有关等腰三角形的分类讨论专题
等腰三角形中的分类讨论
等腰三角形中的分类讨论一、等腰三角形的定义等腰三角形是指具有两条边相等的三角形,也就是说,等腰三角形的两条边边长相等,而另一条边则较短。
等腰三角形可以有不同的形状和性质,下面将对等腰三角形进行分类讨论。
二、等腰三角形的分类1. 等腰直角三角形等腰直角三角形是一种特殊的等腰三角形,其中的一个内角为直角(即90度)。
在等腰直角三角形中,另外两个内角相等,均为45度。
根据勾股定理,等腰直角三角形的斜边与两条直角边之间的关系为:斜边的长度等于直角边长度的平方根乘以2。
2. 等腰锐角三角形等腰锐角三角形是指两个等腰三角形的顶点角小于90度的三角形。
在等腰锐角三角形中,两个等腰边的边长相等,而顶点角则小于90度。
等腰锐角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。
3. 等腰钝角三角形等腰钝角三角形是指两个等腰三角形的顶点角大于90度的三角形。
在等腰钝角三角形中,两个等腰边的边长相等,而顶点角则大于90度。
等腰钝角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。
4. 等腰等边三角形等腰等边三角形是一种特殊的等腰三角形,其中的三个边全都相等。
等腰等边三角形的三个内角均为60度。
等腰等边三角形具有许多特殊性质,例如:它的三条高线、中线、角平分线和垂直平分线都重合于同一个点;它的外接圆和内切圆都与三个顶点相切。
三、等腰三角形是指具有两条边相等的三角形,根据顶点角的大小和不同属性,可以进一步分类为等腰直角三角形、等腰锐角三角形、等腰钝角三角形和等腰等边三角形。
每种分类的等腰三角形都有其特殊的性质和关系,值得我们深入学习和研究。
注意:此文档仅为示例文档,实际写作时请根据需求进行修改和扩展,结合数学知识以及示例文档提供的内容,形成一篇丰富详尽的文档。
专题11 等腰三角形中的分类讨论 (原卷版)
专题11 等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论 设等腰三角形中有一个角为α时 对应结论 当α为顶角时底角=α2190-︒ 当α为直角或钝角时不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角 当等腰三角形的一个外角为α时对应结论 若α为锐角、直角α必为顶角的外角 若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是 cm .2.(1)等腰三角形中有一个角是70°,则它的顶角是 .(2)等腰三角形中有一个角是100°,则它的另两个角是 .(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为 .3.如果等腰三角形的周长是35cm ,一腰上中线把三角形分成两个三角形,其周长之差是4cm ,则这个等腰三角形的底边长是 .4.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为 .5.如图,已知直角三角形ABC中,∠ACB=90°,∠CAB=60°,在直线BC或AC上取一点P,使得△ABP为等腰三角形,则符合条件的点有()A.4个B.5个C.6个D.7个6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.87.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.8.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN =4.若边OB上有且只有1个点P,满足△PMN是等腰三角形,则a的取值范围是.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q 运动路线的长为.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.16.已知△ABC中,∠ACB=90°,AC=BC,过点C作直线l,BE⊥l于E,AD⊥l于D.若BE=2,AD=6,求DE的长.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P 为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.。
“分类讨论”在等腰三角形中的应用
“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。
等腰三角形的分类讨论
等腰三角形的分类讨论模块一等腰三角形的分类讨论例1(1)等腰三角形的一边长为3,一边长为7,那么它的周长是。
(2)等腰三角形的一边长为4,周长为9,那么它的腰长是。
(3)已知等腰三角形一腰上的中线将它的周长分为6和12两部分,求此等腰三角形的腰长。
练习(1)已知一个等腰三角形两内角的度数之比为1:2,求这个等腰三角形顶角的度数。
(2)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为。
例2(1)若等腰三角形一腰上的高和另一腰的夹角为25°,求该三角形的底角的度数。
(2)(2016—2017武昌区八上期中第16题)已知△ABC是等腰三角形,由点A作BC边上的高恰好等于BC的一半,则∠BAC的度数为。
练习例3如图,在△ABC 中,∠ABC=90°,∠A=30°.将△ABC 绕B 点逆时针旋转α(0<α≤60°)角度后得到△A ’BC ’,A ’C ’与AC 交于点F ,与AB 交于点E ,连BF 。
当△BEF 为等腰三角时,α= 。
A模块二 两圆一中垂知识导航已知线段AB ,在平面上找一点C ,使△ABC 为等腰三角形。
图1 图2 图3AABB① 如图1,以A 为圆心,AB 为半径作圆,此圆上的所有点C 均满足AC=AB 。
② 如图2,以B 为圆心,BA 为半径作圆,此圆上的所有点C 均满足BC=BA 。
③ 如图3,作AB 的垂直平分线,此垂直平分线上的所有点C 均满足CA=CB 。
“两圆一中垂”上的所有点C 均满足△ABC 为等腰三角形,即满足“等腰”条件的C 点有无数个。
因此,题目会对C 点再加上另外一个限定条件----例如还限定C 点在坐标轴上或格点,这样,C 点的个数就只有几个了。
例4(2014—2016江岸区八上期末)如图:在4×4的网格中存在线段AB ,每格表示一个单位长度,并构建了平面直角坐标系。
在现有的网格中(包括网格的边界)存在一点P,点P 的横纵坐标都为整数,连接PA 、PB 后得到△PAB 为等腰三角形,则满足条件的点P 有 个。
八年级等腰三角形的分类讨论专题
专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。
2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。
3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。
8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。
等腰三角形中的分类讨论好题强烈推荐
等腰三角形中的分类讨论
分类一、当腰长或底边长不能确定时
【例1】已知等腰三角形的两边长分别为8cm和10cm,求周长.
【例2】等腰三角形的两边长分别为3cm和7cm,求周长.
【拓展】已知一等腰三角形的三边分别是3x-1,x+1,5,试求x的值.
