数字时钟 定时器的结构.

合集下载

单片机原理及接口技术(C51编程)第7章 定时器计数器

单片机原理及接口技术(C51编程)第7章 定时器计数器
30
图7-14 由外部计数输入信号控制LED的闪烁
(3)设置IE寄存器 本例由于采用T1中断,因此需将IE寄存器的EA、ET1位置1。
(4)启动和停止定时器T1 将寄存器TCON中TR1=1,则启动T1计数;TR1=0,则停止T1计数。
参考程序如下:
#include <reg51.h> void Delay(unsigned int i)
7.4 定时器/计数器的编程和应用 4种工作方式中,方式0与方式1基本相同,只是计数位数不同。方
式0为13位,方式1为16位。由于方式0是为兼容MCS-48而设,计数初 值计算复杂,所以在实际应用中,一般不用方式0,常采用方式1。
7.4.1 P1口控制8只LED每0.5s闪亮一次 【例7-1】在AT89S51的P1口上接有8只LED,原理电路见图7-
当TMOD的低2位为11时,T0被选为方式3,各引脚与T0的逻辑关系 见图7-8。
T0分为两个独立的8位计数器TL0和TH0,TL0使用T0的状态控制位 C/T* 、GATE、TR0 ,而TH0被固定为一个8位定时器(不能作为外部 计数模式),并使用定时器T1的状态控制位TR1,同时占用定时器T1的 中断请求源TF1。
13。采用T0方式1的定时中断方式,使P1口外接的8只LED每0.5s闪亮 一次。
23
图7-13 方式1定时中断控制LED闪亮
24
(1)设置TMOD寄存器 T0工作在方式1,应使TMOD寄存器的M1、M0=01;应设置C/T*=0,为定
时器模式;对T0的运行控制仅由TR0来控制,应使相应的GATE位为0。定时 器T1不使用,各相关位均设为0。所以,TMOD寄存器应初始化为0x01。 (2)计算定时器T0的计数初值

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理80C51单片机是一种常用的微控制器,其定时器/计数器(Timer/Counter)是实现定时和计数功能的重要组件。

以下简要介绍80C51单片机定时器/计数器的工作原理:1. 结构:定时器/计数器由一个16位的加法器构成,可以自动加0xFFFF(即65535)。

定时器/计数器的输入时钟可以来自系统时钟或外部时钟源。

2. 工作模式:定时模式:当定时器/计数器的输入时钟源驱动加法器不断计数时,可以在达到一定时间后产生中断或产生其他操作。

计数模式:当外部事件(如电平变化)发生时,定时器/计数器的输入引脚可以接收信号,使加法器产生一个增量,从而计数外部事件发生的次数。

3. 定时常数:在定时模式下,定时常数(即定时时间)由预分频器和定时器/计数器的初值共同决定。

例如,如果预分频器设置为1,定时器/计数器的初值为X,那么实际的定时时间 = (65535 - X) 预分频系数输入时钟周期。

在计数模式下,定时常数由外部事件发生的时间间隔决定。

4. 溢出和中断:当加法器达到65535(即0xFFFF)时,会产生溢出,并触发中断或其他操作。

中断处理程序可以用于执行特定的任务或重置定时器/计数器的值。

5. 控制寄存器:定时器/计数器的操作可以通过设置相关的控制寄存器来控制,如启动/停止定时器、设置预分频系数等。

6. 应用:定时器/计数器在许多应用中都很有用,如时间延迟、频率测量、事件计数等。

为了充分利用80C51单片机的定时器/计数器功能,通常需要根据实际应用需求配置和控制相应的寄存器,并编写适当的软件来处理定时器和计数器的操作。

51单片机定时-计数器结构和计数器工作原理

51单片机定时-计数器结构和计数器工作原理
使用中断方式时对IE寄存器赋值开发中断
使TR0或TR1置位,启动定时/计数器
晶体振荡器的振荡信号从XTAL2端输入到片内的时钟发生器上,时钟发
生器是一个二分频触发器电路,它将振荡器的信号频率除以2,向CPU提供
了两相时钟信号P1和P2。时钟信号的周期称为机器状态时间S,它是振荡
周期的2倍。在每个时钟周期(即机器状态时间S)的前半周期,相位1(即
P1信号)有效,在每个时钟周期的后半周期,相位2(即P2信号)有效。
提供
用途:定时器和计数器
核心:加1计数器
原理:每来一个脉冲则加1计数器加1,当加到全1时再来一个脉冲使加
1计数器归零,同时加1计数器的溢出使TCON寄存器中的TF0(或TF1)
置1,向CPU发出中断请求
脉冲来
补充:
计数器工作原理:
用作计数器时,对T0或T1引脚的外部脉冲计数,如果前一个机器周期
采样值为1,后一个机器周期采样值为0,则说明有一个脉冲,计数器加
1。
在每个机器周期的S5P2期间采样引脚输入电平。新的计数初值于下一个
机器周期的S3P1期间装入计数器。
此种方式需要两个机器周期来检测一个1->0负跳变信号,因此最高的计
数频率为时钟频率的1/24。
S5P2:
S5P2指的是第5个时钟周期的相位2。
工作原理:13位计数器,使用TL0的低5位和TH0的高8位组成,TL0
的低5位溢出时向TH0进位。TH0溢出时发出中断请求。
方式1
计算公式:
最大计数:65536个机器周期
工作原理:16位计数器,TL0作为低8位,TH0作为高8位
方式2:自动重装初值的8位计数方式
计算公式:p.s.晶振频率必须选择12的整数倍,因为定时器的频率是晶振

