土壤里微量元素的检测方法
土壤中微量元素的测定
![土壤中微量元素的测定](https://img.taocdn.com/s3/m/c3c2326d773231126edb6f1aff00bed5b9f37320.png)
01
双硫腙比色法
02
AAS法
03
ICP法
溶液中铜、锌的测定方法
第三节 土壤中有效锰的测定
土壤中锰的形态 水溶态 交换态 易还原态 难溶态和矿物态 土壤有效锰的浸提剂 1M中性乙酸铵(临界值2.3ppm) 1M中性乙酸铵+0.1%对苯二酚(临界值25~65ppm) 测定方法 高锰酸钾比色法 AAS法 ICP法
在硫酸-苦杏仁酸(苯羟乙酸)体系中,钼与苦杏仁酸形成的配合物强烈地被吸附于电极表面,产生电极反应,六价钼被还原成五价的钼,与此同时,在溶液中产生化学反应,五价的钼被氧化为六价的钼,反应式如下:
Mo6+ —苦杏仁酸 + e Mo5+—苦杏仁酸
5
[Mo(CNS)3]2+ + 2CNS- = Mo(CNS)5 (琥珀色) Mo(CNS)5 + CNS- = [Mo(CNS)6]-
6
硫氰酸铵比色法
硫氰酸铵比色法
方法要点: 盐酸体系中,用SnCl2作还原剂时显色酸度为0.8~1.7mol·L-1H+,酸度过低,显色慢,酸度过高颜色不稳定,易褪为黄色溶液。 在硫酸体系中用SnCl2还原,其酸度为1.0~2.5 mol·L-1H+。 大量Fe3+的存在与CNS-形成红色的硫氰酸铁,干扰比色测定,但少量Fe3+存在时,不干扰钼的测定,反而会使硫氰酸钼的颜色加深,并可增加五价钼的稳定性, 铂有干扰,应避免使用铂器皿 氯化亚锡 (SnCl2)的配制方法。 显色时试剂加入的顺序不宜改变 。 离心分离除去微量水分很重要 。
土壤有效微量元素测定
![土壤有效微量元素测定](https://img.taocdn.com/s3/m/e60dab07f11dc281e53a580216fc700aba68527b.png)
E、洗涤要求: 一般需用1mol L-1HCl或HNO3浸泡,然后洗净酸 液,以除去被吸附的离子。也有用EDTA螯合剂 洗涤的。
第二节 土壤有效硼的测定
一、土壤中的B及其有效性: 土壤全B:0-500mg/kg 有效B: 0-5.0mg/kg(多数0.2-1mg/kg) 存在状态: 无机B:矿物结构B(电气石):无效,大量 硼盐:少数,有效 吸附态B:以H3BO3或B(OH)4 -被矿物吸附,有效 有机B:含B化合物-有效性不高 被有机物吸附的B:有效
少部分矿物态
少部分有机态
Fe、Mn有不同价态,Fe:Fe2+、Fe3+,以Fe2+有效
Mn:Mn2+、Mn3+、Mn4+,以Mn2+有效
二、有效Fe、Mn、Cu、Zn的测定: (一)浸提方法:
1、中性盐(交换态): 不常用 Fe、Mn --- 1 mol L-1 NH4OAc(Fe:pH 4.8;
(4) 温度:一般认为灵敏度随温度上升而下降, 通常是在室温下反应,样品应与工作曲线在 相同温度下测定。
(5) 干扰物: A、Al3+、Fe3+、Ca2+等:用EDTA掩蔽,但对Fe3+ 不好;也可加氨三乙醇(NTA)。 B、NH4+:可使结果偏高。NH4+少时有正干扰,多 时干扰固定, 因此加入氨缓冲液, 使其干扰恒定。 C、H2O2:加热除去
第三节 土壤有效Mo的测定
一、土壤中的Mo及其有效性: 土壤全Mo:我国0.1-6 mg kg-1,平均1.7 mg kg-1
世界平均2.3 mg kg-1 土壤中的Mo可为+4、+5、+6价,以+6价为有效Mo。 形态:
土壤中微量金属元素的原子吸收光谱法测定
![土壤中微量金属元素的原子吸收光谱法测定](https://img.taocdn.com/s3/m/228462050166f5335a8102d276a20029bd6463d7.png)
土壤中微量金属元素的原子吸收光谱法测定以《土壤中微量金属元素的原子吸收光谱法测定》为标题,原子吸收光谱法是土壤中重金属元素测定中常用的分析方法之一。
