工程光学习题解答 第十二章 光的衍射

合集下载

工程光学-光的衍射习题课

工程光学-光的衍射习题课

工程光学光的衍射习题解答1、氦氖激光器发出的波长的单色光垂直入射到半径为1cm的圆孔,在光轴(它通过孔中心并垂直孔平面)附近离孔z处观察衍射,试求出夫琅和费衍射区的大致范围?解:2、钠灯发出波长为589nm的平行光垂直照射在宽度为0.01mm的单逢上,以焦距为600mm的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半角宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)相邻暗纹之间的距离?解:3、在夫琅和费单缝衍射实验中,以波长为600nm的单色光垂直入射,若缝宽为1mm,则第1极小和第2极小的角位置分别出现在哪里?4、分析如图所示夫琅和费衍射装置如有以下变动时,衍射图样会发生怎样的变化?1)增大透镜L2的焦距;2)减小透镜L2的口径;3)衍射屏作垂直于光轴的移动(不超出入射光束照明范围)。

答:1)增大透镜L2的焦距,将使接收屏上衍射图样的间隔增大。

因有公式,此时衍射角不变,条纹间隔增大;2)增大透镜L2的口径,不会改变衍射图样的分布,但进入系统的光束宽度增加,可使光强增加;3)衍射屏垂直于系统光轴方向移动时,衍射图样不会改变,因为衍射屏移动前后光的入射角不变,缝宽不变,由衍射公式知其接收屏上的光强分布不变;5、在双缝夫琅和费实验中,所用的光波波长,透镜焦距,观察到两相临亮条纹间的距离,并且第4级亮纹缺级。

试求:(1)双缝的逢距和逢宽;(2)第1,2,3级亮纹的相对强度。

解:(1) (1)双缝的缝距和逢宽;又将代入得(2)(2)第1,2,3级亮纹的相对强度。

当m=1时当m=2时当m=3时代入单缝衍射公式当m=1时当m=2时当m=3时6、一块光栅的宽度为10cm ,每毫米内有500条逢,光栅后面放置的透镜焦距为500nm。

问:(1)它产生的波长的单色光的1级和2级谱线的半宽度是多少?(2)若入射光线是波长为632.8nm 和波长与之相差0.5nm的两种单色光,它们的1级和2级谱线之间的距离是多少?解:由光栅方程知,,这里的,确定了谱线的位置(1)(1)它产生的波长的单色光的1级和2级谱线的半宽度是多少?(此公式即为半角公式)(2)若入射光线是波长为632.8nm和波长与之相差0.5nm的两种单色光,它们的1级和2级谱线之间的距离是多少?由公式(此公式为线色散公式)可得。

工程光学课后答案(12 13 15章)

工程光学课后答案(12 13 15章)

1λ十二 十三 十五第十二章 习题及答案1。

双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少?解:由杨氏双缝干涉公式,亮条纹时:d Dm λα=(m=0, ±1, ±2···)m=10时,nmx 89.511000105891061=⨯⨯⨯=-,nmx 896.511000106.5891062=⨯⨯⨯=- m x x x μ612=-=∆2。

在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一片折射率 1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。

21r r l n =+∆⋅22212⎪⎭⎫⎝⎛∆-+=x d D r 22222⎪⎭⎫⎝⎛∆++=x d D r x d x d x d r r r r ∆⋅=⎪⎭⎫⎝⎛∆--⎪⎭⎫ ⎝⎛∆+=+-222))((221212mm r r d x r r 2211210500512-=⨯≈+⋅∆=-∴ ,mm l mm l 2210724.110)158.1(--⨯=∆∴=∆- 3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276.10=n 。

试求注入气室内气体的折射率。

0008229.10005469.0000276.1301028.6562525)(600=+=⨯⨯=-=-∆-n n n n n l λ4。

垂直入射的平面波通过折射率为n 的玻璃板,透射光经透镜会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面的直线发生光波波长量级的突变d,问d 为多少时焦点光强是玻璃板无突变时光强的一半。

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

光的衍射习题答案

光的衍射习题答案

第六章 光的衍射6-1 求矩形夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。

解:对角线上第一个次极大对应于πβα43.1==,其相对强度为:0022.043.143.1sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I 对角线上第二个次极大对应于πβα46.2==,其相对强度为:00029.046.246.2sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I6-2 由氩离子激光器发出波长488=λnm 的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75mm ×0.25mm 。