数字钟概述

数字钟概述

数字钟概述一、数字钟的简介数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,已得到广泛的使用。

数字钟的设计方法有许多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等等。

这些方法都各有其特点,其中利用单片机实现的电子钟具有编程灵活,并便于功能的扩展。

数字钟已成为人们日常生活中不可缺少的生活必需品,广泛地应用于人家庭以及车站、码头、剧场、办公室等家庭和公共场所,给人们的生活,学习,工作,娱乐带来极大的方便[1]。

数字钟一般由振荡器,分频器,译码器,显示器等部分组成,这些都是数字电路中最基本的,应用最广的电路。

当前市场上已有现成数字钟集成电路芯片出售,价格较便宜。

由于数字集成电路技术的发展,采用了先进稳定的石英振荡器技术,使数字钟具有走时准确,性能稳定,携带方便等特点,是目前人们生活和工作不可或缺的报时用品[2]。

二、数字钟的发展前景现在是一个知识爆炸的新时代。

新产品、新技术层出不穷,电子技术的发展更是日新月异。

可以毫不夸张的说,电子技术的应用无处不在,电子技术正在不断地改变我们的生活,改变着我们的世界。

在这快速发展的年代,时间对人们来说是越来越宝贵,在快节奏的生活时,人们往往忘记了时间,一旦遇到重要的事情而忘记了时间,这将会带来很大的损失。

因此我们需要一个定时系统来提醒这些忙碌的人。

数字化的钟表给人们带来了极大的方便。

近些年,随着科技的发展和社会的进步,人们对数字钟的要求也越来越高,传统的时钟已不能满足人们的需求。

多功能数字钟不管在性能还是在样式上都发生了质的变化,有电子闹钟、数字闹钟等等。

单片机在多功能数字钟中的应用已是非常普遍的,人们对数字钟的功能及工作顺序都非常熟悉。

但是却很少知道它的内部结构以及工作原理。

由单片机作为数字钟的核心控制器,可以通过它的时钟信号进行计时实现计时功能,将其时间数据经单片机输出,利用显示器显示出来。

计数器与定时器教学课件PPT

计数器与定时器教学课件PPT
CLK 1 GATE 1 OUT 1
CLK 2 GATE 2 OUT 2
引脚
D7~D0:8位、双向、三态数据线,直接和系统 数据总线相连。读/写16位数据则分两次进行。
CS:片选信号,低电平有效。 RD,WR:读信号,写信号,低电平时有效。 A1,A0:8253端口选择线。00~10分别选择计
《微机原理与接口》教学课件
方式5 硬件触发选通信号
-WR
写入 写入 方式5 4
写入 3
CLK
GATE
OUT
4321 0
3 2 13 2 10
▪ GATE:触发作用
触发
重触发:装计数值
《微机原理与接口》教学课件
6、方式5: 硬件触发选通信号
在这种方式下,设置了控制字后,输出为 高。在设置了计数值后,计数器并不立即 开始计数,而是由门控脉冲的上升沿触发 启动。当计数到0时,输出变低,经过一 个CLK脉冲,输出恢复为高,停止计数。 要等到下次门控脉冲的触发才能再计数
OUT端随着工作方式的不同和当前计数状态的 不同,一定有电平输出变化,而且输出变化均 发生在CLK的下降沿。OUT的输出波形在写控 制字之前为未定态,在写了控制字之后到计数 之前为计数初态,再之后有计数态、暂停态、 结束态等。
对于给定的工作方式,门控信号GATE的触发条 件是有具体规定的,或电平触发,或边沿触发, 或两者均可
《微机原理与接口》教学课件
各种工作方式的输出波形
方式 0 方式 1 方式 2 方式 3 方式 4 方式 5
0
N0
N
1 0/N
N0 10
N N/2 0/N N/2 0
N N 01
01 N 01
《微机原理与接口》教学课件