本文主要介绍了原子吸收光谱法在土壤中重金属元素测定中的原理及应用。
一、原子吸收光谱法的原理原子吸收光谱法是一种分光光度计的分析方法,可用于测定微量元素的含量,其原理是利用原子的光学特性。
原子吸收光谱法实际上是由灯光把原子照亮,当原子吸收它们自身的特征光谱时,原子的能量级跃变,原子中的电子从低能级跃迁到高能级,然后再释放出特征光谱,此时它们就辐射出一系列的特征光,这些特征光以不同的强度存在于原子中。
这个特征光的吸收强度与原子中某种元素含量有关,通过测定它们的含量,就可以推断土壤中重金属元素的含量。
二、原子吸收光谱法的应用原子吸收光谱法是一种高灵敏的分析方法,它不仅可以测定土壤中重金属元素的含量,而且还可以测定和分析其他金属元素,如铅、铬、铜等元素。
由于土壤中重金属元素的浓度以微克每升为单位,所以需要灵敏度极高的仪器,而原子吸收光谱仪正能满足这种需求。
原子吸收光谱法可以用于测定土壤中重金属元素的含量,可以用来分析土壤中重金属元素的空间分布和质量浓度,为重金属元素的污染防治提供科学的数据和依据。
由于原子吸收光谱法测定灵敏、可靠、准确,对大范围测定土壤中重金属元素有着重要作用。
三、实验过程1.备样品:将土壤样品预先研磨细致,然后按照一定的比例用有机溶剂溶解;2.品分析:将样品测量到原子吸收光谱仪的实验管中,然后施加特定的紫外灯,在特定的波长条件下测量样品的特征吸收光谱;3.定结果:通过计算绝对吸收率,就可以推断土壤中重金属元素的含量了。
综上所述,原子吸收光谱法是一种高灵敏的测量方法,在土壤中重金属元素的测定中有着重要作用。
实现了原子吸收光谱法测定土壤中重金属元素的含量,有助于重金属元素的污染防治,为环境治理提供科学的依据和数据。
简述地质样品中微量元素的高效测试方法
![简述地质样品中微量元素的高效测试方法](https://img.taocdn.com/s3/m/a1ad13216d175f0e7cd184254b35eefdc8d31501.png)
简述地质样品中微量元素的高效测试方法随着科技技术的不断进步,地质化探工作也在不停地发展,而微量元素作为地质样品中的一个非常重要的参数,其测试方法也在不断地更新。
目前,大多数微量元素的测试仍然依靠传统的分析技术,如化学分析、质谱分析和荧光光谱分析等。
但是这些方法存在局限性,如分析时间长、灵敏度不够高、准确性不够等。
本文将介绍一些高效的微量元素测试方法。
1. X射线荧光光谱分析法X射线荧光光谱分析法是一种高精度、高通量、无需物样前处理的分析法。
这种方法主要是利用X射线通过物样后产生的荧光光谱来分析微量元素的含量。
这种方法的优点在于其通量非常高,甚至可达到每小时几千个物样的测试量。
同时,X射线荧光光谱分析法具有良好的准确度和重复性,因此它在许多应用领域中表现出了良好的前景和普遍应用。
2. 原子吸收光谱分析法原子吸收光谱分析法是一种利用原子吸收特定波长的光线来分析元素组成的方法。
这种方法在分析微量元素时广泛应用,它能够实现非常高的准确度和重复性。
另外,这种方法还可以进行选择性元素检测,并可以用于多元素分析。
由于原子吸收光谱分析法的准确度非常高,因此它在地质、化学、环境和食品等领域被广泛使用。
3. 电子探针电子探针是一种非常强大的测试方法,它可以分析地质样品中细微元素的组成。
这种方法利用了电子显微镜和小型X射线荧光光谱仪,由于其精度和准确性非常高,因此被广泛应用于石油、地质勘探、钢铁和生命科学领域。
电子探针的主要优点在于它不仅能够分析微量元素,同时还能够分析其他重要成分,如化学组分和晶体结构等。
4. 激光诱导耦合等离子体质谱法激光诱导耦合等离子体质谱法(LA-ICP-MS)是一种利用激光诱导耦合等离子体的技术来分析微量元素的含量的方法,被广泛应用于地球化学、环境和人体科学等领域。
这种方法的特点在于它可以分析数十个元素且灵敏度极高,且不需要进行物样前处理。
由于其灵敏度和准确度非常高,因此激光诱导耦合等离子体质谱法在微量元素分析领域已经成为主流的分析方法之一。
土壤微量元素检测仪使用原理