分类二、当顶角或底角不能确定时
【例3】等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数. 【例4】已知等腰三角形的一个外角等于150°,求它的各个内角.
分类三、当高的位置关系不确定时
【例5】等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.
分类四、腰的垂直平分线不确定时
【例6】在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角B的度数.
分类五、腰上中线引起的分类讨论
【例7】等腰三角形ABC底边BC为5,腰AC边上的中线BD把其周长分为差为3的两部分,求腰长.
分类六、几何图形之间的位置关系不明确
【例8】已知C、D两点在线段AB的中垂线上,且∠ACB=50°,∠ADB=80°,求∠CAD 的度数.
【例9】在下图三角形的边上找出一点,使得该点与三角形的两顶点构成等腰三角形.。
专题14图形中的等腰三角形分类讨论(解析版)
专题14图形中的等腰三⾓形分类讨论(解析版)专题14 图形中的等腰三⾓形分类讨论教学重难点1.理解等腰三⾓形的性质和判定定理;2.能⽤等腰三⾓形的判定定理进⾏相关计算和证明;3.初步体会等腰三⾓形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三⾓形;5.培养学⽣进⾏独⽴思考,提⾼独⽴解决问题的能⼒。
【备注】:1.此部分知识点梳理,根据第1个图先提问引导学⽣回顾学过的等腰三⾓形的性质,可以在⿊板上举例让学⽣画图;2再根据第2个图引导学⽣总结出题⽬中经常出现的⼀些等腰三⾓形的题型;3.和学⽣⼀起分析⼆次函数背景下等腰三⾓形的基本考点,为后⾯的例题讲解做好铺垫。
建议时间5分钟左右。
等腰三⾓形的性质:等腰三⾓形常见题型分类:函数背景下的等腰三⾓形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进⾏等腰三⾓形的讨论:分“指定腰长”和“不指定腰长”两⼤类;4.根据点的位置和形成的等腰三⾓形⽴等式求解。
【备注】:1.以下每题教法建议,请⽼师根据学⽣实际情况参考;2.在讲解时:不宜采⽤灌输的⽅法,应采⽤启发、诱导的策略,并在读题时引导学⽣发现⼀些题⽬中的条件(相等的量、不变的量、隐藏的量等等),使学⽣在复杂的背景下⾃⼰发现、领悟题⽬的意思;3.可以根据各题的“参考教法”引导学⽣逐步解题,并采⽤讲练结合;注意边讲解边让学⽣计算,加强师⽣之间的互动性,让学⽣参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学⽣分析题⽬,边讲边让学⽣书写,每个问题后⾯有答案提⽰;5.引导的技巧:直接提醒,问题式引导,类⽐式引导等等;6.部分例题可以先让学⽣⾃⼰试⼀试,之后再结合学⽣做的情况讲评;7.每个题⽬的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间⾜够的情况下讲解。
1.(2019青浦⼆模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂⾜为点D,C为线段OD上⼀点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三⾓形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进⽽判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进⽽得出,进⽽得出AE=,再判断出,即可得出结论;(3)分三种情况利⽤勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三⾓形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三⾓形的判定和性质,圆的有关性质,勾股定理,等腰三⾓形的性质,建⽴y关于x 的函数关系式是解答本题的关键.图形背景下等腰三⾓形分类讨论的解题⽅法和策略:1.先寻找题⽬中的条件:相等的⾓、相等的边、相似的三⾓形等;2.根据题⽬中的条件求解相关线段的长度;3.等腰三⾓形讨论中,分三步⾛:分类、画图、计算;4.等腰讨论中,当不能直接利⽤边长相等求解时,⼀般情况下通过“画底边上的⾼”辅助线结合三⾓⽐计算求解;5.注意点的位置取舍答案;6.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。
等腰三角形的分类讨论
等腰三角形的分类讨论关键信息项1、等腰三角形的定义和性质定义:至少有两边相等的三角形叫做等腰三角形。
性质:两腰相等;两底角相等;顶角平分线、底边上的中线、底边上的高相互重合。
2、等腰三角形的分类依据边的长度:分为等边三角形(三边相等)和一般等腰三角形(只有两边相等)。
角的大小:锐角等腰三角形、直角等腰三角形、钝角等腰三角形。
3、分类讨论的情况已知三角形的两边长度,求第三边长度时,需分情况讨论。
已知三角形的一个角的度数,求其他角的度数时,需分情况讨论。
已知三角形的周长和边的关系,求边长时,需分情况讨论。
11 等腰三角形的定义和性质的详细说明等腰三角形是一种特殊的三角形,其定义为至少有两边相等的三角形。
这一特征使得等腰三角形具有独特的性质。
首先,两腰长度相等,这是等腰三角形的最基本特征。
其次,两底角(即两腰所对的角)相等。
这一性质在解决与角度相关的问题时经常被用到。
再者,顶角平分线、底边上的中线、底边上的高相互重合,这条性质被称为“三线合一”,它为证明线段相等、角相等以及解决相关几何问题提供了重要的依据。
111 等腰三角形性质的应用在实际解题中,等腰三角形的性质经常被用于构建等式、求解未知量。
例如,已知一个等腰三角形的顶角为 80 度,由于两底角相等,根据三角形内角和为 180 度,可以计算出底角的度数为(180 80)÷ 2 =50 度。
12 等腰三角形的分类依据121 边的长度分类从边的长度来看,等腰三角形可以分为等边三角形和一般等腰三角形。
等边三角形是特殊的等腰三角形,其三条边长度均相等。
一般等腰三角形则只有两条边长度相等。
122 角的大小分类根据角的大小,等腰三角形可分为锐角等腰三角形(三个角均为锐角)、直角等腰三角形(其中一个角为直角)和钝角等腰三角形(其中一个角为钝角)。
13 分类讨论的情况131 已知两边长度求第三边当已知等腰三角形的两边长度时,求第三边的长度需要分情况讨论。
八年级数学从等腰三角形看分类讨论专题练习