通用定时器内部结构

通用定时器内部结构

通用定时器内部结构
通用定时器是一种常见的电子元件,用于在电子系统中生成精
确的时间间隔。

它通常由以下几个内部组件构成:
1. 时钟源,通用定时器通常需要一个时钟源来提供基准时钟信号。

这个时钟源可以是外部晶体振荡器、晶体振荡器模块或者外部
时钟输入。

2. 预分频器,预分频器用于将时钟源的频率进行分频,以得到
更低的工作频率。

这样可以提供更大范围的定时器时间间隔选择。

3. 计数器,计数器用于计数时钟脉冲的数量,从而实现定时功能。

当计数器达到设定的值时,就会触发定时器的输出。

4. 控制逻辑,控制逻辑用于设置定时器的工作模式、计数方向、触发条件等参数。

它还负责处理外部触发信号和生成定时器的输出
信号。

5. 输出比较器,输出比较器用于比较计数器的值和设定的触发值,以确定何时触发定时器的输出。

通过这些内部组件的协作,通用定时器可以实现各种定时功能,如定时触发、脉冲生成、PWM信号生成等。

它在各种电子设备中都
有广泛的应用,如微控制器、计时器、测量仪器等。

对于电子工程
师来说,了解通用定时器的内部结构和工作原理是非常重要的。

数字显示定时器

数字显示定时器

数字电子技术课程设计设计题目:数字显示定时器学院:专业:姓名:班级:学号:指导老师:目录一、设计目的………………………………………2二、设计内容 (2)三、数字显示定时器的组成和基本工作原理……2四、设计步骤与方法………………………………5五、调试方法………………………………………9六、问题分析………………………………………9七、选用元器件 (10)八、参考文献 (10)九、心得体会 (10)数字显示定时器一、设计目的1设计题目:数字显示定时器2设计要求:①分析数字显示定时器的工作原理,明确其中每个组件及元件的作用。

②通过查阅有关资料,了解组件的逻辑功能、使用条件及引脚图,并将图中74LS90组件的连接图标注引脚号,将各与非门编号并标注引脚号以便连线和排除故障。

3 目的要求①结合运用所学知识,进一步提高逻辑电路的识图能力。

②通过实验进一步了解并掌握完成数字电路系统实验的方法,培养调试技能和解决实际问题的能力。

③进一步了解中规模集成组件的性能与应用。

二、设计内容①搭接秒信号发生器,用示波器B点波形的幅度及周期。

②搭接并调试计数译码显示单元。

③搭接控制单元,启动脉冲形成单元,由实验台的单脉冲代替。

思考应该用正脉冲还是负脉冲?④搭接蜂鸣器及发光管报警电路,并调试其功能。

⑤搭接完整电路(连A,B,C,D,E各点)测试系统功能(注意:先测试组件功能,再连接单元电路;先调试好单元电路功能,再连接整体电路)。

三、数字显示定时器的组成和基本工作原理数字显示定时器是一个在能实现定好的时间时发出信号的同时,显示出计时的具体情况的一种计时器。

计时器在平时的应用是很广泛的。

我现在设计的就是数现定时器的一种,其基本组成的整体框图如图所示。

它的工作原理是:按微动开关,计时开始,两位十进制显示所计时间,到达给定时间(60s)时计时停止,蜂鸣器及发光二极管发出报警信号。

1.秒信号发生器在精度要求不高的情况下,可由555定时器组成的多谐震荡器提供频率为1Hz的矩形脉冲作为时钟脉冲。

多功能数字钟的设计和制作

多功能数字钟的设计和制作

目录摘要 (1)1数字钟的结构设计及方案选择 (2)1.1振荡器的选择 (2)1.2计数单元的构成及选择 (3)1.3译码显示单元的构成选择 (3)1.4校时单元电路设计及选择 (4)2 数字钟单元电路的设计 (4)2.1振荡器电路设计 (4)2.2时间计数单元设计 (4)2.2.1集成异步计数器74LS390 (5)2.2.2 用74LS390构成秒和分计数器电路 (5)2.2.3用74LS390构成时计数器电路 (6)2.2.4 时间计数单元总电路 (7)2.3译码显示单元电路设计 (7)2.4 校时单元电路设计 (7)2.5整点报时单元电路设计 (1)3 数字钟的实现电路及其工作原理 (9)4电路的搭建与调试 (10)5结束语 (10)参考文献 (11)附录1: (12)摘要数字钟被广泛用于个人家庭及公共场所,成为人们日常生活中的必需品。

诸如定时自动报警、按时自动打铃、定时广播、自动起闭路灯、定时开关烘箱、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

因此,研究数字钟及扩大其应用,有着非常现实的意。

数字电子钟,从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

数字电子钟有以下几部分组成:振荡器,分频器,60进制的秒、分计时器和12进制计时计数器,秒、分、时的译码显示部分及校正电路等。

关键词:数字钟 555多谐振荡器计数器 74LS390 74LS48数字电子时钟的设计及制作1数字钟的结构设计及方案选择数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

