工程光学第二章练习参考答案

合集下载

工程光学习题答案(附试题样本)

工程光学习题答案(附试题样本)

测控09级复习资料工程光学基础教程(课后重点习题答案)测控09级二○一一年六月二日第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学第二章练习参考答案

工程光学第二章练习参考答案

(5)
n sinU NA sinU 0.1
U 5.73917 D 2( ltgU ) 2(45 tg 5.73917 ) 9.045mm
(5)
lz 160 D D' 1.667 9.00mm lz ' 29.63
(6)
-l (6)
l’ 180 -lz
h3 h2 d 2 tgu2 ' 12 10 0.04 11.6 tgu3 ' tgu3 h3 11.6 0.04 0.156 f3' 100
第二章 17
F’ 求物方参数。反向算。 h1=10
H’
u3’
f’
h1 10 f ' 64.102564 tgu3 ' 0.156 h3 11.6 lF ' 74.35897 tgu3 ' 0.156
第二章 17
求物方参数。反向算。
h1=10
H’
u3’
F’
f1 ' 50, f 2 ' 50, f 3 ' 100 d1 d 2 10
f’
lF’
tgu1 ' tgu2
h1
f1 '
10
50
0.2
h2 h1 d1tgu1 ' 10 10 ( 0.2) 12 tgu2 ' tgu3 tgu2 h2 f2' 0.2 12 50 0.04
第二章 3
y H -f d 1140mm 7200mm H’ f’ y’
l ' l 10
l d l ' 7200 2 f ' d 1140 1 1 1 l' l f'

工程光学习题参考答案第二章理想光学系统

工程光学习题参考答案第二章理想光学系统

第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。

解:1.0'>f ()-∞=l a()'2f l b -=()f f l c =-=()/f l d -=()0=l e()/f l f =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′=(6)x ′=3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。

求该物镜焦距,并绘出基点位置图。

解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。

解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。

工程光学基础教程-习题答案(完整)

工程光学基础教程-习题答案(完整)

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学基础教程 习题参考答案

工程光学基础教程 习题参考答案

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学第二版习题答案(李湘宁_贾志宏)

工程光学第二版习题答案(李湘宁_贾志宏)

丝,问其通过球面的共轭像在何处?当入射高度
h=10mm,实际光线的像方截距为多少?与高斯像面的距离
为多少?
解:
8、一球面镜半径 r=-100mm, 求 = 0 , -0.1 , -0.2 , -1 ,1 , 5, 10,∝时的物距像距。
第 4 页 共 29 页
解:( 1)
东北石油大学测控 09 级工程光学期末复习资料
解:
100mm,则所得像与物
6.希望得到一个对无限远成像的长焦距物镜,焦距 系统最后一面到像平面的距离 (工作距) 为 并画出光路图。
解:
=1200mm,由物镜顶点到像面的距离 L=700 mm,由 ,按最简单结构的薄透镜系统考虑, 求系统结构,
7.一短焦距物镜,已知其焦距为 系统结构。
35 mm,筒长 L=65 mm,工作距 , 按最简单结构的薄透镜系统考虑,求
3.一光学系统由一透镜和平面镜组成,如图
3-29 所示,平面镜 MM与透镜光轴垂直交于 D 点,透镜前方
离平面镜 600 mm有一物体 AB,经透镜和平面镜后,所成虚像
至平面镜的距离为 150 mm,且像高为
物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
解:平面镜成 β =1 的像,且分别在镜子两侧,物像虚实相反 级工程光学期末复习资料
第六章习题
1.如果一个光学系统的初级子午彗差等于焦宽(),则
应等于多少?
解:
2.如果一个光学系统的初级球差等于焦深
(),则
应为多少? 解:
3. 设计一双胶合消色差望远物镜,
和火石玻璃 F2(

