套,领带x条(x>20).①若该客户按方案一购买需付款元(用含x的代数式表示);②若该客户按方案二购买,需付款元(用含x的代数式表示);③当x=时,两种优惠方案所付的钱数相同.(直接填空,不说明理由)20.列方程解应用题十七中学刚完成校舍的修建,有一些相同的办公室需要粉刷墙面.一天5名一级技工去粉刷了8个办公室外还多粉刷了60平方米的展示厅墙面;同样时间内4名二级技工粉刷了7个办公室,结果有10平方米的墙面未来得及粉刷完,已知每名一级技工比二级技工一天多粉刷10平方米的墙面.(1)求每个办公室需要粉刷的墙面面积.(2)已知每天需要给每名一级技工支付费用180元,每天需要给每名二级技工支付费用160元.十七中学有40个办公室的墙面和600平方米的展览墙需要粉刷,现有5名一级技工的甲工程队,4名二级技工的乙工程队,要来粉刷墙面.十七中学有两个选择方案,方案一:全部由甲工程队粉刷;方案二:全部由乙工程队粉刷;若使得总费用最少,十七中学应如何选择方案,请通过计算说明.参考答案一.选择题(共10小题,满分40分)1.解:∵银子共有x两,每人7两,还剩4两,∴分银子的人共人;∵银子共有x两,每人9两,还差8两,∴分银子的人共人.又∵分银子的人数不变,∴可列方程组=.故选:D.2.解:设商店应打x折,依题意得120×﹣80=80×20%,故选:C.3.解:设若设两个码头之间的距离为x千米,因此可列方程为﹣4=+4,故选:A.4.解:设有x只小船,则有大船(8﹣x)只,由题意得:4x+6(8﹣x)=38,故选:A.5.解:设长方体容器内水面的高度为xcm,依题意得:20×20×10﹣10×10×10+20×20(x﹣10)=3×()2×20,解得:x=17.5,∴此时长方体容器内水面的高度约为17.5cm.故选:B.6.解:设女儿现在年龄是x岁,则父亲现在的年龄是(91﹣x)岁,根据题意得:91﹣x﹣x=2x﹣(91﹣x),解得:x=28.答:女儿现在的年龄是28岁.故选:C.7.解:设八一队胜了x场,根据题意得:2x+(14﹣x)=23,解得:x=9,答:八一队胜了9场;故选:D.8.解:设应用xm3钢材做A部件,则应用(6﹣x)m3钢材做B部件,由题意得40x×3=240×(6﹣x),故选:A.9.解:设中间数为x,则最大的数(下面的数)为:x+7,最小的数(上面的数)为:x﹣7,左边的数为:x﹣1,右边的数为:x+1,∴总和为:x+x﹣7+x+7+x﹣1+x+1=5x,∵最大数与最小数的和为38,∴x+7+x﹣7=38,解得:x=19,和为:5×19=95,故选C.10.解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:75﹣x=25%x,75﹣y=﹣25%y,解得:x=60,y=100,∴75+75﹣60﹣100=﹣10(元).故选:A.二.填空题(共5小题,满分30分)11.解:设这个长方形的长为x米,则宽是(x﹣1.4)米,根据题意得2(x+x﹣1.4)=10,解得x=3.2,答:这个长方形的长为3.2米.故答案为:3.2.12.解:设《风》有x篇,根据题意得x(1﹣)=40,解得:x=160,故答案为:160.13.解:设这户居民5月的用水量为x立方米.列方程为:7×1+(x﹣7)×2=17,解得x=12.故答案为:12.14.解:设自行车的速度为x千米/时,则汽车的速度为4x千米/时,根据题意得:2x+8x=215+25或2x+8x=215﹣25,解得x=19或x=24,∴自行车的速度为19或24千米/时,故答案为:19或24.15.解:设十位上的数字是x,则个位上的数字是x+3,这个两位数是10x+(x+3),根据题意得:x+(x+3)=[10x+(x+3)],解得x=3,∴10x+(x+3)=10×3+(3+3)=36,答:这个两位数是36.故答案为:36.三.解答题(共5小题,满分50分)16.解:设该单位购买了“粉水晶樱花项链”x条,则购买“天然淡水珍珠项链”(400﹣x)条,依题意得:130x+140(400﹣x)=54800,解得:x=120,∴400﹣x=400﹣120=280.答:该单位买了“粉水晶樱花项链”120条,“天然淡水珍珠项链”280条.17.