主要由振荡器、分频器、计数器、译码器显示器和校时电路组成。

振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,通常使用石英晶体震荡器,然后经过分频器输出标准秒脉冲,或者由555构成的多谐振荡器来直接产生1HZ的脉冲信号。

秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“12翻1”规律计数。

定时计数器

定时计数器
) (8位)
T1端 TR1 GATE l
≥l
TF1
中断
C/T=1 &
控制
INT1端
2.工作方式1 ( M1M0=01 ,16位定时器/计数器) 由TH1和TL1构成16位加1计数器,其他特性与工作 方式0相同。
振荡器 ÷12 C/T=0 TL1 (8位) T1端 TR1 GATE INT1端 l ≥l TH1 (8位)
第6章
定时/计数器
P132
定时/计数器的结构及工作原理 定时/计数器的工作方式 定时/计数器方式和控制寄存器 定时/计数器的编程举例
6.1 概述
在测量控制系统中,常需要有实时时钟和计数器,以实现 定时(或延时)控制以及对外界事件进行计数。 一、常用的定时(或延时)方法: 软件延时:利用执行一个循环程序进行时间延迟。其特点是 定时时间精确,不需外加硬件电路,但占用CPU时间。因此软 件定时的时间不宜过长。 硬件定时:利用硬件电路实现定时。其特点是不占用CPU时 间,通过改变电路元器件参数来调节定时,但使用不够灵活方 便。对于时间较长的定时,常用硬件电路来实现。 可编程定时器/计数器(硬件+软件):通过专用的定时器/ 计数器芯片实现。其特点是通过对系统时钟脉冲进行计数实 现定时,定时时间可通过程序设定的方法改变,使用灵活方 便。也可实现对外部脉冲的计数功能。
TL0,#83H P1.0 TH0,#06H P1.1
;送方式字 ;送时间常数 ;送时间常数 ;送控制宇 ;送中断控制字
;等待中断
;重装时间常数 ;控制方波倒相 ;重装时间常数 ;控制方波倒相
RETI DONE2: MOV CPL RETI
【*例3】试用T1方式2编制程序,在P1.0引脚输出周 期为400S的脉冲方波,已知fosc=12MHZ。

接口技术06定时器计数器8253-5

接口技术06定时器计数器8253-5

0
0
0
1
1
0
传送方式
写入计数器0的初始值 写入计数器1的初始值 写入计数器2的初始值 写入控制寄存器控制字
读自计数器0的OL 读自计数器1的OL 读自计数器2的OL
五、8253 的控制字格式:
D7
D6
D5
D4
D3
D2
D1 D0
SC1 SC0 RW1 RW0 M2
M1
M0 BCD
计数器选 择
工作方式
计数初值开始工作,见图6.5所示③。21组1
CLK
WR ① GATE
OUT
n=4
43
0 21

GATE OUT
0
4
4321
WR ③
n=3
GATE
OUT2 工作在1方式,进行8位二进制计数, 并设计 数 初值的低8位为BYTEL。
其初始化程序段为
MOV DX,307H
计数器:
在时钟信号作用下,进行减“1”计数,计数次数到 (减“1”计数回零),从输出端输出一个脉冲信号。
计数举例: •①对零件和产品的计数; •②对大桥和高速公路上车流量的统计,等等。
Intel8253在微机系统中可用作定时器和计数 器。定时时间与计数次数是由用户事 先设定。
2、 8253 定时与计数器与CPU的关系 8253 定时与计数操作过程与CPU相互独立,
计数器 2
GATE2 OUT2
定时器/计数器的内部结构:
①数据总线缓冲器。它是一个三态、双向 8位寄存器,用于将8253与系统数据总线 D0~D7 相连。 ②读/写逻辑。 ③控制命令寄存器。它接受CPU送来的控 制字。 ④计数器。8253有3个独立的计数器(计 数通道),其内部结构完全相同,

纯数字电路数字时钟原理图(免费)

纯数字电路数字时钟原理图(免费)

做成时钟,并不难,把十进改成6进就行了如下:1,震荡电路的电容用晶震,记时准确.2, 时:用2块计数器,十位的用1和2(记时脚)两个脚.分:用2块计数器,十位的用1,2,3,4,5,6,(记时脚)6个脚.秒:同分.评论:74系列的集成块不如40系列的,如:用CD4069产生震荡,CD4017记数,译码外加.电压5V.比74LS160 74LS112 74LS00好的.而且CD4069外围元件及少.如有需要我可以做给你.首先需要产生1hz的信号,一般采用CD4060对32768hz进行14分频得到2hz,然后再进行一次分频。

(关于此类内容请参考数字电路书中同步计数器一章)(原文件名:4060.JPG)一种分频电路:(原文件名:秒信号1.JPG)采用cd4518进行第二次分频另一种可以采用cd4040进行第二次分频第三种比较麻烦,是对1mhz进行的分频(原文件名:秒信号2.JPG)介绍一下cd4518:CD4518,该IC是一种同步加计数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别为1~7和9~{15}。