面的曲率半径。
解:
,采用冕牌玻璃 K9 (
解:设一个气泡在中心处,另一个在第二面和中心之间。

工程光学第二章

工程光学第二章

第二章习题答案1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f,试用作图法分别对以下物距∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。

解:1.0'>f()2f l b -=()f lc =-=()/f l d -=()0=l e()/fl f =')(f f lg -=='22)(f f l h -==+∞=l i )(2.0'<f-∞=l a )(l b )(=l c =)(/)(f l d -=0)(=l e2/)(f l f =f lg =)(lh 2)(=+∞=l i )(3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm ,物镜两焦点间距离为1140mm 。

求该物镜焦距,并绘出基点位置图。

解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。

解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=⇒ 2'21'1/1/1/1/1l l l l -=- ④方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。

工程光学基础 习题参考答案-第二章_02

工程光学基础 习题参考答案-第二章_02

3、设一系统位于空气中, 设一系统位于空气中,垂轴放大 率 β = −10 × , 由物面到像面的距离 (共轭距) 共轭距)为 7200mm,物镜两焦点 间距离为 1140mm。求该物镜焦距, 求该物镜焦距, 并绘出基点位置图。 并绘出基点位置图。 解: 由公式 β = − x' f = − (2-4) , f' x
f 2 ' = −240mm
8、一短焦距物镜 一短焦距物镜, 焦距物镜,已知其焦距为 35mm,筒长 L=65mm,工作距离 l k ' = 50mm ,按 最简单结构的薄透镜系统考虑, 最简单结构的薄透镜系统考虑,求系统结构。 求系统结构。 解: (仿照 (仿照 P32 P32 例 2) 利用正切计算法,设 h1 = 100mm ,有公式:
1 1 1 d (2-33) = + − f ' f1 ' f 2 ' f1 ' f 2 '
f1 ' f 2 ' nr1 r2 f ' = − f = − ∆ = ( n − 1)[n( r − r ) + ( n − 1)d ] 2 1 1 Φ = f ' − dr2 l ' = H n( r2 − r1 ) + ( n − 1)d − dr1 l = H n( r2 − r1 ) + ( n − 1)d
xx' = ff ' = − f ' 2 ∴ x' = − f2 x
代入数据得:
x = −∞, x' = 0.5625mm x = −10m, x' = 0.703mm x = −6m, x' = 0.9375mm x = −4m, x' = 1.406mm x = −2m, x' = 2.813mm

工程光学-物理光学智慧树知到课后章节答案2023年下北京航空航天大学

工程光学-物理光学智慧树知到课后章节答案2023年下北京航空航天大学

工程光学-物理光学智慧树知到课后章节答案2023年下北京航空航天大学北京航空航天大学第一章测试1.光的空间周期性可用()这样一组物理量来表示。

A:角频率 B:波长 C:空间频率 D:空间角频率答案:波长;空间频率;空间角频率2.电磁波是恒波。

()A:对 B:错答案:对3.驻波形成的条件:两个频率相同、振动方向相同、传播方向相同的单色光波的叠加。

()A:错 B:对答案:错4.驻波的现象是形成合成波的强度随时间和位置而变化。

()A:错 B:对答案:错5.光能量或光信号的传播速度是()。

A:群速度 B:相速度答案:群速度第二章测试1.任一方位振动的光矢量E,都可分解成两个互相垂直的分量。

平行于入射面振动的分量称为光矢量的p分量;垂直于入射面振动的分量称为光矢量的s 分量。

()A:错 B:对答案:对2.光在光密-光疏介质界面上反射时,对于正入射或掠入射时,反射光的光矢量产生π的相位改变,称为半波损失。

()A:对 B:错答案:错3.光从光疏媒质界面上发生全反射时,透过界面进入第二媒质约波长量级,并沿着界面流过波长量级距离后返回第一媒质,沿着反射波方向出射的波称为倏逝波。