在位于矩形孔附近正透镜(5.2=f m )焦平面处的屏上观察衍射图样,试求中央亮斑的尺寸。

解:中央亮斑边缘的坐标为:63.175.010********±=⨯⨯±=±=-a f x λmm 26.32=x mm 88.425.010********±=⨯⨯±=±=-b f y λmm 76.92=y mm ∴中央亮斑是尺寸为3.26mm ×9.76mm 的竖直矩形6-3 一天文望远镜的物镜直径D =100mm ,人眼瞳孔的直径d =2mm ,求对于发射波长为5.0=λμm 光的物体的角分辨极限。

为充分利用物镜的分辨本领,该望远镜的放大率应选多大?解:当望远镜的角分辨率为: 636101.610100105.022.122.1---⨯=⨯⨯⨯==D λθrad 人眼的最小分辨角为: 4361005.3102105.022.122.1---⨯=⨯⨯⨯==d e λθrad ∴望远镜的放大率应为:50===dDM e θθ 6-4 一个使用汞绿光(546=λnm )的微缩制版照相物镜的相对孔径(f D /)为1:4,问用分辨率为每毫米380条线的底片来记录物镜的像是否合适? 解:照相物镜的最大分辨本领为: 375411054622.1122.116=⨯⨯⨯==-f D N λ/mm∵380>375∴可以选用每毫米380条线的底片。

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

光的衍射选择题解答与分析

光的衍射选择题解答与分析

7光的衍射7.1惠更斯—菲涅耳原理1. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A) 振动振幅之和. (B) 光强之和. (C) 振动振幅之和的平方. (D) 振动的相干叠加. 答案:(D) 参考解答:惠更斯原理可以定性说明波遇到障碍物时为什么会拐弯,但是它不能解释拐弯之后波的强度的重新分布(对光而言,表现为出现明暗相间的衍射条纹)现象。

在杨氏双缝干涉实验的启发下,注意到干涉可导致波的能量出现重新分布,法国物理学家菲涅耳认为:同一波阵面上发出的子波是彼此相干的,它们在空间相遇以后发生相干迭加,使得波的强度出现重新分布,由此而形成屏上观察到的衍射图样。

这一经 “子波相干叠加”思想补充发展后的惠更斯原理,称为惠更斯-菲涅耳原理。

对所有选择,均给出参考解答,进入下一步的讨论。

2. 衍射的本质是什么?干涉和衍射有什么区别和联系?参考解答:根据惠更斯-菲涅耳原理,衍射就是衍射物所发光的波阵面上各子波在空间场点的相干叠加,所以衍射的本质就是干涉,其结果是引起光场强度的重新分布,形成稳定的图样。

干涉和衍射的区别主要体现在参与叠加的光束不同,干涉是有限光束的相干叠加,衍射是无穷多子波的相干叠加。

7.2单缝衍射1. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. 答案:(B) 参考解答:根据半波带法讨论的结果,单缝衍射明纹的角位置由下式确定,,2)12(sin λθ+±=k a 即...)3,2,1(2)12(sin =+±=k ak λθ.显然对于给定的入射单色光,当缝宽度a 变小时,各级衍射条纹对应的衍射角变大。

对所有选择,均给出参考解答,进入下一步的讨论。

工程光学习题

工程光学习题

1.简述成像系统分辨极限的瑞利判据的内容;据此判据,可采用什么方法来提高望远镜的分辨率?答:瑞利判据:当一个物点经过成像系统的夫朗和费圆孔衍射图样的中央极大与近旁一个物点的夫朗和费圆孔衍射图样的第一极小重合时,作为判定成像系统分辨率极限的判断方法。