该计数器是单路系列脉冲输入(1脚或2脚;9脚或10脚),4路BCD码信号输出(3脚~6脚;{11}脚~{14}脚)。

此外还必须掌握其控制功能,否则无法工作。

手册中给有控制功能的真值(又称功能表),即集成块的使用条件,如表2所示。

从表2看出,CD4518有两个时钟输入端CP和EN,若用时钟上升沿触发,信号由CP输入,此时EN端应接高电平“1”,若用时钟下降沿触发,信号由EN端输入,此时CP端应接低电平“0”,不仅如此,清零(又称复位)端Cr也应保持低电平“0”,只有满足了这些条件时,电路才会处于计数状态,若不满足则IC不工作。

计数时,其电路的输入输出状态如表3所示。

值得注意,因表3输出是二/十进制的BCD码,所以输入端的记数脉冲到第十个时,电路自动复位0000状态(参看连载五)。

另外,该CD4518无进位功能的引脚,但从表3看出,电路在第十个脉冲作用下,会自动复位,同时,第6脚或第{14}脚将输出下降沿的脉冲,利用该脉冲和EN端功能,就可作为计数的电路进位脉冲和进位功能端供多位数显用。

计数器的结构.

计数器的结构.
0) TL0
TCON
工作 方式
TMOD
工作 方式
定时/计数器的结构框图
(1)结构组成部分
两个16位的二进制定时/计数器T0、T1
T0/T1分别由两个8位的计数器组成,均属SFR 寄存器 T0由TH0、TL0构成,字节地址为8CH、8AH T1由TH1、TL1构成,字节地址为8DH、8BH;
相关的控制寄存器
方式寄存器TMOD
控制寄存器TCON
(2)定时器/计数器的原理
振荡器 ÷12
C/T=0 C/T=1
控制信号TRx
加 1 计数器
TFx
申请 中断
TX端
定时功能
对片内机器周期进行计数,即每个机器周期
产生一 个计数脉冲,计数加1。 实时控制、实时采样、定时控制等。
(2)定时器/计数器的原理
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
模块四
定时器/计数器
4.1
定时器/计数器的结构
4.1 定时器/计数器的结构
可编程定时,通过对系统时钟脉冲计数而获得延时 ,MCS-51定时/计数器的优点:
可实现定时、计数功能,有利用实时控 制 不占用CPU时间 定时精度高,修改方便
1. 定时/计数器结构
T1
微 处 理 器 TH1 P3.5(T1) TL1
振荡器 ÷12
C/T=0
TX端
C/T=1
控制信号TRx
加 1 计数器
TFx
申请 中断
计数功能
对片外从T0(P3.4)、T1(P3.5)引脚输入的外
部脉冲信号进行计数,下降沿计数加1。计数频率为 晶振频率的1/24。 生产线上产品计数、检测电机转速等功能。

利用单片机的定时器设计一个数字时钟

利用单片机的定时器设计一个数字时钟

利用单片机的定时器设计一个数字时钟数字时钟是我们日常生活中常见的计时工具,可以准确地显示当前的时间。

而单片机的定时器则可以提供精准的定时功能,因此可以利用单片机的定时器来设计一个数字时钟。

本文将介绍如何使用单片机的定时器来设计一个基于数字显示的时钟,并提供基本的代码实现。

一、时钟电路设计利用单片机设计一个数字时钟,首先需要设计一个合适的时钟电路。

时钟电路一般由电源电路、晶振电路、单片机复位电路和显示电路组成。

1. 电源电路:为电路提供工作所需的电源电压,一般使用稳压电源芯片进行稳定的供电。

2. 晶振电路:利用晶振来提供一个稳定的时钟信号,常用的晶振频率有11.0592MHz、12MHz等。

3. 单片机复位电路:用于保证单片机在上电或复位时能够正确地初始化,一般使用降低复位电平的电路。

4. 显示电路:用于将单片机输出的数字信号转换成七段数码管可以识别的信号,一般使用BCD码和译码器进行实现。

二、单片机定时器的应用单片机的定时器具有精准的定时功能,可以帮助实现时钟的计时功能。

单片机的定时器一般分为定时器0和定时器1,根据具体的应用需求选择使用。

在设计数字时钟时,可以将定时器0配置成定时器模式,设置一个适当的定时时间。

当定时器0计时达到设定时间时,会触发一个中断信号,通过中断处理程序可以实现时钟的计时功能。

以下是一个基于单片机的定时器的伪代码示例:```void Timer0_Init(){// 设置定时器0为工作在定时器模式下// 设置计时时间// 开启定时器0中断}// 定时器0中断处理程序void Timer0_Interrupt_Handler(){// 更新时钟显示}void main(){Timer0_Init();while(1){// 主循环}}```在上述伪代码中,Timer0_Init()函数用于初始化定时器0的相关设置,包括工作模式和计时时间等。