()A:对 B:错答案:错4.光轴是晶体中存在的一个特殊方向,光在晶体中沿光轴传播时会发生双折射现象。

()A:对 B:错答案:错5.o光的振动方向()主平面。

A:位于 B:垂直于答案:垂直于第三章测试1.一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率n=1.45,反射光的偏振度为93.8%。

()A:对 B:错答案:错2.波片快轴的定义:在波片中传播速度慢的光矢量方向。

()A:对 B:错答案:错3.电气石对o光的吸收系数为3.6/cm,对e光的吸收系数为0.8/cm,将它作成偏振片。

当自然光入射时,若要得到偏振度为88%的透射光,偏振片厚度为1.64cm。

()A:错 B:对答案:错4.通过检偏器观察一束椭圆偏振光,其强度随着检偏器的旋转而改变。

工程光学基础教程习题答案完整

工程光学基础教程习题答案完整

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学第二版习题答案(李湘宁,贾志宏)

工程光学第二版习题答案(李湘宁,贾志宏)

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

《工程光学》课程习题及答案

《工程光学》课程习题及答案

第一章习题1、已知真空中的光速c=3×108 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

工程光学答案_课后答案_郁道银_第二版_完整

工程光学答案_课后答案_郁道银_第二版_完整

2、有一聚光镜, 全部能量的百分比。 解:
(数值孔径
),求进入系统的能量占
而一点周围全部空间的立体角为
3、一个
的钨丝灯,已知:
,该灯与一聚光镜联用,灯丝中 ,若设灯丝是各向均匀发光,求 1)灯
心对聚光镜所张的孔径角
泡总的光通量及进入聚光镜的能量;2)求平均发光强度 解:
4、一个
的钨丝灯发出的总的光通量为
(2)从第二面向第一面看
(3)在水中
7、 有一平凸透镜 r1=100mm,r2=,d=300mm,n=1.5,当物体在时, 求高斯像的位置 l’。 在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度 h=10mm, 实际光线的像方截距为多少?与高斯像面的距离为多少?
3
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
1
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射, 使得光束可以在光纤内传 播,则有:
在天花板中心,离地面 处地板上的光照度。 解:
设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公
式:
会聚点位于第二面后 15mm 处。 ( 2 ) 将 第 一 面 镀 膜 , 就 相 当 于 凸 面 镜
像位于第一面的右侧,只是延长线的交点,因此是虚像。 还可以用β正负判断: (3)光线经过第一面折射: , 虚像

工程光学第二版习题答案(李湘宁-贾志宏)汇总重点

工程光学第二版习题答案(李湘宁-贾志宏)汇总重点

工程光学第二版习题答案(李湘宁-贾志宏)汇总重点第一章习题1、已知真空中的光速c=3m/,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25m/,当光在冕牌玻璃中,n=1.51时,v=1.99m/,当光在火石玻璃中,n=1.65时,v=1.82m/,当光在加拿大树胶中,n=1.526时,v=1.97m/,当光在金刚石中,n=2.417时,v=1.24m/。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为某,则可以根据三角形相似得出:所以某=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为某,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:其中n2=1,n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径某=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0inI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0inI1=n2inI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0inI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学课后答案(郁道银版)

工程光学课后答案(郁道银版)

《工程光学》郁道银版第一章1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学第二版习题答案(李湘宁-贾志宏)

工程光学第二版习题答案(李湘宁-贾志宏)

工程光学第二版习题答案(李湘宁-贾志宏)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。

解:则当光在水中,n=时,v= m/s,当光在冕牌玻璃中,n=时,v= m/s,当光在火石玻璃中,n=时,v= m/s,当光在加拿大树胶中,n=时,v= m/s,当光在金刚石中,n=时,v= m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=,所以纸片最小直径为。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=的玻璃球上,求其会聚点的位置。