![土壤微量元素检测仪使用原理](https://img.taocdn.com/s3/m/0af6f82726d3240c844769eae009581b6bd9bd94.png)
土壤微量元素检测仪使用原理1.原子吸收光谱法:土壤微量元素检测仪可以采用原子吸收光谱法来测定土壤中微量元素的含量。
该方法是利用微量元素的原子对特定波长的电磁波具有选择性吸收的原理。
仪器通过电源产生一个电子束,将土壤样品中的微量元素原子化,并通过对样品进行加热或气流载气来促使元素原子化。
然后,通过光源产生的特定波长的光束通过土壤样品,检测光束透过样品后的强度变化,从而测定特定微量元素的含量。
2.火焰光度法:火焰光度法是土壤微量元素检测的常用方法之一、该方法将土壤样品中的微量元素溶解于适当的酸性溶液中,然后通过火焰的燃烧将元素原子激发到高能级,使其产生特征性的光谱线。
仪器通过光源产生特定波长的光束,经过火焰后,通过光电倍增管等光电探测器检测光谱线的强度变化,从而测定微量元素的含量。
3.电化学法:电化学法是另一种常用的土壤微量元素检测方法。
该方法通过将土壤样品中的微量元素通过合适的反应转化成电化学反应物质,测定电化学反应的电流或电势变化,从而间接测定微量元素的含量。
该方法通常需要使用电化学电极,如电解池、参比电极和工作电极等。
通过调节电极的电位和电流,可以在土壤样品中实现微量元素的选择性测定。
4.光谱分析法:光谱分析法是基于不同微量元素对特定波长的电磁波呈现不同吸收、发射或散射特性的原理。
土壤微量元素检测仪可以通过分析土壤样品中元素对特定波长的电磁波的吸收、发射或散射情况来确定微量元素的含量。
常用的光谱分析方法包括紫外可见光谱、红外光谱、拉曼光谱等。
总之,土壤微量元素检测仪的使用原理主要涉及原子吸收光谱法、火焰光度法、电化学法和光谱分析法等。
不同的原理可选择不同的测定方法,以快速准确地测定土壤中微量元素的含量。
土壤微量元素测定实验方法以及优缺点分析
![土壤微量元素测定实验方法以及优缺点分析](https://img.taocdn.com/s3/m/aaea2503657d27284b73f242336c1eb91a3733db.png)
土壤微量元素测定实验方法以及优缺点分析土壤是地球上最重要的自然资源之一,其中含有多种微量元素,这些元素对农作物的生长发育、植物根系的形成以及植物繁殖有着至关重要的作用。
要研究农作物的品质、健康和种植,必须对土壤中的微量元素进行测定。
以传统的化学分析法为例,测定土壤中微量元素的方法包括原子吸收光谱法、X射线衍射仪法、原子荧光光谱法、串联质谱法以及电感耦合等离子体发射光谱法。
其中原子吸收光谱法是土壤中各种微量元素测定最常用的方法,它可以快速、准确地测定各种微量元素的含量。
此外,X射线衍射仪法也常用于测定土壤中的微量元素,它可以实现非常小的检测细胞大小的X射线衍射成像技术,以精确检测土壤中的元素组成。
原子荧光光谱法可以用来测定低浓度的微量元素,该方法灵敏度高,具有快速、简单、准确的优点。
串联质谱法是一种精确、灵敏、多参数同时检测的方法,可以用来定量分析土壤中的各种元素含量。
而电感耦合等离子体发射光谱法则具有简便、易行、快速等优点,可用来测定高浓度的土壤微量元素。
土壤微量元素测定实验中的优点有:(1)测定方法简便,可以快速准确的测定微量元素的含量。
(2)分析时间短,可在几小时内完成。
(3)分析结果可靠,准确度较高。
(4)节约成本,该技术可以节省大量人力、物力和时间成本。
然而,土壤微量元素测定实验也存在一些缺点,如:(1)样品处理麻烦,测定实验前需要对样品进行精细的分离和提纯处理,这需要较多的时间和工作量。
(2)仪器和设备费用较高,需要安装许多昂贵的仪器和设备,以确保测定的准确性和可靠性。
(3)环境污染,实验过程中涉及的化学物质有可能对环境造成污染。
综上,土壤微量元素测定是一项重要的实验,它能有效地检测土壤中各种微量元素的含量,为土壤肥力评价和土壤改良等方面提供有价值的参考。