八年级数学从等腰三角形看分类讨论专题练习1.(本小题10分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12 cC. 15cmD. 12cm或15cm2.(本小题10分)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A. 50°B. 80°C. 65°或50°D. 50°或80°3.(本小题10分)等腰三角形的两角之差为30°,求该三角形顶角的度数为()∙ A. 80°B. 40°C. 40°或80°D. 50°或80°4.(本小题10分)如图,在等腰三角形ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连结BE,则∠CBE等于( )∙ A. 80°B. 70°C. 60°D. 50°5.(本小题10分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ) ∙ A. 60°B. 120°C. 60°或150°D. 60°或120°6.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A. 7B. 11C. 7或11D. 157.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=( )A. 70°B. 50C. 70°或20°D. 20°8. 等腰三角形的周长是16,其中两边之差为2,求它的腰长为()A. B. 6 C. 8 D. 6或9. 已知线段AB,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作( )A. 2个B. 4C. 6个D. 8个10. 等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()∙ A. 15 B. 15或7 C. 7 D. 1111. 已知一等腰三角形的两个内角的度数之比为1:4,求等腰三角形底角的度数()∙ A. 30° B. 80° C. 30°或80° D. 90°12. 等腰三角形一腰上的高与一边的夹角为50°,则该等腰三角形的底角度数()∙ A. 50° B. 40°或20°或70° C. 70°或20° D. 40°或70°。
专题08 等腰三角形中的分类讨论模型(解析版)
专题08等腰三角形中的分类讨论模型模型1、等腰三角形中的分类讨论:【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)例1.(2023秋·河北张家口·八年级统考期末)ABC 是等腰三角形,5,7AB AC ==,则ABC 的周长为()A .12B .12或17C .14或19D .17或19【答案】D【分析】根据等腰三角形的定义分两种情况:当腰为5与腰为7时,即可得到答案.【详解】解:当ABC 的腰为5时,ABC 的周长55717++=;当ABC 的腰为7时,ABC 的周长57719++=.故选:D .【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.例2.(2023春·四川巴中·七年级统考期末)等腰三角形的周长为32cm ,一边长为8cm ,则其它两边长是()∴150∠=︒,即顶角为150︒;故答案为:30︒或150︒.BAC【点睛】本题考查等腰三角形的性质,注意掌握分类讨论思想和数形结合思想的应用是解题的关键.例5.(2023秋·江苏·八年级专题练习)在如图所示的网格中,在格点上找一点P,使ABP为等腰三角形,则点P有()A.6个B.7个C.8个D.9个【答案】C【分析】分三种情况讨论:以AB为腰,点A为顶角顶点;以AB为腰,点B为顶角顶点;以AB为底.【详解】解:如图:如图,以AB为腰,点A为顶角顶点的等腰三角形有5个;以AB为腰,点B为顶角顶点的等腰三角形有3个;不存在以AB为底的等腰ABP,所以合计8个.故选:C.【点睛】本题考查等腰三角形的定义,网格图中确定线段长度;在等腰三角形腰、底边待定的情况下,分类讨论是解题的关键.例6.(2023·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为___.【答案】7.5°或75°或97.5°或120°【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ 为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ=90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,∴α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,∵∠DE ′F ′=∠CQP +∠QDE ′,∴∠QDE ′=∠DE ′F ′-∠CQP =60°-45°=15°,∴α=90°-15°=75°;③如图4,当∠CQP 为顶角时,∠CPQ =∠PCQ =45°,∴∠CQP =90°,∴∠QDF ′=90°-∠DF ′E ′=60°,∴∠QDE ′=∠E ′DF ′-∠QDF ′=30°,∴α=∠EDE ′=∠EDQ +∠QDE ′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.故答案为:7.5°或75°或97.5°或120°.【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.例7.(2022秋·江苏徐州·八年级校考期中)如图,70AOB ∠=︒,点C 是边OB 上的一个定点,点P 在角的另一边OA 上运动,当COP 是等腰三角形,OCP ∠=°.【答案】40或70或55【分析】分三种情况讨论:①当OC PC =,②当PO PC =,③当OP OC =,根据等腰三角形的性质以及三角形内角和定理即可得到结论.【详解】解:如图,(1)若点P在BC上,且满足PA PB=,求此时(3)在运动过程中,当t为何值时,ACP△【答案】(1)6516(2)316或52(3)54或32或90ACB∠=︒,5cmAB=在Rt ACP中,由勾股定理得()22234x x∴+-=,解得BP 平分ABC ∠,C ∠在BCP 与BDP △中,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴=.②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==.③如图,当P 在AB 上且(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点若不存在,请说明理由.【答案】(1)()450y x D =-+-,,(2)()33242y m m =+-<<,的运用,解答本题时求出函数的解析式是关键.