工程光学习题解答

工程光学习题解答

36.2( mm), l F
第二章 理想光学系统
17、有三个薄透镜,其焦距分别为 f1 100mm, f 2 50mm, f 3 50mm, 其间隔 d1 10mm, d 2 10mm 求组合系统的 基点。 h h1 100mm, tan U 2 tan U1 2 解:物方参数 f

lH f
l F l H f 1560mm, l F l H f 1360mm
第二章 理想光学系统
10、解:
f f1f 2

100mm,
f1f 2 f
50mm
d f1 f 2 100mm lH f lH f d f2 d f1 100mm, l F l H f 0
A
OB 50 OB OB 30mm
A
A
n 6、解:0 sin I1 n1 sin I 2 I 2 90 I m
0
n1 sin I m n2 sin 90 sin I m n2 n1 n2 n1
2 2
0
cos I m 1
n0 sin I1 n1 1
H
lH
F2
F1
F
d
l F (lk )
L
f
第二章 理想光学系统
9、已知一透镜 r1 200mm, r2 300mm, d 50mm, n 1.5 , 求其焦距、光焦度、基点位置。 nr1r2 解: f 1440mm 1.44m
( n 1)[ n( r2 r1 ) ( n 1)] 1 f 0.69 D n 1 n d1 120mm, l H f n 1 n d 2 80mm

工程光学答案_课后答案_郁道银_第二版_完整

工程光学答案_课后答案_郁道银_第二版_完整

10.长 60 mm,折射率为 1.5 的玻璃棒,在其两端磨成曲率半径为 10 mm 的凸 球面,试求其焦距。 解:
11.一束平行光垂直入射到平凸透镜上,会聚于透镜后 480 mm 处,如在此透镜 凸面上镀银,则平行光会聚于透镜前 80 mm 处,求透镜折射率和凸面曲率半径。 解 :
8
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
7
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
8.已知一透镜 度。 解:
求其焦距、光焦
9.一薄透镜组焦距为 100 mm,和另一焦距为 50 mm 的薄透镜组合,其组合焦 距仍为 100 mm,问两薄透镜的相对位置。 解:
6.希望得到一个对无限远成像的长焦距物镜,焦距
=1200mm,由物镜顶点到
像 面 的 距 离 L=700 mm , 由 系 统 最 后 一 面 到 像 平 面 的 距 离 ( 工 作 距 ) 为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。 解:
7.一短焦距物镜,已知其焦距为 35 mm,筒长 L=65 mm,工作距,按最简单结构 的薄透镜系统考虑,求系统结构。 解:
此为平板平移后的像。
5.棱镜折射角 材料的折射率。 解:
,C 光的最小偏向角
,试求棱镜光学
10
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
6.白光经过顶角
(2) 由(1)式和(2)式联立得到 n0 sinI1 . 5、一束平行细光束入射到一半径 r=30mm、折射率 n=1.5 的玻璃球上,求其会聚 点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则 反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后, 会聚点又在何 处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决,

工程光学基础教程_习题参考答案

工程光学基础教程_习题参考答案

工程光学基础教程_习题参考答案工程光学基础教程_习题参考答案第一章光学基本知识与技术1.1 什么是光学?光学在人类生活中有哪些应用?答:光学是研究光的行为和性质的物理学科。