尽管存在一些缺点,但正确选择测定方法和正确实施测定,可以有效地克服这些问题,获取可信的测定结果。
土壤养分测定项目及方法
![土壤养分测定项目及方法](https://img.taocdn.com/s3/m/8db95c60abea998fcc22bcd126fff705cc175cf6.png)
土壤养分测定项目及方法土壤养分测定是一项重要的地球科学研究工作,它对于农田管理、环境保护和农作物产量提高具有重要的意义。
土壤养分测定的目的是准确评估土壤的养分含量,包括主要营养元素和微量元素,从而为土壤改良和合理施肥提供科学依据。
本文将介绍几个常见的土壤养分测定项目及方法。
一、全量测定法全量测定法是通过直接测定土壤样品中全部养分的含量,包括有机养分和无机养分。
下面分别介绍几个常用的全量测定法。
1.1全氮测定全氮测定是评估土壤中氮素含量的重要指标。
常见的测定方法有凯氏消解法、磷酸铵态氮提取法和光谱法等。
其中凯氏消解法是一种常见的表面土壤全氮测定方法,它通过采用稀酸溶解样品中的有机氮和无机氮,然后利用显色剂反应产生色度,使用分光光度计测定其吸光值,从而计算出全氮含量。
1.2全磷测定全磷测定是评估土壤中磷含量的重要指标。
常见的测定方法有Bray提取法、磁化复合氯化物提取法和钠硫酸提取法等。
其中Bray 提取法是一种常用的酸溶液提取法,通过使用酸性提取液提取土壤样品中的磷,再使用显色剂根据吸光值测定其含量。
1.3钾测定钾是土壤中的重要营养元素,对于植物生长和养分平衡具有重要作用。
常见的钾测定方法有酸提法、离子选择电极法和火焰光度法等。
其中酸提法是一种简单直观的方法,通过使用酸溶液提取样品中的钾元素,然后通过计算摄取液中的钾含量来评估土壤中的钾含量。
二、微量元素测定法微量元素是植物生长和发育所必需的元素,如铁、锌、锰、铜等。
下面介绍几种常见的微量元素测定方法。
2.1铁测定铁是土壤中的重要微量元素,对于植物的呼吸和光合作用具有重要作用。
常见的铁的测定方法有EDTA滴定法、酸性二硫代乙酸法和原自动试剂法等。
其中EDTA滴定法是一种经典的铁测定方法,通过使用EDTA试剂与样品中的铁形成络合物,然后滴定至特定的终点颜色改变,从而计算出铁的含量。
2.2锌测定锌是土壤中的重要微量元素,对于植物的生长和发育具有重要作用。
森林土壤铜、锌、铁、锰全量的测定电感耦合等离子体发射光谱法
![森林土壤铜、锌、铁、锰全量的测定电感耦合等离子体发射光谱法](https://img.taocdn.com/s3/m/72499c6d443610661ed9ad51f01dc281e53a56ff.png)
森林土壤铜、锌、铁、锰全量的测定电感耦合等离子体发射光谱法森林土壤中的微量元素对于森林生态系统的健康和稳定性至关重要。
其中,铜(Cu)、锌(Zn)、铁(Fe)和锰(Mn)是森林土壤中的重要微量元素。
为了准确测定森林土壤中这些微量元素的全量含量,科学家们开发了多种分析方法。
本文将重点介绍一种常用的方法——电感耦合等离子体发射光谱法。
电感耦合等离子体发射光谱法(Inductively Coupled Plasma-Optical Emission Spectrometry,简称ICP-OES)是一种高效、灵敏、准确的分析方法,广泛应用于环境、农业、地质等领域。
该方法通过将样品中的微量元素转化为气态离子,并利用高温等离子体激发离子发射光谱,从而实现对样品中各种元素的定性和定量分析。
在进行ICP-OES分析前,首先需要对森林土壤样品进行前处理。
一般而言,样品收集后需要进行干燥、研磨和筛分等步骤,以获得均匀且可靠的样品。
接下来,将样品溶解于酸性溶液中,通常使用硝酸和氢氟酸的混合溶液。
这样可以有效提取样品中的微量元素,并将其转化为可测量的形式。
在ICP-OES仪器中,样品溶液通过喷雾器喷入高温等离子体中。
在高温等离子体中,样品中的元素被激发成为高能级状态,并发射出特征光谱。
这些发射光谱通过光谱仪器进行收集和分析,可以得到不同元素的发射强度。
为了准确测定森林土壤中的铜、锌、铁和锰含量,需要进行标准曲线法。