Timer0_Interrupt_Handler()函数是定时器0的中断处理程序,用于处理定时器0计时到达设定时间时的操作,例如更新时钟显示。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器是一种用于计算时间间隔的电子设备。

它通过内部的晶振、分频器和计数器等组件实现精确的计时功能。

工作原理如下:
1. 晶振:定时器计数器内部搭载了一个晶振,晶振的频率非常稳定,一般为固定的几十千赫兹。

2. 分频器:晶振的频率可能非常高,但计数器需要较低的频率进行计数,所以需要一个分频器将晶振的频率降低,得到一个更低的频率作为计数器的输入。

3. 计数器:分频器将得到的较低频率信号送入计数器,计数器会根据信号的脉冲个数来进行计数。

4. 触发器:计数器会将计数结果保存在一个触发器中,可以通过读取这个触发器来获取时间间隔的计数值。

5. 重置:当计数器达到设定的计数值后,会自动重置为初始状态,重新开始计数。

通过以上几个步骤的组合,定时器计数器可以实现精确的时间间隔计算。

可以根据不同的需求设置不同的晶振频率、分频器的分频倍数和触发器的位数,以实现不同精度的计数功能。

定时器计数器广泛应用于各种电子设备中,如计时器、时钟、
定时开关等。

它们都依赖于定时器计数器的准确计时功能,来实现精确的时间控制。

数字时钟的工作原理

数字时钟的工作原理

数字时钟的工作原理数字时钟是我们日常生活中常见的一种时间显示设备,它以数字的形式直观地显示时间,方便我们快速获取时间信息。

那么,数字时钟是如何工作的呢?接下来,我们将深入探讨数字时钟的工作原理。

数字时钟的核心部件是数字显示模块,它通常由数码管组成。

数码管是一种能够显示数字和部分字母的显示器件,它由七段发光二极管组成,每个发光二极管的发光区域可以组成数字0-9和部分字母的显示。

数字时钟通过控制数码管的发光状态来显示时间。

数字时钟的工作原理可以分为两个部分,时间信号的获取和数字显示模块的控制。

首先,数字时钟需要获取时间信号,一般来说,它会通过电子时钟芯片或者接收无线信号的方式获取当前的时间信息。

电子时钟芯片内部会有一个高精度的晶体振荡器,它能够稳定地产生一个固定频率的时钟信号,这个信号会被用来计时和显示时间。

一旦获取了时间信号,数字时钟就需要将时间信息转换成数码管可以显示的形式。

这个过程涉及到时间信号的分频和数码管的控制。

时间信号通常是一个固定频率的方波信号,通过分频电路可以将它转换成年、月、日、时、分、秒等不同的时间信号。

这些时间信号经过一定的逻辑运算和数码管的控制,就能够准确地显示在数码管上了。

数码管的控制通常采用多路复用技术,即通过控制数码管的阳极和阴极来选择需要显示的数字,并且以一定的频率进行刷新,从而实现数字时钟的显示。

在刷新的瞬间,我们看到的数字是稳定的,这是因为人眼对光线的适应性,使得我们看到的数字是稳定的,而不是在不停地闪烁。

除此之外,数字时钟还可能包含闹钟、计时器等功能,这些功能都是通过控制电路和逻辑电路来实现的。

比如,闹钟功能需要设定一个特定的时间,当时间信号与设定的时间相同时,就会触发闹钟的响铃。

计时器功能则需要通过按钮来控制计时的开始、暂停和复位。

总的来说,数字时钟的工作原理涉及到时间信号的获取、分频、数码管的控制和功能模块的实现。

通过这些过程,我们能够方便地获取时间信息,提高我们的生活效率。

轻松学会DSP——第9章-定时器和时钟

轻松学会DSP——第9章-定时器和时钟
当x[k]为单位冲击信号时,假定初始条件为0
y[0] Ay[1] By[2] Cx[1] 0 y[1] Ay[0] By[1] Cx[0] C y[2] Ay[1] By[0] Cx[1] Ay[1] y[3] Ay[2] By[1] y[n] Ay[n 1] By[n 2]
3、设计实例
设DSP主频为80MHz,设计一个输出1kHz,采样 频率为10kHz的数字振荡器。
A 2 cosT 2 cos36 1.618034
B 1
C sinT sin 36 0.587785
y[1] C 0.587785 y[2] Ay[1] 0.951056
定时器计数器初值为80M/10k-1=7999
从DIV到PLL
从PLL到DIV
例如:从PLL×3模式到DIV-2模式
从PLL到PLL
首先要从PLL模式变为DIV模式,然后从DIV模式变 回PLL模式,因为只有在DIV模式下才可以改系数。
例如:从PLL×X到PLL×1模式
从DIV到DIV模式
(1)虽然DIV模式下面可以进行对CLKMD修改,但 是,从DIV到DIV的改变必须首先把DIV模式改为 PLL模式,而且这个PLL模式还必须是整数系数的 PLL模式,最后再从PLL模式改回DIV模式;
ANDM #0010h, TCR
;TDDR=0
ORM #0020h, TCR
;TRB=1
STM #0FFFFh, IFR
;清除所有中断
ORM #8h, IMR
;打开时钟中断
RSBX INTM
;开中断
ANDM #0FFEFh, TCR
;TSS=0, 启动
时钟
Y2 .word 079BCh