它涉及到光的产生、传播、变换、干涉、衍射、偏振以及光在介质中的行为等问题。

光学在人类生活中有着广泛的应用,如眼镜、镜头、显示器、照明、医疗器械、天文望远镜等。

1.2 光的波动性是如何描述的?答:光的波动性是指光是一种电磁波,具有振幅、频率、波长等特征。

它可以在空间中传播,并且可以表现出干涉、衍射等波动性质。

光的波动性可以通过波长、频率、振幅等参数进行描述。

1.3 什么是光的干涉?举例说明其应用。

答:光的干涉是指两列或两列以上的光波在空间中叠加时,由于光波的叠加产生明暗相间的干涉条纹的现象。

光的干涉在很多领域都有应用,例如光学干涉仪、双缝干涉实验、全息照相、光学通信等。

1.4 什么是光的衍射?举例说明其应用。

答:光的衍射是指光在遇到障碍物或孔径时,会绕过障碍物或孔径边缘,产生明暗相间的衍射图案的现象。

光的衍射在很多领域也有应用,例如光学透镜、衍射光学器件、全息照相、光学存储等。

1.5 什么是光的偏振?举例说明其应用。

答:光的偏振是指光波的电矢量在振动时,只在某个方向上振动,而在其他方向上振动为零的现象。

光的偏振在很多领域也有应用,例如偏振眼镜、偏振片、偏振光学器件等。

第二章光学透镜与成像2.1 什么是透镜?列举几种常见的透镜及其特点。

答:透镜是一种光学器件,它由一块透明材料制成,可以聚焦或发散光线。

常见的透镜包括凸透镜、凹透镜、平凸透镜、平凹透镜等。

2.2 凸透镜的成像原理是什么?如何计算凸透镜的焦距?答:凸透镜的成像原理是光线经过凸透镜后,平行于主轴的光线会聚于一点,这个点称为焦点。

焦距是指从透镜中心到焦点的距离。

凸透镜的焦距可以通过公式 f=1/v+1/u 进行计算,其中f为焦距,u为物距,v为像距。

2.3 凹透镜的成像原理是什么?如何计算凹透镜的焦距?答:凹透镜的成像原理是光线经过凹透镜后,平行于主轴的光线会朝透镜中心方向会聚于一点,这个点称为虚焦点。

工程光学习题解答

工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h3 h2 d 2 tgu2 ' 12 10 0.04 11.6 tgu3 ' tgu3 h3 11.6 0.04 0.156 f3' 100
第二章 17
F’ 求物方参数。反向算。 h1=10
H’
u3’
f’
h1 10 f ' 64.102564 tgu3 ' 0.156 h3 11.6 lF ' 74.35897 tgu3 ' 0.156
B’’
-l
l l ' 600 150 l ' 1 l 2
l 300 l ' 150
第三章
4
B
A
A’
A’’
B’ l’ 600 150 150
B’’
-l
1 1 1 l' l f '
1 1 1 150 300 f '
f ' 100
第七章
3
-l
l’ 180 -lz
25 lz’
(1)
250 e 3 30 25
500NA 500 0.1 D' 1.667mm 30
(2)
-l (3)
l’ 180 -lz
25 lz’
l ' 3 l l l ' 180
25 lz’
2 lz y l 2l z y 2 160 3 D2 21.33mm l 45
D2
第七章
4
ω
NA
0.5

0.5 550nm 0.38 6 0.000725 10
500NA 190
第七章
6
(1)

60' '