首先,制备一系列含有已知浓度的标准溶液。
然后,在ICP-OES仪器中依次测定这些标准溶液的发射强度,并绘制出标准曲线。
通过比较待测样品的发射强度与标准曲线之间的关系,可以推算出待测样品中铜、锌、铁和锰的含量。
此外,在进行ICP-OES分析时还需要注意以下几点。
首先,为了保证分析结果的准确性,需要使用高纯度的试剂和溶剂,并进行严格的实验室操作。
其次,仪器的校准和维护也非常重要,以确保仪器性能的稳定和可靠性。
最后,为了提高分析效率和减少干扰,可以采用多元素分析技术,同时测定多个元素的含量。
土壤微量元素测定实验方法以及优缺点分析
![土壤微量元素测定实验方法以及优缺点分析](https://img.taocdn.com/s3/m/39b00334c4da50e2524de518964bcf84b8d52d41.png)
土壤微量元素测定实验方法以及优缺点分析壤中的元素是植物的生长素材颗粒,它的含量和比例不同会影响植物的生长发育,因此,对土壤中的微量元素进行测定,对植物的生长和发育是十分必要的。
土壤微量元素测定实验方法多种多样,本文主要介绍常用的特殊分析方法、影响实验结果的因素以及分析优缺点,以期能够更加准确的测定出土壤中的微量元素的含量,为植物的生长发育提供更加准确的参考。
首先,常见的土壤微量元素测定实验方法有密度梯度离心法、溶出-离子交换法、溶出-沉淀法以及气相色谱法等。
其中,密度梯度离心法主要是利用修约-阿拉伯醇作为溶剂,利用密度梯度将土样中的微量元素分离出来,得到测定结果;溶出-离子交换法则是先将土样中的微量元素溶出,然后经过离子交换色谱,可以分离出不同物质;溶出-沉淀法则是先利用不同pH等特殊条件将土样中的微量元素溶出,然后激发显影,最后进行测定;而气相色谱法则是先将土样中的微量元素释放到气相中,然后再经过气相色谱仪的分析,最后得到测定结果。
其次,土壤微量元素测定实验的准确性受到许多因素的影响,如采样、样品的组分、前处理方法、测定方法以及分析仪器的选择等。
采样时应当尽可能保证样品的统一,避免其中有偏差;进行样品前处理时,除去潜在的干扰因素,如有机物和金属离子之类;在选择测定方法时,应根据样品的复杂度选择合适的方法;在选择分析仪器的时候,应根据实验的精确度要求,来确定合适的仪器。
再者,土壤微量元素测定实验的优缺点也是需要重点分析的。
从优点来看,大多数测定方法操作简单,耗时短;结果准确,可以在较短的时间内测得大量样品的数据;结果可信,土壤中的微量元素含量可以得到准确的测定结果。
而从缺点来看,测定方法受到室温和月份的影响较大;有些微量元素检测到的特征波效应不明显;部分仪器的价格较高,因此普通实验室成本较大。
综上所述,土壤微量元素测定实验是一项十分重要的实验,可以根据样品组成、特征波效应以及用于测定的分析仪器等因素,选择合适的测定方法,从而更加准确地测定出土壤中的微量元素的含量,为植物的生长发育提供准确的参考。
简述地质样品中微量元素的高效测试方法
![简述地质样品中微量元素的高效测试方法](https://img.taocdn.com/s3/m/549561e47e192279168884868762caaedd33ba9a.png)
简述地质样品中微量元素的高效测试方法地质样品中的微量元素测试是地质科学研究中非常重要的一环,因为微量元素的存在和分布可以提供有关地球内部物质来源、岩浆演化过程、成矿作用及地球化学循环等重要信息。
为了高效地进行微量元素测试,研究人员们采用了一系列方法和技术。
第一种高效测试方法是原子吸收光谱法(AAS)。
原子吸收光谱法采用原子化技术将样品中的元素转化为气态原子,然后通过测量原子对吸收特定波长的光的吸光度来确定元素的含量。
AAS方法具有高精密度、高选择性和低重复性的特点,适用于测定大部分金属和非金属元素的含量,特别是对于具有较高浓度的元素,具有较高的灵敏度和准确性。
第二种高效测试方法是电感耦合等离子体质谱法(ICP-MS)。
ICP-MS是一种利用电感耦合等离子体源产生离子束,进而通过质谱技术测定样品中微量元素含量的方法。