课后专项训练A.120︒B.75︒【答案】C【答案】D【分析】分为AB AC =、BC BA =,CB CA =三种情况画图判断即可.【详解】解:如图所示:当AB AC =时,符合条件的点有2个;当BC BA =时,符合条件的点有1个;当CB CA =,即当点C 在AB 的垂直平分线上时,符合条件的点有一个.故符合条件的点C 共有4个.故选:D .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4.(2023·江苏八年级期中)如图,在正方形网格中,每个小正方形的边长都为1,点A 、B 都是格点(小正方形的顶点叫做格点),若△ABC 为等腰三角形,且△ABC 的面积为1,则满足条件的格点C 有()A .0个B .2个C .4个D .8个【答案】C 【分析】根据等腰三角形的性质和三角形的面积解答即可.【详解】解:如图所示:∵△ABC 为等腰三角形,且△ABC 的面积为1,∴满足条件的格点C 有4个,故选C .【点睛】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键A.3【答案】D故选:满足条件的点M 的个数为2.故选A .【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.(2022·安徽淮北·九年级阶段练习)如图,在ABC 中,90C ∠=︒,8BC =,6AC =.若点P 为直线BC 上一点,且ABP △为等腰三角形,则符合条件的点P 有().A .1个B .2个C .3个D .4个【点睛】本题考查了等腰三角形的判定和勾股定理的应用,关键要用分类讨论的思想.8.(2022·黑龙江·哈尔滨八年级阶段练习)如图,在平面直角坐标系中,点A 的坐标为()1,1,在x 轴上确定点P ,使AOP 为等腰三角形,则符合条件的点P 有()A.2个B.3个C.4个D.5个【答案】C【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.【详解】解:如图,22112OA=+=,当AO=OP1,AO=OP3时,P1(﹣2,0),P3(2,0),当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.9.(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个∵BD AC ⊥,∴90ADB ∠=︒,∵∵BD AC ⊥,∴90ADB ∠=︒,∵ABD ∠11【分析】根据等腰三角形一腰上的中线将其周长分别为12和9两部分得到底和要的差是1293-=,再根据周长列式求解即可得到答案;【详解】解:∵等腰三角形一腰上的中线将其周长分别为12和9两部分,∴腰与底的差为:1293-=,①当底边比腰长时,设腰为x ,则底为3x +,由题意可得,32129x x ++=+,解得:6x =,3639x +=+=,②当腰比底边长时,设腰为x ,则底为3x -,由题意可得,32129x x -+=+,解得:8x =,3835x -=-=,故答案为:6,9或8,5.【点睛】本题主要考查三角形中线有关计算,解题的关键是得到腰长与底边之差再分类讨论.14.(2022·黑龙江哈尔滨·八年级期末)在平面直角坐标系xOy 中,已知A (1,2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有____个.【答案】4.【分析】根据等腰三角形的判定得出可能OA 为底,可能OA 为腰两种情况,依此即可得出答案.【详解】①以A 为圆心,以OA 为半径作圆,此时交y 轴于1个点(O 除外);②以O 为圆心,以OA 为半径作圆,此时交y 轴于2个点;③作线段AO 的垂直平分线,此时交y 轴于1个点;共1+2+1=4.故答案为:4.【点睛】本题考查了等腰三角形的判定的应用,有两边相等的三角形是等腰三角形,注意要进行分类讨论.15.(2022秋·江苏盐城·八年级校考阶段练习)如图,ABC 中,90ACB ∠=︒,10cm AB =,8cm AC =,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A ---运动,设运动时间为t 秒()0t >,当点P 在边AB 上,【答案】19或20或21.2【分析】利用等腰三角形的性质,依次画图,分类讨论即可.【详解】∵90ACB ∠=当P 在BA 上时,①②当6cm BC CP ==时,过CD PB ⊥于点D ,如图,∴12BD DP BP ==,∵12ABC S AC BC CD ==V g g ,∴ 4.8AC BC CD AB == ,在Rt CBD △中,由勾股定理得:()2226 4.8 3.6cm BD BC CD =--=,∴)22 3.6cm BP BD ==⨯=,∴(()867.221.2s t =++,【答案】5或8【分析】ABP 是以AB 为腰的等腰三角形时,分两种情况:出BP 的长度,继而可求得t 值.【详解】解:在Rt ABC △中,∠②当AB AP =时,28cm 8BP BC t ===,故答案为:5或8.【点睛】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握等腰三角形的性质,以及分情况讨论,注意不要漏解.15.(2022·河南平顶山·八年级期末)如图,ABC 中,90C ∠=︒,6BC =,ABC ∠的平分线与线段AC 交于点D ,且有AD BD =,点E 是线段AB 上的动点(与A 、B 不重合),连接DE ,当BDE 是等腰三角形时,则BE 的长为___________.【答案】4或4【分析】现根据已知条件得出30CBD ABD BAD ∠=∠=∠=︒,再根据BC =6,分别求出AB 、AC 、BD 、AD 、(2)当BE =DE ,如图:∵BE =DE ∠EDB =∠ABD =30°,∴∠AED =∠EDB ∴∠ADE =180°-∠AED -∠A =180°-60°-30°=90°,∴ ADE 为直角三角形,又∵30A ∠=︒且AD =43,∴DE ,∴BE =4;(3)当BD =DE ,时,点E 与A 重合,不符合题意;综上所述,BE 为4或43.故答案为:4或43.【点睛】本题考查了等腰三角形的性质,直角三角形的性质和判定,勾股定理的应用,16.(2023·上虞市初二月考)在如图所示的三角形中,∠A =30°,点P 和点Q 分别是边AC 和BC 上的两个动点,分别连接BP 和PQ ,把△ABC 分割成三个三角形△ABP ,△BPQ ,△PQC ,若分割成的这三个三角形都是等腰三角形,则∠C 有可能的值有________个.