解:(1)由题意知,小玲半年节电量为55﹣x,这半年小明节电产生的“节煤量”为0.4x,这半年小玲节电产生的“节煤量”为0.4(55﹣x),故答案为:(55﹣x),0.4x,0.4(55﹣x);(2)由题意知,0.4x×2﹣8=0.4(55﹣x),解得:x=25,答:小明半年节电的度数为25度.18.解:设甲整治河道为x米,则乙整治河道为(1200﹣x)米,由题意得,,解得:x=720,1200﹣x=480(米),答:甲、乙两队分别整治河道720米、480米.19.解:(1)选择方案一所需费用为300×20+50×(30﹣20)=6500(元),选择方案二所需费用为300×0.9×20+50×0.9×30=6750(元).∵6500<6750,∴选择方案一购买较为合算;(2)①若该客户按方案一购买,需付款300×20+50(x﹣20)=(5000+50x)(元),故答案为:(5000+50x);②若该客户按方案二购买,需付款300×0.9×20+50×0.9x=(5400+45x)(元),故答案为:(5400+45x);③依题意得:5000+50x=5400+45x,解得:x=80,∴当x=80时,两种优惠方案所付的钱数相同.故答案为:80.20.解:(1)设每个办公室需要粉刷墙面的面积为xm2,根据题意得,﹣=10,解得x=30.答:每个办公室需要粉刷墙面的面积为30m2;(2)40×30+600=1800(m2).方案一:甲队每日工作量:8×30+60=300(m2),1800÷300=6(天),6×5×180=5400(元);方案二:乙队每日工作量:7×30﹣10=200(m2),1800÷200=9(天),9×4×160=5760(元),∵5400<5760,∴选择方案二总费用少.。
秋七年级数学上册56应用一元一次方程追赶小明练习新版北师大版含答案
5.6 应用一元一次方程——追赶小明基础题知识点1相遇问题1.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x千米/时,列方程得( )A.4+3x=25.2B.3×4+x=25.2C.3×4+3x=25.2D.3x-3×4=25.22.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时骑( )A.20千米 B.17.5千米C.15千米 D.12.5千米3.肖华和晓明相距3千米,两人相约去新华书店看书,肖华每小时走4千米,晓明每小时走2千米,两人相向而行,________小时相遇.4.甲、乙两站间的路程为450 km,一列慢车从甲站开出,每小时行驶65 km,一列快车从乙站开出,每小时行驶85 km.(1)两车同时开出相向而行,多少小时相遇?(2)快车先开1小时两车相向而行,慢车行驶多少小时两车相遇?知识点2追及问题5.A、B两地相距600 km,甲车以60 km/h的速度从A地驶向B地,2 h后,乙车以100 km/h的速度沿着相同的道路从A地驶向B地.设乙车出发x小时后追上甲车,根据题意可列方程为( )A.60(x+2)=100xB.60x=100(x-2)C.60x+100(x-2)=600D.60(x+2)+100x=6006.小明每秒钟跑6米,小虎每秒钟跑5米,小虎站在小明前10米处,两人同时起跑,小明追上小虎需( ) A.10秒 B.8秒C.6秒 D.5秒7.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马________天可以追上驽马.知识点3一般行程问题8.王强参加3 000米长跑,他以6米/秒的速度跑了一段路程后,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,求他以6米/秒的速度跑了多少米?设他以6米/秒的速度跑了x米,则列出的方程是________________________.9.一架飞机在两个城市间飞行,无风时每小时飞行552公里,在一次往返飞行中,飞机顺风飞行用了5.5小时,逆风飞行用了6小时,求这次飞行的风速.中档题10.甲、乙两人练习赛跑,甲每秒跑7 m,乙每秒跑6.5 m,甲让乙先跑5 m,设x秒后甲可追上乙,则下列四个方程中不正确的是( )A.7x=6.5x+5 B.7x+5=6.5xC.