该方法具有高分辨率、高灵敏度和高选择性的特点,适用于测定多种元素的含量,并且对于微量元素和超微量元素的分析有相当的优势。
第三种高效测试方法是电子探针微区分析法(EPMA)。
EPMA利用电子束轰击样品表面,通过测量由样品表面产生的不同能量和角度散射电子束以及样品表面产生的X射线来确定样品中微量元素的含量和分布。
EPMA方法具有高空间分辨率和灵敏度的特点,适用于多种材料和矿物的微区分析。
第四种高效测试方法是同位素质谱法。
同位素质谱法通过测量样品中不同同位素的相对丰度来确定元素的种类和含量。
同位素质谱法具有广泛的应用领域,特别适用于地质年代学、地球化学循环、环境污染和成矿作用等方面的研究。
除了以上几种主流的高效测试方法外,还有一些其他方法也被广泛应用于微量元素的测试,如火焰光度法、荧光光谱法、质谱法等。
这些方法各有特点,适用于不同类型的样品和元素,可以根据具体需要选择适合的测试方法。
地质样品中微量元素的高效测试方法有很多种,每种方法都有其适用范围和特点。
研究人员可以根据具体研究目的和样品性质选择合适的测试方法,以获得准确、高效的测试结果。
土壤微量元素的测定
![土壤微量元素的测定](https://img.taocdn.com/s3/m/641bdf8ab14e852459fb572d.png)
土壤微量元素的测定-原子吸收法2016-2-24本方法用于测定土壤中Zn、Fe、Cu、Pb、Mn、Ni、Mo等微量元素。
1、提取:20g风干(过2mm筛)土,加40mlDTPA-TEA提取剂,室温震荡2小时,过滤。
2、测定:以原子吸收测定。
3、标准储存液配制:3.1、1000ppmFe:还原铁粉1.0000g于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以水定容。
3.2、1000ppmCu:Cu粉1.0000g,于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以1%HCl 定容。
3.3、1000ppmMn:Mn粉1.0000g于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以1%HCl 定容。
或者3.0761g MnSO4.H2O(FW169)以1%HCl定容。
3.4、1000ppmZn:Cu粉1.0000g,于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以1%HNO3定容。
4、标准曲线配制:吸取1000ppm上述标准液10ml,以水定容100ml,为工作液,浓度为100ppm。
可配制混合液,但是Cu要单独配制。
按下量吸取1000ppm储存液,以提取液定容100ml。
浓度ppm 0.5 1 2 5Fe(ml) 0.5 1 2 5Mn(ml) 0.5 1 2 5Cu(ml) 0.5 1 2Zn(ml) 0.5 1 25、DTPA-TEA提取液配制:溶解7.8668g二乙三胺五醋酸(分子量393.35),53.6ml三乙醇胺,5.88gCaCl2.2H2O(分子量147,或者4.44g CaCl2( 分子量111)于约3L水中,定容4L,以浓盐酸调整pH到7.3(一般不用调整)。
6、计算:土壤微量元素ppm=测定读数*提取液ml/土重g。
原子吸收参数设置Cu Fe Zn Mn K Na Ca Mg空气压力(psi)32 32 35 36 32 35 29 35空气压力(mPa)0.22 0.22 0.24 0.250.22 0.24 0.2 0.24燃气流量1600 2300 1300 1700 1800 1300 2000 1500 (ml/min)灶台高度(mm) 5 10 6 6 5 5 6 6火焰类型 计量 强富 贫燃 贫燃 计量 贫燃 富燃 贫燃灯电流(mA) 3 4 3 2 2 6 3 2。
土壤微量元素的测定