【答案】7【分析】①当AB=AP ,BQ=PQ ,CP=CQ 时;②当AB=AP ,BP=BQ ,PQ=QC 时;③当APB ,PB=BQ ,PQ=CQ 时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.17.(2022·浙江·八年级专题练习)已知:如图,线段AC和射线AB有公共端点A.求作:点P,使点P在射线AB上,且ACP为等腰三角形.(利用无刻度的直尺和圆规作出所有符合条件的点P,不写作法,保留作图痕迹)【答案】见解析.【分析】分别作出①AP=CP;②AP=AC;③AC=CP即可.【详解】如图所示,点1P、2P、3P即为所求.△是等腰三角形的三种情况,避免漏答案.【点睛】本题考查尺规作图-作等腰三角形.特别注意ACP18.(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图,在△ABC中,∠A=80°,AB=AC,若点P是△ABC的巧妙点,则符合条件的点P一共有几个?请直接写出每种情况下∠BPC的度数.(3)等边三角形的巧妙点的个数有()A.2个B.6个C.10个D.12个【答案】(1)见解析;(2)6个;∠BPC的度数为40°或160°或140°或80°;(3)C.综上所述:∠BPC的度数40°或80°或140°或160°.(3)如图所示,分别以等边三角形的三条边作其对应边的垂直平分线,再分别以等边三角形的三个顶点为圆心,等边三角形的边长为半径画圆,分别与三条边的垂直平分线的交点和三条垂直平分线的交点即为等边三角形的巧妙点,共有10个,故选:C.【点睛】本题主要考查垂直平分线的性质、等腰三角形的性质,构建等腰三角形的作法:定顶点,定圆心;定腰,定半径;以及等边三角形的性质等.熟练掌握相关性质是解题关键.19.(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,()2-+-=.(1)求A,B两点的坐标;(2)若点O到AB的距离为24OA OB6805,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.【答案】(1)A (0,6),B (8,0);(2)AB =10;(3)存在,(-8,0)、(-2,0)、(18,0).【分析】(1)由非负数的性质知OA =6,OB =8,据此可得点A 和点B 的坐标;(2)根据1122OAB S AB d OA OB == △求解可得;(3)先设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,,再分PA =AB 和AB =PB 两种情况分别求解可得.(1)()2680OA OB -+-= ∴O −6=0O −8=068OA OB ∴==则A 点的坐标为A (0,6),B 点的坐标为(8,0)(2)1122OAB S AB d OA OB == △,245d =6810245OA OB AB d ⨯∴=== (3)存在点P ,使△ABP 是以AB 为腰的等腰三角形设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,①若PA =AB ,则22PA AB =,即226100a +=,解得a =8(舍)或a =−8,此时点P (−8,0);②若AB =PB ,即22AB PB =,即()21008a =-解得a =18或a =−2,此时点P (18,0)或(−2,0);综上,存在点P ,使△ABP 使以AB 为腰的等腰三角形,其坐标为(−8,0)或(18,0)或(−2,0).【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键20.(2022秋·四川成都·八年级校考期中)如图,四边形OABC 是一张长方形纸片,将其放在平面直角坐标系中,使得点O 与坐标原点重合,点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为()3,4,D 的坐标为()2,4,现将纸片沿过D 点的直线折叠,使顶点C 落在线段AB 上的点F 处,折痕与y 轴的交点记为E .。
动点等腰三角形的分类讨论
动点等腰三角形的分类讨论等腰三角形是指两边长度相等的三角形,动点等腰三角形则是指在等腰三角形中,其中一个顶点在动态变化的情况下,讨论不同情况下的动点等腰三角形的特点和分类。
一、动点在底边上的情况:当动点在底边上时,等腰三角形的另外两个顶点分别位于底边的两侧。
此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。
1. 动点在底边的中点上:当动点在底边的中点上时,等腰三角形的另外两个顶点将分别位于底边的两侧,且与底边的两个顶点的连线相等。
这种情况下,等腰三角形的两个等边边长相等,且底角为直角。
2. 动点在底边的延长线上:当动点在底边的延长线上时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。
这种情况下,等腰三角形的两个等边边长相等,且顶角为直角。
3. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。
这种情况下,等腰三角形的两个等边边长相等,且顶角为锐角。
二、动点在底边外的情况:当动点在底边外时,等腰三角形的另外两个顶点将分别位于底边的两侧。
此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。
1. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。
这种情况下,等腰三角形的两个等边边长不相等,且顶角为锐角。
2. 动点在底边的延长线上且与底边相交:当动点在底边的延长线上且与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。
这种情况下,等腰三角形的两个等边边长不相等,且顶角为钝角。
动点等腰三角形可以根据动点在底边上或底边外以及动点位置的具体情况进行分类。
不同情况下,等腰三角形的两个等边边长和顶角的大小都会有所不同。
通过对动点等腰三角形的分类讨论,可以更加全面地了解等腰三角形的特点和性质。
等腰三角形分类讨论专题
类型二
1.等腰三角形一个内角是80°, 则另两个内角是 500,500或800,200
2.等腰三角形两内角比是 1:4,则各个内角分别是 (1200,300,)300或
800,200,200
类型三
1.等腰三角形一腰上的高与另一 腰的夹角是450,求等腰三角形 的底角
当堂检测
❖课本65页练习题
2.等腰三角形一腰上的垂直平分 线与另一腰所在直线相交所得锐 角角是500,求等腰三角形的底 角
类型四
如图,在三角形ABC中,AB=AC, AC边上的中线把三角形的周长分为24cm 和30cm的两部分,求三角形各边的长
A
D