51单片机定时时钟工作原理

51单片机定时时钟工作原理

51单片机定时时钟工作原理51单片机(也被称为8051微控制器)的定时器/计数器是一个非常有用的功能,它允许用户在特定的时间间隔内执行任务。

下面是其基本工作原理:1. 结构:8051单片机通常包含两个定时器/计数器,称为Timer0和Timer1。

每个定时器都有一个16位的计数器,可以用来跟踪经过的时间或事件。

2. 时钟源:定时器的核心是一个振荡器或外部时钟源,为计数器提供脉冲。

通常,这个时钟源可以是内部的,也可以是外部的。

内部时钟源通常基于系统时钟,而外部时钟源则直接从外部硬件输入。

3. 计数过程:每当振荡器产生一个脉冲,计数器就会增加(对于向上计数的定时器)或减少(对于向下计数的定时器)一个单位。

这取决于定时器的模式。

4. 溢出:当计数器达到其最大值(对于向上计数的定时器)或达到0(对于向下计数的定时器)时,会发生溢出事件。

这会导致一个中断,可以用来执行特定的任务或操作。

5. 分频:在某些模式下,计数器的输出可以用来分频系统时钟,从而产生更精确的定时器时钟。

6. 预分频器:预分频器允许用户设置一个值,该值决定了振荡器的输入脉冲被分频的次数。

这有助于控制计数器的速度,从而控制定时器的精度。

7. 工作模式:8051微控制器支持多种定时器模式,包括正常模式、自动重装载模式和比较模式。

每种模式都有其特定的应用和行为。

8. 中断:当定时器溢出时,可以产生一个中断。

这意味着微控制器可以暂时停止当前的任务,转而处理与定时器相关的特定任务。

通过合理配置和使用这些定时器/计数器,开发人员可以在8051单片机上实现精确的时间控制和事件调度。

这对于实现诸如延时、精确计时和脉冲生成等功能非常有用。

电路中的计数器与定时器数字电路中的常用元件

电路中的计数器与定时器数字电路中的常用元件

电路中的计数器与定时器数字电路中的常用元件在数字电路中,计数器与定时器是常用的元件,主要起到计数和计时的作用,广泛应用于各种电子设备中。

本文将对计数器与定时器的原理、分类、应用以及在数字电路中的设计等方面进行介绍和探讨。

一、计数器计数器是一种数字电路元件,主要用于计数,常用于各种计数器件,如时钟、计时器、频率计和计数器等。

在数字电路中,计数器是一种二进制计数器,其功能是将二进制数字逐次加1,利用这种自然的计数方式可以实现直观的计数功能。

计数器的原理计数器是由触发器和组合逻辑门构成的,触发器用于存储计数器的状态,组合逻辑门用于控制触发器的状态,根据不同的控制方式可以实现不同类型的计数器。

计数器的分类常见的计数器有以下几种:1. 同步计数器:同步计数器是由同步触发器和组合逻辑门构成的,每次计数都是同步进行的,在时钟的作用下实现计数。

同步计数器适用于需要精确计数的场合。

2. 异步计数器:异步计数器是由异步触发器和组合逻辑门构成的,计数不是同步进行的,其计数速度比同步计数器快。

异步计数器适用于计数速度较快的场合。

3. 可编程计数器:可编程计数器可以通过编程实现不同的计数值,具有较高的灵活性和可编程性。

计数器的应用计数器广泛应用于各种电子设备中,其中一些应用包括:1. 时钟:时钟是一种常见的计时器,可以通过计数器实现对时间的计算和显示。

2. 计时器:计时器通常用于精确定时和计时,如计时器、秒表、定时器等。

3. 频率计:频率计可以通过计数器实现对波形频率的计算和显示。

二、定时器定时器是一种数字电路元件,主要用于计时,广泛应用于各种电子设备中。

定时器的原理定时器同样由触发器和组合逻辑门构成,其中触发器用于存储状态,组合逻辑门可以控制触发器的状态,实现不同类型的定时器。

定时器的分类常见的定时器有以下几种:1. 单稳态定时器:单稳态定时器是由触发器和组合逻辑门构成的,在触发脉冲的作用下,输出一次脉冲并保持一段时间,常用于需要延时一段时间后输出脉冲的场合。