(7-6.5)x=5 D.6.5x=7x-511.A、B两地之间的路程为160 km,甲骑自行车从A地出发,骑行速度为20 km/h,乙骑摩托车从B地出发,速度是甲的3倍.两人同时出发,相向而行,经过________小时相遇.12.A、B两地相距480千米,一列慢车从A地开出,每小时走70千米,一列快车从B地开出,每小时走90千米.(1)两车同时开出,相向而行,x小时相遇,可列方程________________;(2)两车同时开出,相背而行,x小时后两车相距620千米,可列方程________________;(3)慢车先开1小时,同向而行,快车开出x小时后追上慢车,可列方程________________.13.某体育场的环形跑道长400米,甲、乙两人在跑道上练习,甲平均每分钟跑250米,乙平均每分钟跑290米,现在两人同时从同地同向出发,经过多长时间两人才能再次相遇?14.小明每天早上要在7:50之前赶到距家1 000米的学校上学,一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文课本,于是爸爸立即以180米/分的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?综合题15.甲、乙两列火车从相距480 km的A、B两地同时出发,相向而行,甲车每小时行80 km,乙车每小时行70 km,问多少小时后两车相距30 km?参考答案基础题1.C 2.C 3.124.(1)设两车行驶x 小时相遇,则65x +85x =450.解得x =3.答:两车同时开出相向而行,3小时相遇.(2)设慢车行驶y 小时两车相遇,则65y +85(y +1)=450.解得y =21330. 答:慢车行驶21330小时两车相遇. 5.A 6.A 7.20 8.x 6+3 000-x 4=10×60 9.设这次飞行的风速每小时x 公里,依题意,得5.5(552+x)=6(552-x).解得x =24.答:这次飞行的风速每小时24公里.中档题10.B 11.212.(1)(70+90)x =480 (2)(70+90)x +480=620 (3)(90-70)x =480+70×113.设经过x 分钟后甲,乙两人再次相遇.则甲跑的路程是250x 米,乙路的路程为290x 米.由题意得290x -250x =400.解得x =10.答:经过10分钟后两人再次相遇.14.(1)先设小明爸爸追上小明用了x 分钟,那么小明走了(x +5)分钟,由题意,得80(x +5)=180x.解得x =4.因为180×4<1 000,所以小明爸爸追上小明用了4分钟.(2)小明此时已经行走的路程为:180×4=720(米),所以追上小明时,距离学校的距离为1 000-720=280(米). 综合题15.设x 小时后两车相距30 km ,根据题意,得相遇之前:(80+70)x =480-30.解得x =3;相遇之后:(80+70)x =480+30.解得x =175.答:3小时或175小时后两车相距30 km.。
数学七年级上北师大版5.6应用一元一次方程-追赶小明同步练习3
应用一元一次方程—追赶小明(60分钟 100分)一、选择题(每题8分,共24分)1.A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B•地开往A• 城,6h 后两车相遇.若普快列车速度是特快列车速度的23,且设普快速度为xkm/h , 则下面所列方程正确的是( ).A .720-6x=6×23x+120B .720+120=6×(x+23x ) C .6x+6×32x+120=720 D .6(x+23x )+120=7202.在某公路的干线上有相距108km 的A 、B 两个车站,某日16时整,甲、•乙两辆 汽车分别从A 、B 两站同时出发,相向而行,已知甲车速度为45km/h ,乙速度为36km/h , 两车相遇的时间为( ).A .16点20分B .17点20分C .17点30分D .16点50分3.甲、乙两人由A 地到B 地,甲先走2h 乙再出发,结果乙比甲迟到15min ,已知甲 速为4km/h ,乙速为6km/h ,求A 、B 两地的距离,设A 、B 两地的距离为xkm ,可列 方程( ).A .4x -6x =2-14B .4x -6x =2+1.5C .4x -6x =2+14D .6x -4x =2-14二、填空题(每题8分,共48分)4.甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑1米然后追乙,______秒便可追上. 5.某人计划开车用3时从甲地到乙地,因为每小时比原计划多行驶16千米,•结果用了2.5时就到达乙地,甲、乙两地相距_______千米.6.快车每小时行72千米,慢车每小时行60千米,它们同时分别从甲、乙两站相向 而行,两车相遇前,慢车因故停车1.5小时,相遇时,•快车所列的路程是慢车所行路程的3倍,则甲、乙两站的距离为_______千米.7.甲、乙两人都从A地到B地,甲步行,每小时走5千米,先走1.5小时;乙骑自行车,乙走了50分钟,两人同时到达目的地,乙每小时骑_______千米.8.在400米的环形跑道上,甲练习骑自行车,速度为6米/秒,乙练习跑步,•速度为4米/秒,若两人同时同地同向而行,_____秒后两人首次相遇.9.一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道经历18秒钟,• 隧道顶部一盏固定的灯光在火车上照了10秒钟,则这列火车的长为_______米.三、解答题(10题8分,11,12题各10分,共28分)10.甲、乙两车自南向北行驶,甲车的速度是每小时48km,•乙车的速度是每小时72km,甲车开出25min后乙车开出,问甲车开出多长时间后被乙车追上?11.甲列车从A地以150千米/时的速度开往B地,1小时后,乙列车从B地以70• 千米/时的速度开往A地,如果A、B两地相距200千米,求两车相遇点距A地多远?12.A、B两地相距150千米,一辆汽车以50千米/时的速度从A地出发,另一辆汽车以40千米/时的速度从B地出发,两车同时出发,相向而行,•问经过几小时,• 两车相距30千米?参考答案一、1.C 分析:本题的等量关系是:普快列车先走的路程+普快列车6•小时走的路程+ 特快列车6小时走的路程=720千米,普快列车6小时走的路程为6x 千米;特快列车 的速度为32x 千米/时,特快列车6小时走的路程为32x ×6千米,故选C . 点拨: 路程=•速度×时间.2.B 分析:设两车从开始出发x 小时后相同,由题意得:45x+36x=108,x=113,• ∵开始出发的时间为16时,∴出发113后的时间为17点20分,故选B .3.A 分析:从同一地点出发,目的地相同,那么总路程相同.设两地距离为x 千米,由题意得:4x -2+1560=6x,即4x -6x =2-14,故选A . 点拨:单位一定要统一.二、4.13 分析:本题属追及问题,等量关系为:甲追上乙所走的路程+乙走的路程相等,设x 秒甲追上乙,由题意得:7x=6.5(x+1),解得x=13.5.240 分析:设原计划每小时行x 千米,由题意得:3x=2.5(x+1.6),•解得x=•80,3x=240. 点拨:•本题列方程是利用原计划和实际所走的路程相等这个不变量来列方程,我们也可以设甲、乙两地相距x 千米,•由原计划速度与实际速度的关系列方程得1632.5xx+=. 6.240 分析:设快车行驶x 小时后与慢车相遇,由题意得下表:根据题意,可列方程:72x=3×60(x-1.5),解得x=2.5,72x+60(x-1.5)=240.7.14 分析:设乙每小时骑x 千米,由题意得5×(1.5+5060)=5060x ,x=14. 点拨:因为甲、乙两人都是从A 地到B 地,所以路程相等,由此列方程求解. 8.200分析:环形跑道问题:两人同地同向而行首次相遇,即甲行的路程-•乙行的 路程=400米,设经过x 秒后两人首次相遇,由题意得:6x-4x=400,解得x=200. 点拨:环形跑道若两人同地同向而行首次相遇就是快者比慢者多行一圈.9.400 分析:火车从进入隧道到完全通过隧道的意思是火车走的路程=隧道长+一个 火车车身长;隧道顶部的灯在火车上照了10秒钟,这说明火车10•秒钟走的路程等 于一个火车长,设火车的速度为x 米/秒,由题意得18x-320=10x ,解得x=•40, 10x=400.点拨:本题利用火车车身长度不变列方程. 三、10.分析:等量关系是甲走的总路程=乙的路程.解:设甲车开出x 小时后被乙车追上,由题意得:48x=72(x-2560),解得x=54.