C B
腰和底不确定时需分情况讨论
顶角和底角不确定时需分情况讨论 遇到高和垂直平分线时需分情况讨论 遇到中线分周长时需分情况讨论
等腰三角形 分类讨论专题
学习目标
❖1.构建等腰三角形分类 讨论的 思想
❖2.熟练做出关于分类讨论的类 型题
类型一
1.等腰三角形两边长是6和8, 则周长是 20或22
2.等腰三角形周长是25cm,
一边长是m
D
类型一
3.在平面直角坐标系中, P(2,3),o是坐标原点,已知A是 X轴上一点,若以O,A,P三点 组成的三角形是等腰三角形,
有关等腰三角形分类讨论专题
相关等腰三角形的分类议论专题:1.(1)等腰三角形有两边长为4cm 和 7cm,则周长为厘米。
(2)等腰三角形有两边长为3cm 和 7cm,则周长为厘米。
(3)等腰三角形的周长为24cm,一边长为 10cm,则其他两边长为米。
(4)等腰三角形的周长为24cm,一边长为 6cm,则其他两边长为米。
厘厘总结:等腰三角形波及到边的问题时,能够依据“腰”和“底边”来分类议论,但要利用三角形形三边关系来判断三角形能否存在。
稳固:( 1)等腰三角形一边长为12cm,且是另一边长的,那么这个三角形的周长是厘米。
( 2)假如等腰三角形一腰上的中线把它的周长分红15 和6 两部分,则底边的长是。
2.在△ ABC中,AB=AC,(1)若∠ A=30°,则∠ B=,∠C=。
(2)若∠ B=30°,则∠ A=,∠ C=。
(3)如有一个内角是 30°,则其他两个内角的度数为。
(4)如有一个内角是120°,则其他两个内角的度数为。
总结:在等腰三角形内角求解的问题中,能够按“顶角”但要利用三角形内角和判断三角形能否存在。
、“底角”来分类议论,稳固:假如等腰三角形的两个内角的比为4:1,求等腰三角形的顶角的度数。
3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角为度。
总结:等腰三角形中波及“高”的内角求解问题,能够依据三角形种类分类议论。
稳固:( 1)等腰三角形有一个内角为40°,则一腰上的高与底边的夹角为度。
( 2)等腰三角形有一个内角为40°,则一腰上的高与另一腰的夹角为度。
期末复习专题:等腰三角形中的分类讨论
五、 遇中垂线需讨论
1.在△ABC中,AB=AC,AB边的垂直平分线 与AC所在的直线相交所成的锐角为40°, 则底角∠B的度数为__6_5_°_或__2_5_°
40°
40°
六、 遇动点动角需讨论
1、已知C、D两点为线段AB的中垂线上的两 动点,且∠ACB=500,∠ADB=800,求 ∠CAD的度数。
A,B是两个格点,如果点C也是图中的格
点,且使得△ABC为等腰三角形,则点C的
个数(C )
A.6 B.7
C.8 D.9
B A
C 110°
A
20°
50° B
1、对∠A进行讨论
3、对∠C进行讨论
2、对∠B进行讨论
C
C
C
20°
20°
65° 65° 50°
110°
35° 35°
A
BA
BA
BLeabharlann CC20° 20°
A
BA
C
80°
20°
A
80°
BA
50° 50°
B C
50°
50°
B
2、以BC为一边
1、以AC为一边
C A
B A
C
A
C
3、以AB为一边
C
C
D
AE
B
AE
B
D
几何图形之间的位置关系不明确导致需分类讨论
六、 遇动点动角需讨论
2.如图,将含有30°的两个全等的直角三角 形△ABD与△AMF如图拼在一起,将△ABD 绕点A顺时针旋转得△AB1D1,AD1交FM于 点K,设旋转角为α(α为锐角),当△AFK 为等腰三角形时,旋转角α的度数多少?
2023年九年级中考数学分类讨论专题之等腰三角形中的分类讨论思想专练
中考数学分类讨论专题之等腰三角形中的分类讨论思想专练一.选择题(共10小题)1.已知一个等腰三角形的三边长分别为3x-2,4x-3,7,则这个等腰三角形的周长为()A.23 B.19.5或23C.9或23 D.9或19.5或232.已知方程x 2 -6x+8=0的根,分别是等腰三角形的底边和腰长,则该三角形的周长为()A.6 B.10 C.8 D.124.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定5.等腰△ABC的一边长为4,另外两边的长是关于x的方程x 2 -10x+m=0的两个实数根,则m的值是()A.24 B.25 C.26 D.24或25为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.在△ABC中,∠A的相邻外角是110°,要使△ABC为等腰三角形,则底角∠B的度数是()A.70 B.55°C.70°或55°D.60°8.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A.80°、80°、20°B.80°、50°、50°C.80°、80°、20°或80°、50°、50°D.以上答案都不对9.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个10.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别是()A.50°,50°,50°B.80°,80°,20°C.100°,100°,20°D.50°,50°,80°或80°,80°,20°二.填空题(共5小题)11.等腰三角形的三边长分别为m-2,2m+1,8,则等腰三角形的周长为________ .12.等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________ .13.如图,在矩形ABCD中,AB=4,BC=10,点P在BC上,且PB=3,以AP为腰作等腰三角形APM,使得点M落在矩形ABCD边上,则CM=________ .14.如图,在Rt△ABC中,∠C=90°,点E、F分别是边AB、AC上一点,且AF=EF.若∠CFE=72°,则∠B= ________ °.15.如图,在△ABC中,∠ACB=90°,AC=9,BC=5,点P为△ABC内一动点.过点P作PD⊥AC于点且S △PBC = 152,则D,交AB于点E.若△BCP为等腰三角形,PD的长为________ .三.解答题(共5小题)16.如图矩形ABCD中,AB=2,AD=4,点P是边AD上一点,联结BP,过点P作PE⊥BP,交DC于E点,将△ABP沿直线PE翻折,点B落在点B′处,若△B′PD为等腰三角形,求AP的长.17.(1)已知4a 2 -a-4=0,求代数式(2a-3)(2a+3)+(a-1) 2 +(1+a)(2-a)的值;(2)已知a,b满足a 2 +b 2 -10a-4b+29=0,且a,b为等腰三角形△ABC的边长.求△ABC的周长.18.