(3分)。

据此,望远系统的分辨率为1.22λ/D,可以通过增大物镜的直径D、减小λ来提高分辨率。

.(3分)2.为何在设计望远镜系统时要将孔径光阑置于物镜上?答:望远镜是目视系统,需要与人眼联用。

根据光瞳衔接的原则,望远镜的出瞳应与人眼的瞳孔衔接,故它因该位于望远目镜之后,一般要求6mm以上的距离。

(3分)计算表明,将孔径光阑置于物镜上可以满足对出瞳的位置要求,而且望远镜的物镜、棱镜的尺寸最小。

(3分)3.光的全反射现象及其产生的条件是什么?试举出一个全反射的工程应用实例。

答:光入射到两种介质分界面时,入射光被全部反射,没有折射光,这就是全反射现象。

(2分)产生的条件:1光线从光密介质射向光疏介质;2入射角大于临界角;(3分)如光纤就是利用全反射实现光传输的。

(1分)1.已知一台显微镜的物镜和目镜相距200mm,物镜焦距为7.0mm,目镜焦距为5.0mm,若物镜和目镜都可看成是薄透镜,试计算:(1)如果物镜把被观察物体成像于目镜前焦点附近,那么被观察物体到物镜的距离是多少?物镜的垂轴放大率β是多少?(2)显微镜的视觉放大率是多少?解:(1)根据高斯公式:(1分)依题意:(1分),代入高斯公式即可计算出物距:,(2分)垂轴放大率为:(2分)(2)视觉放大率为物镜的垂轴放大率于目镜的视觉放大率之积,即:(4分)3、角放大率、轴向放大率和垂轴放大率三者之间的关系为、拉赫不变J=nuy 、牛顿公式以焦点为坐标原点。

6.获得相干光的方法有分波前法、分振幅法。

4、求轴上物点A所成的像(图4)。

2、节点:光学系统中放大率为+1的一对共轭点称为节点。

5、出瞳:孔径光阑经它前面的透镜或透镜组在光学系统像空间所成的像称为出射光1.摄影物镜的三个重要参数是什么?它们分别决定系统的什么性质?D和视答:摄影物镜的三个重要参数是:焦距'f、相对孔径'/f 场角 2。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。

工程光学习题参考答案第十二章-光的衍射

工程光学习题参考答案第十二章-光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为λθ∆=图12-50 习题3图解:设直径为a ,则有f d aλ=4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2ab =时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。

∴P 当(12449416a ca ⎫-=⎪⎭ ∴()()09016aI I = (2)第一暗纹有()()22110a J ka b J kb ka kb θθθθ-= 查表可有 3.144ka θ=4. (1)一束直径为2mm 的氦氖激光(632.8nm λ=)自地面射向月球,已知地面和月球相距33.7610km ⨯,问在月球上得到的光斑有多大?(2)如果用望远镜用作为扩束器将该扩展成直径为4m 的光束,该用多大倍数的望远镜?将扩束后的光束再射向月球,在月球上的光斑为多大? 解:(1)圆孔衍射角半宽度为0.61aλθ=∴传到月球上时光斑直径为(2)若用望远镜扩束,则放大倍数为2000倍。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。

《工程光学》物理光学参考答案3

《工程光学》物理光学参考答案3

物理光学作业参考答案[13-1] 波长nm 500=λ的单色光垂直入射到边长3cm 的方孔,在光轴(它通过孔中心并垂直孔平面)附近离孔z 处观察衍射,试求出夫琅和费衍射区的大致范围。

解:夫琅和费衍射条件为:π<<+zy x k2)(max2121 即: m nm y x z 900109.0500)1015()1015()(122626max2121=⨯=⨯+⨯=+>>λ[13-3]平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20)s i n (s i n )]sin (sin sin[⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=i a i a I I θλθλπ 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图)。

证明:(1缝上任意点Q 的位矢: 单逢上光场的复振幅为:因此,观察面上的夫琅和费衍射场为: (其中: ))cos ,0,(sin i i k k =)0,,(11y x r = 1sin 1)(~x i ik rk i Ae Ae x E ⋅⋅== )sin (sin )]sin (sin sin[)(~1)(~)2(1122)sin (sin )2(11sin 22sin )2(11221)2(11211211112111121i a i a ae z A dx e e z i A dx e e e z i A dx e x E e z i x E z x z ik a a x i ik z x z ik x ik a a x i ik z x z ik x z x ik a az x z ik --====+---+⋅--⋅+--+⎰⎰⎰θλπθλπλλλλθθθsin 1≈z x所以,观察面上的光强分布为:式中:(2)第一暗点位置:[13-4]在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。