答:甲车开出54小时后被乙车追上.11.分析:设乙车开出x 小时后与甲车相遇,可根据甲车的路程+乙车的路程=•200 千米列方程求出x ,再求甲车的路程即为两车相遇点距A 地的距离,也可直接设元, 利用甲、乙行驶的时间差为1小时列方程求解.解:设乙车开出x 小时后两车相遇,•则甲车行驶了150(x+1)千米,由题意得:150(x+1)+70x=200,x=527,150(1)1502222x +=⨯=202511千米. 答:两车相遇点距A 地202511千米. 点拨:也可设两车相遇点距A 地x 千米,由题意得:200115070x x --=. 12.分析:两车同时相向出发,两车相距30千米有两种情形: 一种是两车的路程之和=A 、B 两地的总路程+30千米,另一种是两车的路程之和=A、B两地的总路程-30•千米.解:设经过x小时,两车相距30千米,由题意得:50x+40x=150-30,或x=2或50x+40x=150+30,解得x=43答:经过4小时或2小时,两车相距30千米.3。
《应用一元一次方程——追赶小明》综合练习
5.6 应用一元一次方程—追赶小明一、选择题1.小明和小刚从相距25 千米的两地同时相向而行,小明每小时走 4 千米,3小时后两人相遇,设小刚的速度为x 千米 /时,列方程得 ()A. 4 3x25B. 3 4 x25C.3 4x 25D. 3 x 4 252.在 800 米跑道上有两人练中长跑,甲每分钟跑320 米,乙每分钟跑 280 米,两人同时同地同向起跑, t 分钟后第一次相遇,那么t的值为 ()3.甲、乙两人从同一地点出发去某地,假设甲先走2 h,乙从后边追赶,那么当乙追上甲时,以下说法正确的选项是()A.甲、乙两人所走的行程相等B.乙比甲多走 2 hC.乙走的行程比甲多D.以上答案均不对二、填空题1.一艘船从甲码头到乙码头顺流行驶,用了 2 小时,从乙码头到甲码头逆流行驶,用了 2.5 小时,水流的速度是 3 千米 /时,设船在静水中的平均速度为 x 千米/时,可列方程:.2.甲、乙两列火车的车长分别为 160 米和 200 米,甲车比乙车每秒多行驶 15 米,两列火车相向而行从相遇到错开需 8 秒,那么甲车的速度为 __________,乙车的速度为 __________.三、简答题1.某校学生排队以 8 千米 /小时的速度前进,在队尾校长让一名学生跑步到队伍的最前面找带队老师传达一个通知,尔后马上返回队尾,这位学生的速度是12 千米 /小时,从队尾赶到排头又回到队尾共用了7.2 分钟,求队伍的长.1 / 25.6 应用一元一次方程—追赶小明一、选择题二、填空题1. 2 x 32.5 x 3 2.30 米 /秒15 米/秒三、解答题1. 队伍的长为 400 米2 / 2。
七年级数学 第五章 一元一次方程 5.6 应用一元一次方程追赶小明练习
12/7/2021
6 应用一元一次方程——追赶小明
8.甲、乙两车自南向北行驶,甲车的速度是每小时 48 千米,乙车的 速度是每小时 72 千米,甲车开出 25 分钟后,乙车开出,则几小时后, 乙车追上甲车?
12/7/2021
6 应用一元一次方程——追赶小明
12.根据某省“十二五”铁路规划,A 地至 B 地客运专线项目建成 后,A 地至 B 地的最短客运时间将由现在的 2 小时 18 分钟缩短为 36 分钟,其速度每小时将提高 260 km,求提速后的火车速度.(精 确到 1 km/h)
解:设提速后的火车速度是 x km/h.根据题意,得 2.3(x-260)=0.6x, 解得 x≈352. 答:提速后的火车速度约为 352 km/h.
[解析] 等量关系:甲的行程=乙的行程. 解:设 x 小时后乙车追上甲车. 根据题意,得 48x+2650=72x,解得 x=56. 5 答:6小时后,乙车追上甲车.
12/7/2021
6 应用一元一次方程——追赶小明
知识点3 一般行程问题
9.甲、乙两人同时从 A 地到 B 地.甲比乙每小时多行 1 千米.若 甲每小时行 10 千米,结果甲比乙早到半小时,设 A,B 之间的路程 为 x 千米,由题意,可列方程为( C )
[解析] 设水流的速度为 x 千米/时.根据题意,得 80-x=50+x,解 得 x=15.即水流的速度为 15 千米/时.故选 B.