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)当点P在线段AB上时,BP= ________cm.(用含t的代数式表示)(2)若△BCP为直角三角形,则t的取值范围是________ .(3)若△BCP为等腰三角形,直接写出t的值.(4)另有一动点Q从点C开始,按B→A→C→B的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.请直接写出t为何值时,直线PQ把△ABC的周长分成相等的两部分.19.如图,矩形ABCD,点P是对角线AC上的动点(不与A、C重合),连接PB,作PE⊥PB交射线DC于点E.已知AD=6,AB=8.设AP的长为x.(1)如图1,PM⊥AB于点M,交CD于点N.求证:△BMP∽△PNE.是否是定值?若是,请求出这个值;若不是,请说明理(2)试探究:PEPB由.(3)当△PCE是等腰三角形时,请求出所有x的值.20.如图,CD是△ABC的高,CD=8,AD=4,BD=3,点P是BC边上的一个动点(与B、C不重合),PE⊥AB于点E,DF=DE,FQ⊥AB于点F,交AC于点Q,连接QE.(1)若点P是BC的中点,则QE= ________ ;(2)在点P的运动过程中,①EF+FQ的值为________ ;②当点P运动到何处时,线段QE最小?最小值是多少?③当△AQE是等腰三角形时,求BE的长.。
关于等腰三角形的分类讨论
关于等腰三角形的分类讨论一、形边的分类例如,已知等腰三角形的周长为15,其中一个边长为6,那么它的底边长多少?在解答这个问题的时候,题目当中的关键信息是边长为6的边不确定是腰还是底,这时分类讨论的两种情况分别是:第一种情况是设长为6的边为腰,则另两条边为6,3;第二种情况是设长为6的边为底,则另两条边是4.5,4.5.这时,要验证这样两组边长能不能组成一个三角形,也就是满不满足三角形的任意两边之和大于第三边,两边之差小于第三边。
经验证满足三角形的三边关系定理,所以等腰三角形的底边为6或4.5.例如,当已知等腰三角形的两个边的边长:一边长是6,另一边长是17,求这个三角形的周长时。
很多学生会想到应该分类讨论:第一种情况是设腰为6,底为17时,则三角形的三个边分别是6,6,17,这时要根据三角形的性质进行验证,因为6+6小于17,不符合三角形的性质,这样的三个边组不成三角形,所以这种假设是不成立的。
第二种情况是设腰为17,底为6,则三角形的三个边分别是17,17,6,根据三角形的性质进行验证,经验证符合三角形的性质,所以这个三角形是成立的,则其周长为17+17+6=40.二、形角的分类例如,已知等腰三角形的一个角是另一个角的2倍,求这个等腰三角形的三个内角大小时。
设一个角是x,另一个角就是2x,这时就要分情况进行讨论了。
第一种情况是x为顶角,则另两个角都是2x,根据三角之和为180°,得x+2x+2x=180°,解得x=36°,则这个等腰三角形的三个内角分别是36°,72°,72°。
第二种情况是当x为底角时,则另两个角是x,2x,得x+2x+x=180°,解得x=45°,则这个等腰三角形三个内角分别是45°,45°,90°。
所以这个等腰三角形的三个内角大小是36°,72°,72°或90°,45°,45°。
全等三角形等腰三角形中的分类讨论专题测试题含答案
全等三角形等腰三角形中的分类讨论专题测试题含答案一、腰或底边不确定时需讨论1.等腰三角形两边长为3 cm和5 cm,则它的周长是()A.11 cm B.13 cmC.11 cm或13 cm D.以上答案都不正确2.已知等腰三角形的两边长分别为a,b,且a,b满足+(2a+3b-13)2=0,则此等腰三角形的周长为() A.7或8 B.6或10C.6或7 D.7或10二、顶角或底角不确定时需讨论3.等腰三角形一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°4.等腰三角形的一个外角为100°,则这个等腰三角形的顶角的度数为________________.5.已知△ABC中,∠A=40°,则当∠B=_________________时,△ABC是等腰三角形.三、三角形形状不确定时需讨论6.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是() A.30°B.60°C.150°D.30°或150°7.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为____________.8.△ABC的高AD,BE所在的直线交于点M,若BM=AC,求∠ABC的度数.四、由题目条件的不确定性引起的分类讨论9.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或1010.已知O为等边△ABD的边BD的中点,AB=4,E,F分别为射线AB,DA上一动点,且∠EOF=120°,若AF=1,求BE的长.11.已知点P为线段CB上方一点,CA⊥CB,PA⊥PB,且PA=PB,PM⊥BC于M,若CA=1,PM=4.求CB的长.答案:1. C2. A3. D4. 80°或20°5. 70°或100°或40°6. D7. 63°或27°8. 两种情况考虑:当∠ABC 为锐角时,如图1所示,∵AD ⊥DB ,BE ⊥AC ,∴∠MDB =∠AEM =90°,∵∠AME =∠BMD ,∴∠CAD =∠MBD ,在△BMD 和△ACD 中,⎩⎪⎨⎪⎧∠BDM =∠ADC =90°∠DBM =∠DAC ,BM =AC∴△BMD ≌△ACD(A .A .S .),∴AD =BD ,即△ABD 为等腰直角三角形,∴∠ABC =45°当∠ABC 为钝角时,如图2所示,∵BD ⊥AM ,BE ⊥AC ,∴∠BDM =∠BEC =90°,∵∠DBM =∠EBC ,∴∠M =∠C ,在△BMD 和△ACD 中,⎩⎪⎨⎪⎧∠BDM =∠ADC =90°∠M =∠C ,BM =AC∴△BMD ≌△ACD(A .A .S .),∴AD =BD ,即△ABD 为等腰直角三角形,∴∠ABD =45°,则∠ABC =135° .∴综上所述,∠ABC =45°或135°9. C10. 当F 在线段DA 的延长线上,如图1,作OM ∥AB 交AD 于M ,∵O 为等边△ABD 的边BD 的中点,∴OB =2,∠D =∠ABD =60°,∴△ODM 为等边三角形,∴OM =MD =2,∠OMD =60°,∴FM =FA +AM =3,∠FMO =∠BOM =120°,∵∠EOF =120°,∴∠BOE =∠FOM ,而∠EBO =180°-∠ABD =120°,∴△OMF ≌△OBE ,∴BE =MF =3;当F 点在线段AD 上,如图2,同理可证明△OMF ≌△OBE ,则BE =MF =AM -AF =2-1=1.