0.0003 150 4000 1000
4 l1 f ' 3 5 l2 f ' 4
l 2 l1 18 5 4 f ' f '18 4 3 f ' 216
第二章 7
H’
F’ d 400mm 700mm f’=1200mm
d 700 400 300mm d l 'F f ' (1 ) 400 f '1 300 1200 1 ( ) 400 f '1 f '1 450mm
第二章 10
F1
H’
F2
F1’ F’
F2’
H
d=100
100
证明:过F1’的入射光线一定过F2
第二章 17
h1=10
H’
u3’
F’
lF’
tgu1 ' tgu2
h1
f1 '
10
100
0.1
f’
h2 h1 d1tgu1 ' 10 10 0.1 9 tgu2 ' tgu3 tgu2 h2 f2 ' 0.1 9 50 0.28
h3 h2 d 2 tgu2 ' 9 10 0.28 6.2 tgu3 ' tgu3 h3 6.2 0.28 0.156 f3' 50
第二章 17
h1=10
H’
u3’
F’
lF’
f’
h1 10 f ' 64.102564 tgu3 ' 0.156 h3 6.2 lF ' 39.74359 tgu3 ' 0.156 l H ' l F ' f ' 39.74359 64.102564 24.35897
h
(2)
y’ y F’ 25mm 50mm D=250mm
y' 2 250 50 y' 45mm
18
-l’
y' l ' f ' y f' f' 25 y y' 45 5mm l ' f ' 200 25 2 y 10mm
h
(3)
y' l ' y l 45 200 5 l l 22.22mm
第二章
17
F
H
H’
F’
-lH -lF -f lH’ f’
lF’
像方参数:
f ' 64.102564 l F ' 39.74359 l H ' 24.35897
物方参数:
f 64.102564
l F 74.35897 l H 10.256406
第二章
5
20
1
l1 '
第二章 3
l’
-l
y
H’ -f d
y’ H f’
1140mm 7200mm
第二章
4
1 l1 ' l 3
1
2
l1 ' 3 l1 l 2 ' 4l 2 l1 l 2 18 l 2 ' l1 '18
l2 '
l2
4
l 2 ' l1 '18 3l1 18 4 4 l 2 l1 18 l1 18
l1
1 l1 ' 80, l1 80
l 2 ' l1 '20 3 2 l2 l1 ' 4 l 2 80 1 1 1 l' l f'
3 l 2 ' 80 60 4 f 1' 40, f 2' 240
第三章
4
B
A
A’
A’’
B’ l’ 600 150 150
f 2' ' f1 f 2'
D2 20 x 0.714286 tg 2 ' 2 0.09920635 f1 108
5.66557
2 11.331
渐晕50%视场
ω
F1’ F2
D2 20 tg 2' 2 0.07936508 f1 108
6
D 2.3 D 2.3 2.3 8 18 .4mm
(6)
ω
F1’ F2 100
ω’
12.5
D2
2
100tg 12.5tg '
100 tg ' tg 4 12.5 ' 29.223
2 ' 58.446
第七章 (7)
6
D2 2 100tg 2 100tg4 13.985mm
第七章

y’
y
F’ 25mm 50mm
-l’
D=250mm (1)
f ' 25 l ' ( 250 50) 200 P ' 50 f ' l ' D 25 ( 200) 250 9 P ' l ' f ' 50 ( 200) 25 P ' D 50 250 1 1 9 f' 25
l1 90, l1 ' 270
第二章
4
l1 90,
l1 ' 270
1 1 1 l1 ' l1 f ' f ' 67.5 1 1 1 270 90 f '
第二章
4
1 1 1 l1 ' l1 f ' 1 1 1 l2 ' l2 f'
1 1 1 3l1 l1 f ' 1 1 1 4l 2 l 2 f'
第十一章 3
h(n 1) 0.01(1.5 1) 0.005mm
k
2


2 0.005 1000um 20 0.5um
第十一章 8 (1)
n1 cos1 n2 cos 2 rs n1 cos1 n2 cos 2
8
(2)
100
f o' f e' 100 ' fo f' 8 e
f o' 88.89mm ' f e 11.11mm
第七章 (3)
6
-l=-100
l’
1 1 1 l ' 100 11.11 l ' 12.5mm
第七章 (4)
lF’
l H ' l F ' f ' 74.35897 64.102564 10.256406
第二章 17
物方参数:
h1=10H’源自f 64.102564 l F 74.35897 l H 10.256406
像方参数: f’
u3’
F’
lF’
f ' 64.102564 l F ' 39.74359 l H ' 24.35897
第二章 17
求物方参数。反向算。
h1=10
H’
u3’
F’
f1 ' 50, f 2 ' 50, f 3 ' 100 d1 d 2 10
f’
lF’
tgu1 ' tgu2
h1
f1 '
10
50
0.2
h2 h1 d1tgu1 ' 10 10 ( 0.2) 12 tgu2 ' tgu3 tgu2 h2 f2' 0.2 12 50 0.04
相关文档
最新文档