12/7/2021
6 应用一元一次方程——追赶小明
11.王强参加 3000 米长跑,他以 6 米/秒的速度跑了一段路程后, 又以 4 米/秒的速度跑完了其余的路程,一共花了 10 分钟,他以 6 米/秒的速度跑了多少米?设他以 6 米/秒的速度跑了 x 米,则列出 的方程是__x6_+__30_0_40_-_x_=__1_0×__6_0______.
七上数学5.6应用一元一次方程――追赶小明练习题(新北师大有答案)
七上数学5.6应用一元一次方程――追赶小明练习题(新北师大有答案)5.6 应用一元一次方程――追赶小明 1.小偷偷走李力的钱包后以6米/秒的速度逃跑,李力发现时,小偷已逃到24米外,他立即以8米/秒的速度追赶,经过( )秒后,他能追上小偷.( ) A.4 B.6 C.12 D.24 2.小明和小刚从相距25.2 km 的两地相向而行,小明每小时走4 km,3 h后两人相遇;设小刚的速度为x km/h,列方程得( ) A.4+3x=25.2 B.3×4+x=25.2 C.3(4+x)=25.2 D.3(x-4)=25.2 3.甲、乙两人在操场上练习竞走,已知操场一周为400 m,甲走100 m/min,乙走80 m/min,现在两人同时、同地、同向出发x min后第一次相遇,则下列方程中错误的是( ) A.(100-80)x=400 B.100x=400+80x C.x4-x5=1 D.100x+400=80x 4.甲、乙两人从同一地点出发去某地,若甲先走2 h,乙从后面追赶,则当乙追上甲时,下列说法正确的是( ) A.甲、乙两人所走的路程相等 B.乙比甲多走2 h C.乙走的路程比甲多 D.以上答案均不对 5.甲、乙两人从相距120千米的A,B两地同时出发,相向而行,甲骑车每小时18千米,乙步行,经5小时后两人相遇,求乙的速度是多少? (1)本题用来建立方程的相等关系是__________________; (2)设乙的速度为x千米/时,根据题意填写下表: s v t s 甲乙 x 方程6.某行军纵队以7千米/时的速度行进,队尾的通讯员以11千米/时的速度赶到队伍前送一封信,送到后又立即返回队尾,共用13.2分钟,求这支队伍的长度.7.甲、乙两人在300米环形跑道上练习长跑,甲的速度是6米/秒,乙的速度是7米/秒. (1)如果甲、乙两人同地背向跑,乙先跑2秒,再经过多少秒两人相遇? (2)如果甲、乙两人同时同地同向跑,乙跑几圈后能首次追上甲? (3)如果甲、乙两人同时同向跑,乙在甲前面6米,经过多少秒后两人第二次相遇?(2015•嘉兴模拟)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到舟山.求舟山与嘉兴两地间的高速公路路程.课后作业 1.C 设经过x秒后,能追上小偷6x=8x-24,x=12. 2.C 考查相遇问题的列法 3.D 同向而行,则第一次相遇也就是甲所走的路程比乙的路程多一圈 4.A 乙追上甲时,甲所走的路程与乙所走的路程相等 5.(1)甲、乙两人所走路程和等于全程(2)18 5 90 5 30 5(18+x)=120 6.解:设这支队伍的长度为x千米,根据题意,得x11-7+x11+7=13.260,解得x=0.72. 0.72千米=720米.答:这支队伍的长度为720米. 7.解:(1)设再经过x秒甲、乙两人相遇,则7×2+7x+6x=300,解得x=22.所以经过22秒甲、乙两人相遇; (2)设经过y秒后乙能追上甲,则7y-6y=300,解得y=300.所以,乙跑一圈需3007秒,乙跑了300÷3007=7(圈).所以乙跑7圈后首次追上甲; (3)设经过t秒后两人第二次相遇,依题意得7t=6t+(300×2-6),解得t=594.所以经过594秒后两人第二次相遇.中考链接解:设舟山与嘉兴两地间的高速公路路程为s 千米,由题意得s4-s4.5=10,解得s=360. 答:舟山与嘉兴两地间的高速公路路程为360千米.。
北师大版七年级数学上册《应用一元一次方程》追赶小明 同步练习
应用一元一次方程-追赶小明同步练习一、选择题1、小明和小刚家距离900 m,两人同时从家出发相向而行,5 min后两人相遇,小刚每分钟走80 m,小明每分钟走( )A.80 m B.90 m C.100 m D.110 m2、甲乙两人练习赛跑,甲每秒钟跑7m,乙每秒钟6.5m。
他们从同一地点起跑,乙先跑5m后,甲再出发追赶乙。