第十二章 光学作业及解答.ppt

第十二章 光学作业及解答.ppt

结束 返回
12-47 如果起偏振器和检偏振器的偏 振化方向之间的夹角为300
(1)假定偏振片是理想的,则非偏振光 通过起偏振器和检偏振器后,其出射光强 与原来光强之比是多少?
(2)如果起偏振器和检偏振器分别吸收了 10%的可通过光线,则出射光强与原来光强 之比是多少?
结束 返回
解:(1)设自然光光强为I0,通过第一偏振片
(nm)
k 的其它取值属于红外光或紫外光范围
结束 返回
12-29 在复色光照射下的单缝衍射图样 中,其中某一波长的第3级明纹位置恰与波
长l =600nm的单色光的第2级明纹位置重
合,求这光波的波长。
结束 返回
解:
(2k+1)
l
2
= (2k0+1)l20
7l 2
=
5l0 2
l = 5l0 =428.6(nm) 7
= 48026’
当光从玻璃向水中反射时
a 2=
arc
tg
1.33 1.50
= 41034’
结束 返回
k=3 l3 =480(nm) k=4 l4 =343(nm)
可见光 紫外光
结束 返回
若透射光干涉增强则反射光干涉相消
由干涉相消条件
2ne
+
l
2
=(k+
1 2
)l
取k=2
l2
=
2ne k
=
2×1.5×0.4×103 2
=600
(nm)
取k=3
l3 =
2ne k
=
2×1.5×0.4×103 3
=400
第十二章光 学 作业与解答
12-9 12-11 12-15 12-29 12-47 12-49

光的衍射习题答案

光的衍射习题答案

光的衍射习题答案光的衍射习题答案光的衍射是光波在通过一个孔或者绕过一个障碍物时发生的现象。

它是光的波动性质的直接证明,也是物理学中的重要概念之一。

在学习光的衍射时,我们经常会遇到一些习题,下面我将为大家提供一些光的衍射习题的答案。

1. 一束波长为500纳米的单色光通过一个宽度为0.1毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。

求出相邻两个亮纹之间的间距。

解答:根据衍射的基本公式,亮纹的位置可以通过以下公式计算:sinθ = mλ / a其中,θ是衍射角,m是亮纹的次序,λ是波长,a是狭缝的宽度。

由题可知,波长λ为500纳米,即0.5微米,狭缝宽度a为0.1毫米,即0.1微米。

代入公式可得:sinθ = m * 0.5微米 / 0.1微米由于sinθ的值很小,我们可以使用近似公式sinθ ≈ θ,即:θ ≈ m * 0.5微米 / 0.1微米根据小角近似,当θ很小时,sinθ ≈ θ。

因此,亮纹之间的间距可以近似为:d ≈ λ / sinθ代入已知数据可得:d ≈ 0.5微米 / (m * 0.1微米 / 0.1微米)化简得:d ≈ 5微米 / m所以,相邻两个亮纹之间的间距与亮纹的次序m成反比关系。

当m为1时,相邻两个亮纹之间的间距为5微米;当m为2时,相邻两个亮纹之间的间距为2.5微米,依此类推。

2. 一束波长为600纳米的单色光垂直照射到一个宽度为0.2毫米的狭缝上,距离狭缝1米处的屏上出现了衍射条纹。

求出最亮的亮纹的角度。

解答:最亮的亮纹对应的是m=0的情况,即中央最亮的部分。

根据衍射公式sinθ = mλ / a,代入已知数据可得:sinθ = 0 * 0.6微米 / 0.2微米sinθ = 0由于s inθ的值为0,我们可以得到θ的值为0。

因此,最亮的亮纹的角度为0度,即光线垂直照射到屏上。

3. 一束波长为400纳米的单色光通过一个宽度为0.3毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。

光的衍射参考答案

光的衍射参考答案

光的衍射参考解答(机械)一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将(A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1s i n a ,所以中央明纹宽度af f f x λϕϕ2s i n 2t a n211=≈=∆中。

衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹(A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。

3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=s i n及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。

4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[ D][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

光的衍射单元测试题及答案

光的衍射单元测试题及答案

光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。

1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。

根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。

2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。

- 主极大强度会变弱,即主极大上的亮度会减弱。

- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。

请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。

工程光学习题参考答案第十二章_光的衍射

工程光学习题参考答案第十二章_光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。

光的衍射习题(附答案)1(1)