∴综上所述,BE =3或111. 此题分以下两种情况:①如图1,过P 作PN ⊥CA 于N ,∵PA ⊥PB ,∴∠APB =90°,∵∠NPM =90°,∴∠NPA =∠BPM ,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N =∠BMP ∠NPA =∠BPM PA =PB,∴△PMB ≌△PNA ,∴PM =PN =4=CM ,BM =AN =3,∴BC =7;②如图2,过P 作PN ⊥CA 于N ,∵PA ⊥PB ,∴∠APB =90°,∵∠NPM =90°,∴∠NPA =∠BPM ,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N =∠BMP ∠NPA =∠BPM PA =PB,∴△PMB ≌△PNA ,∴PM =PN =4=CM ,BM =AN =5,可得BC =9.综上所述,CB =7或9。
等腰三角形分类讨论专题复习
等腰三角形分类讨论专题复习等腰三角形分类讨论一、等腰三角形的分类等腰三角形可以按照边、角、外角、高、中线等方式进行分类。
具体分类如下:1.边分类:指等腰三角形两边的长度是否相等,分为等腰三角形和非等腰三角形。
2.角分类:指等腰三角形两个底角是否相等,分为等腰三角形和非等腰三角形。
3.外角分类:指等腰三角形外角的大小是否相等,分为等腰三角形和非等腰三角形。
4.高分类:指等腰三角形的一腰上的高与另一腰的夹角,分为等腰三角形和非等腰三角形。
5.中线分类:指等腰三角形的一腰上的中线分三角形的周长为两部分,分为等腰三角形和非等腰三角形。
6.中垂线分类:指等腰三角形的一腰上的中垂线与另一腰的夹角,分为等腰三角形和非等腰三角形。
思考题:在ABC三边所在的直线上找一点D,使得ABD 为等腰三角形,画图说明点D所在的位置。
二、练1.若一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是多少?2.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于多少?3.已知等腰三角形的一边等于5,周长为12,则一边等于多少?4.已知△ABC的周长为24,AB=AC,AD⊥BC于D,若△ABD的周长为20,则AD的长为多少?5.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长。
6.在等腰三角形中,AB的长是BC的2倍,周长为40,则AB的长为多少?7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为多少?8.等腰三角形中,两条边的长分别为4和9,则它的周长是多少?9.若一个等腰三角形有一个角为100°,则另两个角为多少?10.一等腰三角形一腰上的中线把这个三角形的周长分成15cm和18cm两部分,求这个等腰三角形的底边长。
11.一个等腰三角形的一个内角比另一个内角的2倍少30°,求这个三角形的三个内角的度数。
等腰三角形中的分类讨论问题归类
等腰三角形中的分类讨论问题归类等腰三角形是高中几何学中的重要概念之一,它具有一些特殊的性质和分类方法。
本文将对等腰三角形进行分类讨论,并归类相关问题。
通过对等腰三角形的深入了解,我们能够更全面地掌握它的性质和应用。
一、定义与性质等腰三角形是指具有两边长度相等的三角形。
根据这个定义,我们可以推导出等腰三角形的一些性质。
首先,等腰三角形的底角(底边所对的角)是两条边所对应的顶角的一半。
其次,等腰三角形的高线(从顶点到底边之间的线段)也是它的中线和中线所在的高线相等。
此外,等腰三角形的角平分线也是高线和中线。
这些性质在解决等腰三角形相关问题时非常有用。
二、基于边长的分类根据等腰三角形底边和两边的长度关系,我们可以将等腰三角形分为以下几种情况。
1. 等腰锐角三角形:当两边的长度小于底边时,所形成的等腰三角形是一个锐角三角形。
在这种情况下,底边所对应的顶角是一个锐角。
2. 等腰直角三角形:当两边的长度等于底边时,所形成的等腰三角形是一个直角三角形。
在这种情况下,底边所对应的顶角是一个直角。
3. 等腰钝角三角形:当两边的长度大于底边时,所形成的等腰三角形是一个钝角三角形。
在这种情况下,底边所对应的顶角是一个钝角。
三、基于角度的分类根据等腰三角形底边所对应的顶角的大小,我们可以将等腰三角形分为以下几种情况。
1. 等腰锐角三角形:当底角小于90度时,所形成的等腰三角形是一个锐角三角形。
在这种情况下,底边所对应的顶角是一个锐角。
2. 等腰直角三角形:当底角等于90度时,所形成的等腰三角形是一个直角三角形。
在这种情况下,底边所对应的顶角是一个直角。
3. 等腰钝角三角形:当底角大于90度时,所形成的等腰三角形是一个钝角三角形。
在这种情况下,底边所对应的顶角是一个钝角。
四、应用与推广了解等腰三角形的分类讨论有助于我们在解决相关几何问题时快速准确地判断和运用。
例如,当我们需要证明一个三角形是等腰三角形时,可以根据其边长关系或角度关系进行分类讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1.0 可编辑可修改有关等腰三角形的分类讨论专题:
1.(1)等腰三角形有两边长为4cm和7cm,则周长为厘米。
(2)等腰三角形有两边长为3cm和7cm,则周长为厘米。
(3)等腰三角形的周长为24cm,一边长为10cm,则其余两边长为厘米。
(4)等腰三角形的周长为24cm,一边长为6cm,则其余两边长为厘米。
总结:等腰三角形涉及到边的问题时,可以按照“腰”和“底边”来分类讨论,但要利用三角形形三边关系来判断三角形是否存在。
巩固:(1)等腰三角形一边长为12cm,且是另一边长的,那么这个三角形的周长是厘米。
(2)如果等腰三角形一腰上的中线把它的周长分成15和6两部分,则底边的长是。
2.在△ABC中,AB=AC,(1)若∠A=30°,则∠B= ,∠C= 。
(2)若∠B=30°,则∠A= ,∠C= 。
(3)若有一个内角是30°,则其余两个内角的度数为。
(4)若有一个内角是120°,则其余两个内角的度数为。
总结:在等腰三角形内角求解的问题中,可以按“顶角”、“底角”来分类讨论,但要利用三角形内角和判断三角形是否存在。
巩固:如果等腰三角形的两个内角的比为4:1,求等腰三角形的顶角的度数。
3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角为度。
总结:等腰三角形中涉及“高”的内角求解问题,可以按照三角形类型分类讨论。
巩固:
(1)等腰三角形有一个内角为40°,则一腰上的高与底边的夹角为度。
(2)等腰三角形有一个内角为40°,则一腰上的高与另一腰的夹角为度。