设甲出发x秒后追上乙,那么以下四个方程中正确的选项是〔〕A、7x=6.5x+5B、7x=6.5x-5C、7x+5=6.5xD、(7+6.5)x=53、一列长am的队伍以60m/min的速度向前行进,队尾一名同学用1min从队尾走到队头,这位同学走的路程是〔〕A、amB、(a+60)mC、60amD、(60+2a)m4、甲、乙两人经常练习赛跑,甲每秒跑7 m,乙每秒跑6.5 m,甲让乙先跑5 m,设x s后,甲可以追上乙,那么以下四个方程不正确的选项是( ) A.7xx+5B.7xC.(7-6.5)x=5x=7x-55.一架在无风情况下航速为1 200 km/h的飞机,逆风飞行一条x km的航线用了3 h,顺风飞行这条航线用了2 h.依题意列方程:1 200-x3=x2-1 200.这个方程表示的意义是( )A.顺风与逆风时,风速不变B.顺风与逆风时,飞机自身的航速不变C.顺风和逆风时,所飞的航线长不变D.飞行往返一次的总时间不变6、甲、乙两同学从学校去县城,甲每时走4 km,乙每时走6 km,甲先出发1 h,结果乙还比甲早到1 h.假设设学校与县城间的距离为s km,那么以下方程正确的选项是().A.+1=-1B.-1C.-1=+s-1=6s+17.甲、乙两人骑自行车同时从相距65 km的两地相向而行,2 h后相遇,假设甲比乙每时多骑2.5 km,那么乙每时骑()..5 km B.15 km.5 km D.20 km8.在某公路的干线上有相距108 km的A,B两个车站,某日16时整,甲、乙两辆汽车分别从A,B两站同时出发,相向而行,甲车速度为45 km/h,乙车速度为36 km/h,两车相遇的时间为().9、学校到县城有28千米,除乘公共汽车外,还需步行一段路程.公共汽车的速度为36千米/时,步行的速度为4千米/时,全程共需1小时.求步行和乘车所用时间各是多少?设步行所用时间为x小时,列方程得( )A.36x+4(1-x)=28 B. 36x+41-x=28C.36(1-x)+4x=28 D.36+4=28 x10、甲、乙二人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.乙先跑5米后,甲开始跑.设x秒后甲追上乙,那么以下方程中不正确的选项是( )A. 7xx+5B. 7x-5=6.5C. (7-6.5)xx=7x-5二、填空题11、.一辆汽车以每小时80千米的速度匀速行驶,那么该汽车行驶x小时,所走的路程为______千米;假设该汽车行驶了s千米,那么该汽车行驶的时间是_____小时.12.甲、乙二人骑车从A,B两地同时出发相向而行,x小时后两人相遇.甲每小时行18千米,乙每小时行20千米,那么A,B两地之间的距离可表示为___________千米.13、在一段双轨铁道上,两辆火车迎头驶过,A列车的速度为20 m/s,BA列车全长180 m,B列车全长172 m,两列车错车的时间为____.14.甲、乙两地相距80 km,一船往返两地,顺流时用4 h,逆流时用5 h,那么这只船在静水中的速度为____.15、在一段双轨铁道上,两列火车同向驶过,A列车车速为30 m/s,B列车车速为40 m/s,假设A列车全长为180 m,B列车全长为160 m,那么两列车错车时间为.16、A,B两地相距480千米,一列慢车从A地开出,每小时行驶70千米,一列快车从B地开出,每小时行驶90千米,根据上述条件答复:(1)两车同时开出,相向而行,x小时相遇,那么由条件列出方程为________________.(2)两车同时开出,相背而行,x小时后两车相距620千米,由条件列出方程为____________________.(3)慢车先开1小时,同向而行,快车开出x小时后追上慢车,那么由条件列出方程为_____________________.三、解答题17、解方程:〔1〕( x+1)-2(x-1)=1-3x (2)305 64x x--=18、如图,箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3 h 到达B点后,又继续顺流航行2 h到达C点,总共行驶了198 km,游艇的速度是38 km/h.(1)求水流的速度.(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?19、小明家离学校2.7千米,一天早上上学,小明已走28分钟时,妈妈发现小明上学忘带数学书了,这时爸爸立即骑自行车带上数学书去追赶小明.小明上学每分钟走60米,爸爸骑车每分钟走200米,请问小明爸爸能否赶在小明到学校前把书送到小明手上?20、甲、乙两站相距480千米,一列慢车从甲站开出,每小时行90千米,一列快车从乙站开出,每小时行140千米.(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600千米?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600千米?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?。