光的衍射习题(附答案)1(1)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为1 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1=k1λ1=2k1λ2(k1=1, 2, …)sinθ1=2k1λ2/ aa sinθ2=k2λ2(k2=1, 2, …)sinθ2=2k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m =5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2− x1= 32fΔλ/a = 0.27 cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2− x1 = fΔλ/a = 1.8 cm14.一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为λ = 480 nm(1 nm = 10−9 m)的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ=kλ第k级亮条纹位置:x1= f tanθ1≈f sinθ1≈k f λ/ d相邻两亮纹的间距:Δx= x k +1− x k = (k + 1) fλ/ d −k λ/ d= f λ/ d = 2.4×10−3 m = 2.4 mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mmΔx/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。

问细丝直径是多少?解:设直径为a ,则有f d aλ=93632.8100.030.01261.510fa mm d λ--⨯⨯===⨯ 4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2ab =时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。

同样,圆屏使P 点振幅减小 ()()122'b J kb E p b c kb θπθ⎡⎤=⎢⎥⎣⎦因此圆环在P 点产生的振幅为图12-50 习题3图 图12-51 习题6图()()22112'a b a J ka b J kb E E E c ka kb θθπθθ⎡⎤=-=-⎢⎥⎣⎦∴P 点强度为()()222112224'a J ka b J kb I E c ka kb θθπθθ⎡⎤==-⎢⎥⎣⎦对于衍射场中心,0θ=有()()2224422222222204'4'22442a b a b a b I c c c a b ππ⎛⎫⎛⎫=-=+-=- ⎪ ⎪⎝⎭⎝⎭当2ab =时, (1)()222242224904'28416a b a I c c a ca π⎛⎫⎛⎫=-=-=⎪ ⎪⎝⎭⎝⎭ ∴()()09016a I I = (2)第一暗纹有()()22110a J ka b J kb ka kb θθθθ-= ()11122a aJ ka aJ k θθ⎛⎫= ⎪⎝⎭查表可有 3.144ka θ=3.144 3.1440.512ka a aλλθπ∴==⋅=4. (1)一束直径为2mm 的氦氖激光(632.8nm λ=)自地面射向月球,已知地面和月球相距33.7610km ⨯,问在月球上得到的光斑有多大?(2)如果用望远镜用作为扩束器将该扩展成直径为4m 的光束,该用多大倍数的望远镜?将扩束后的光束再射向月球,在月球上的光斑为多大? 解:(1)圆孔衍射角半宽度为0.61aλθ= ∴传到月球上时光斑直径为9830.610.61632.810222 3.7610290.3110D l l km a λθ--⨯⨯=⋅=⨯⨯=⨯⨯⨯=⨯ (2)若用望远镜扩束,则放大倍数为2000倍。

直径980.610.61632.810'2'22 3.7610145.2'2D l l m a λθ-⨯⨯==⨯⨯=⨯⨯⨯=5. 若望远镜能分辨角距离为7310rad -⨯的两颗星,它的物镜的最小直径是多少?同时为了充分利用望远镜的分辨率,望远镜应有多大的放大率? 解:970.610.615501022.243102D m λθ--⨯⨯⨯===⨯人眼分辨率为41' 2.910rad -≈⨯∴放大率472.910900310M --⨯≥⨯6. 若要使照相机感光胶片能分辨2m μ的线距,(1)感光胶片的分辨率至少是每毫米当时线;(2)照相机镜头的相对孔径D/f 至少有多大?(光波波长为550nm )解: (1)胶片分辨率为31500210N -==⨯线/毫米 (2) 1.220.341490D N N d λ=⋅=7. 一台显微镜的数值孔径为0.85,问(1)它用于波长400nm λ=时的最小分辨距离是多少?(2)若利用油浸物镜使数值孔径增大到1.45,分辨率提高了多少倍?(3)显微镜的放大率应设计成多大?(设人眼的最小分辨率为'1)。

解:(1)960.610.61400100.2910sin 0.85m n u λε--⨯⨯===⨯ (2)提高 1.45' 1.70.85ε== (3)人眼在明视距离处能够分辨的长度为42250250 2.9107.2510e mm mm εα--=⋅=⨯⨯=⨯∴放大率至少为237.2510425'0.2910 1.7e mm M mm εε--⨯===⨯⨯8. 在双缝夫琅和费衍射实验中,所用光波波长632.8nm λ=,透镜焦距50f cm =,观察到两相邻亮条纹之间的距离 1.5e mm =,并且第四级亮纹缺级。