数字钟工作原理

数字钟工作原理

数字钟工作原理数字钟是一种常见的时间显示设备,它能够以数字形式准确显示时间,广泛应用于家庭、办公室等各种场所。

那么,数字钟是如何工作的呢?下面我们就来详细介绍一下数字钟的工作原理。

数字钟的核心部件是时钟芯片,它是数字钟的“大脑”,负责计时和显示时间。

时钟芯片内部包含一个晶体振荡器,它能够稳定地产生高频信号。

这个高频信号经过一系列分频、计数和逻辑运算后,最终被转换成驱动数码显示器的信号,从而实现时间的显示。

在数字钟中,最常见的数码显示器是数码管。

数码管由数个发光二极管(LED)组成,每个发光二极管能够显示数字0-9中的一个。

通过控制这些发光二极管的亮灭,就能够实现时间的显示。

时钟芯片负责将计算得到的时间数据转换成适合数码管显示的信号,并通过驱动电路将这些信号传送到数码管上,从而完成时间的显示。

除了时钟芯片和数码显示器,数字钟还包括电源、控制电路、按钮等部件。

电源为数字钟提供工作所需的电能,控制电路负责对时钟芯片的工作进行控制,按钮用于调整时间和设置闹钟等功能。

这些部件共同协作,使得数字钟能够正常工作并实现时间的准确显示。

总的来说,数字钟的工作原理就是通过时钟芯片产生稳定的高频信号,经过一系列的处理和转换,最终驱动数码显示器显示出时间。

各个部件之间相互配合,共同完成时间的计算和显示工作。

通过了解数字钟的工作原理,我们能够更好地理解数字钟的使用和维护,也能够更好地欣赏数字钟的精密工艺和便利功能。

希望通过本文的介绍,读者能够对数字钟的工作原理有一个清晰的认识,从而更好地使用和维护数字钟,同时也能够对数字钟的技术原理有一个初步的了解。

数字钟作为一种常见的时间显示设备,其工作原理的了解对我们的生活和工作都有一定的帮助。

数字时钟的原理

数字时钟的原理

数字时钟的原理
数字时钟的原理是基于数码管显示技术和时钟芯片的运行机制。

数码管是一种能够显示数字的器件,由七段LED(Light Emitting Diode,发光二极管)组成。

每个数码管的LED段可
以发光,并且被编号为a, b, c, d, e, f, g。

通过点亮或熄灭相应
的LED段,可以显示数字0至9以及其他特殊字符,如冒号等。

时钟芯片是数字时钟的关键部件,它包含一个晶振用于产生稳定的时钟信号,并且具有计时和计算功能。

时钟芯片内部有一个计数器,根据晶振提供的时钟信号,计数器以固定频率进行加1操作。

通过对计数器进行适当的处理,时钟芯片能够精确地测量时间,并将其转换为将要显示在数码管上的数字信号。

当计数器的数值发生改变时,时钟芯片会根据特定的算法将其转换为对应的数码管段的控制信号。

这些控制信号通过驱动电路传递到每个数码管的对应LED段上,点亮相应的LED段,
从而显示出正确的数字。

在数字时钟中,通常使用四个数码管分别表示小时的十位数、小时的个位数、分钟的十位数和分钟的个位数。

时钟芯片负责根据实时时间的变化,不断更新这些数码管的显示内容,以实现时钟的功能。

总的来说,数字时钟的原理是基于数码管显示技术和时钟芯片的协同作用,通过正确定时和计时的运算,将实时时间以数字形式展示在数码管上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津现代职业技术学院
机电电子工程系
Байду номын сангаас
单片机技术
定时/计数器的应用
定时器的结构 定时器的工作方式 定时器应用
我们之前有个课题就是点亮LED,那是用延时程序做的,现 在回想起来,这样做不很恰当,为什么呢?我们的主程序在 做灯的闪烁延时,就不能再干其他的事了。比较合理的方法 是用单片机内部的定时功能来进行眨眼时间的控制。这样既 能使定时时间的精度提高,还能同时执行其他任务。本课题 我们就来具体研究定时计数器的应用。 单片机中的定时器和计数器是一个东西。只要计数脉冲的间 隔相等,则计数值就代表了时间的流逝。只不过计数器是记 录的外界发生的事情,而定时器则是由单片机提供一个非常 稳定的计数源,如果单片机外接晶振是12MHz,经过12分频 后获得的一个脉冲源。计数脉冲的间隔是1微秒。有了这个 精确的1微秒,我们就好办多了。
定时器的结构
定时器/计数器的结构
P 3.5 P 3.4
TH1 溢 出 启 动
TL1 溢 出
TH0 启 动
TL0
CP U
模式
模式
4 TCON(88H) 中断 TMOD(89H)
4
图6.1 8051单片机的定时器结构
相关文档
最新文档