《应用一元一次方程——追赶小明》同步练习. 2022年北师大版数学七上
应用一元一次方程——追赶小明1、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?2、甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?3、甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场,如果甲飞机的速度是乙飞机的倍,求乙飞机的速度。
4、甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?5、从甲地到乙地,海路比陆路近40千米,上午10点,一艘轮船从甲地驶往乙地,下午1点,一辆汽车从甲地开往乙地,它们同时到达乙地,轮船的速度是每小时24千米,汽车的速度是每小时40千米,那么从甲地到乙地海路与陆路各是多少千米?6、一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?7、矿山爆破为了确保平安,点燃引火线后人要在爆破前转移到3000米以外的平安地带,引火线燃烧的速度是厘米/秒,人离开的速度是5米/秒,问引火线至少需要多少厘米?8、小明和小丽同时从学校出发到运动场看体育比赛,小明每分钟走80米,他走到运动场等了5分钟,比赛才开始,小丽每分钟走60米,她进入运动场时,比赛已经开始3分钟,问学校到运动场有多远?9、一船在两码头之间航行,顺水需4小时,逆水4个半小时后还差8公里,水流每小时2公里,求两码头之间的距离?10、A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?11、甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为每小时45千米,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为每小时60千米,求快车开出后几小时与慢车相遇?12、一艘轮船从甲地顺流而行9小时到达乙地,原路返回需要11小时才能到达甲地,水流速度为2千米/时,求轮船在静水中的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.6应用一元一次方程—追赶小明
一、选择题
1.小明和小刚从相距25千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x千米/时,列方程得( )
A. 25
+
3=
⨯x C.()25
+x B.25
3
4
4=
3=
-
4
x
4
3=
+x D.()25
2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,则t的值为( )
A.10
B.15
C.20
D.30
3.甲、乙两人从同一地点出发去某地,若甲先走2 h,乙从后面追赶,则当乙追上甲时,下列说法正确的是()
A.甲、乙两人所走的路程相等B.乙比甲多走2 h C.乙走的路程比甲多D.以上答案均不对
二、填空题
1. 一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头到甲码头逆流行驶,用了
2.5小时,已知水流的速度是3千米/时,设船在静水中的平均速度为x千米/时,可列方程:.
2.甲、乙两列火车的车长分别为160米和200米,甲车比乙车每秒多行驶15米,两列火车相向而行从相遇到错开需8秒,则甲车的速度为__________,乙车的速度为__________.
三、简答题
1. 某校学生列队以8千米/小时的速度前进,在队尾校长让一名学生跑步到队伍的最前面找带队老师传达一个通知,然后立即返回队尾,这位学生的速度是12千米/小时,从队尾赶到排头又回到队尾共用了7.2分钟,求队伍的长.
5.6应用一元一次方程—追赶小明
一、选择题
1.C
2.C
3.A
二、填空题
1. ()()3
+x
x 2. 30米/秒15米/秒=
3
2-
5.2
三、解答题
1. 队伍的长为400米。