试求(1)双缝的缝距和缝宽;(2)第1,2,3级亮纹的相对强度。

解:(1)双缝衍射亮纹条件为sin ,0,1, 2..............d m m θλ==±± 取微分有 cos d m θθλ⋅∆=∆令1m ∆=,且cos 1θ≈,则dλθ∆又e f f dλθ=∆⋅=⋅933632.8100.50.21101.510fd me λ---⨯⨯∴===⨯⨯ (2)衍射极小位置为sin a n θλ=,1, 2............0,1, 2............a dn m n m∴==±±=±± 取1,4n m ==0.054da mm ∴== (3)对于第一级亮纹有sin d θλ=±即2sin 2d πδθπλ==±又4d a =sin 4a λθ∴=±sin 4a ππαθλ∴==± ∴第一级亮纹的相对强度222102sin sin sin 240.81sin 24I I πδαδπα⎛⎫⎛⎫⎪ ⎪⎛⎫===⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭同理32000.4,0.09I I I I ==9. 在双缝的一个缝前贴一块厚0.001mm ,折射率为1.5的玻璃片。

设双缝间距为1.5m μ,缝宽为0.5m μ,用波长500nm 的平行光垂直入射。

试分析该双缝的夫琅和费衍射图样。

解:衍射图样不变,干涉位置变为()0sin d n n d m θλ+-=10. 一块光栅的宽度为10cm ,每毫米内有500条缝,光栅后面放置的透镜焦距为500nm 。

问(1)它产生的波长632.8nm λ=的单色光的1级和2级谱线的半宽度是多少?(2)若入射光是波长为632.8nm 和波长之相差0.5nm 的两种单色光,它们的1级和2级谱线之间的距离是多少?解:(1)611210500mm mmd m N -===⨯ 对于一级主极大有1sin 18.43d θλθ=⇒=︒31 3.3410cos fr mm Nd λθ-⋅∴==⨯同理32 4.0810r mm -=⨯(2)sin d m θλ=∴线色散cos l m fd δδθθ⋅=∴1,2级衍射线色散为 15000.26/0.002cos18.43l mm mm nm mm δδθ⎛⎫==⎪⋅︒⎝⎭ 20.64/l mm nm δδθ⎛⎫=⎪⎝⎭ 而0.5nm λ∆=∴谱线间距 110.26/0.50.13l l mm nm mm δλθ⎛⎫∆=∆=⨯=⎪∆⎝⎭ 20.32l mm ∆=11. 设计一块光栅,要求(1)使波长600nm λ=的第2级谱线的衍射角030θ≤,(2)色散尽可能大,(3)第3级谱线缺级,(4)在波长600nm λ=的2级谱线处能分辨0.02nm 的波长差。

在选定光栅的参数后,问在透镜的焦面上只可能看到波长600nm 的几条谱线?解:为使600nm λ=的二级谱线的衍射角30θ≤︒,则光栅常数d 应满足96260010 2.410sin sin 30m d m λθ--⨯⨯=≥=⨯︒∵色散cos d md d θλθ= ∴d 越小色散越大 ∴62.410d m -=⨯若第三级缺级,应有630.810a m d -==⨯ 由条件(4)600150000.022N m λλ===∆⋅⨯ ∴光栅总长度36L N d mm =⋅=可看到最高级条纹为69sin 2.410460010d dm θλλ--⨯=<==⨯ ∴可看到0,1,2±±级,3±级缺级,共5条条纹。

12. 为在一块每毫米1200条刻线的光栅的1级光谱中分辨波长为632.8nm 的一束氦氖激光的模结构(两个模之间的频率差为450MHz ),光栅需要有多宽? 解:632.8nm 对应的频率为144.74110Hz ⨯641445010632.86104.74110nm νλλν-⨯∴∆=⋅=⨯=⨯∆⨯ ∴光栅总条纹数为64632.81.00510610N m λλ-===⨯∆⋅⨯ ∴长度为611.005108791200L Nd mm ==⨯⨯= 13. 证明光束斜入射时,(1)光栅衍射强度分布公式为220sin sin sin N I I αβαβ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭式中()sin sin a i παθλ=-,()sin sin di πβθλ=- θ为衍射角;i 为入射角,见图12-53,N 为光栅缝数。

相关文档
最新文档