![土壤微量元素的测定](https://img.taocdn.com/s3/m/cacefcca2dc58bd63186bceb19e8b8f67c1cefe6.png)
科学研究和生产实践证明微量元素为有机体正常生命活动所必需,在有机体的生活中起着重要作用。
土壤和植物中的微量元素都很低,而且这些微量元素在植物体中的缺乏量、适量及致毒量范围很窄,因此微量元素的分析测定工作较常量元素要求加倍严格。
1 土壤有效硼的测定(姜黄素比色法)方式原理土样经滚水浸提5分钟,浸出液中的硼用姜黄素比色法测定。
姜黄素是由姜中提取的黄色色素,以酮型和稀醇型存在,姜黄素不溶于水,但能溶于甲醇、酒精、丙酮和冰醋酸中而呈黄色,在酸性介质中与B结合成玫瑰红色的络合物,即玫瑰花青苷。
它是两个姜黄素分子和一个B原子络合而成,检出B的灵敏度是所有比色测定硼的试剂中最高的(摩尔吸收系数ε550=1.80×105)最大吸收峰在550nm处。
在比色测定B时应严格控制显色条件,以保证玫瑰花青苷的形成。
玫瑰花青苷溶液在0.0014—0.06mg/LB的浓度范围内符合Beer定律。
溶于酒精后,在室温下1—2小时内稳定。
主要仪器石英(或其他无硼玻璃);三角瓶(250或300ml)和容量瓶(100ml,1000ml);回流装置;离心机;瓷蒸发皿(Φ7.5cm);恒温水浴;分光光度计;电子天平(1/100)。
试剂(1)95%酒精(二级);(2)无水酒精(二级);(3)姜黄素—草酸溶液:称取0.04g姜黄素和5g草酸,溶于无水酒精(二级)中,加入4.2ml6mol/LHCl,移入100ml石英容量瓶中,用酒精定容。
贮存在阴凉的地方。
姜黄素容易分解,最好当天配制。
如放在冰箱中,有效期可延长至3—4天。
(4)B标准系列溶液:称取0.5716gH3BO3(一级)溶于水,在石英容量瓶中定容成1升。
此为100mg/LB标准溶液,再稀释10倍成为10mg/LB标准贮备溶液。
吸取10mg/LB溶液1.0,2.0,3.0,4.0,5.0ml,用水定容至50ml,成为0.2,0.4,0.6,0.8,1.0mg/LB的标准系列溶液,贮存在塑料试剂瓶中。
土壤磷土壤有效微量元素测定方法
![土壤磷土壤有效微量元素测定方法](https://img.taocdn.com/s3/m/2bcd7ef669dc5022aaea0078.png)
2.3 待消煮溶液至清亮后,需继续加热,把剩余 的H2O2彻底除去,否则对磷的测定影响较大。
2.4 如试液为HCI、HCIO4介质,显色剂应用HCI配 制;试液为H2SO4介质,显色剂也用H2SO4配制。 显色液酸的适宜浓度范围为0.2~1.6mol/L,最 好是0.5~1.0mol/L。酸度高显色慢且不完全, 甚至不显色;低于2.0mol/L易产生沉淀物,干 扰测定。
2.2 测试时若需稀释,应用DTPA浸提液稀释,以保持基 体一致,并在计算时乘上稀释倍数。
2.3洗净所后用备玻用璃。器皿应事先在10%HNO3溶液中浸泡过夜,
2.4 锌是比较容易受污染,注意不要使用胶塞。
2.5 所需配制的标准溶液系列应根据仪器本身的精度要 求配制
2.6 如在样品所需测定的某一元素含量较高,可能会存 在反转现象。
2.注意事项:
2.1 振荡后,必须尽快过滤,否则浸提时间会延长;过滤 时应使用慢速滤纸,而且先倒少量溶液过滤,否则滤 液易混浊。
2.2 如果土壤有效磷含量较高,应减少浸提液的吸样量, 并加浸提剂补足至10.00mL后显色,以保持显色时溶 液的酸度。
2.3 加入显色剂时,必须慢慢地放入,并且一边慢慢摇动, 否则溶液很容易冲出瓶口。
一、土壤有效磷测定
1.方法提要(原理)
碳酸氢钠溶液除可提取水溶性磷外,也可以 抑制Ca2+的活性,使一定量活性较大的Ca-P盐 类 中 的 磷 被 浸 出 , 也 可 使 一 定 量 活 性 Fe-P 和 Al-P盐类中的磷通过水解作用而浸出。由于浸 出液中Ca、Fe、Al浓度较低,不会产生磷的再 沉淀。浸提液中的磷可用钼锑抗比色法定量测 定。土壤浸出的磷量与土液比、液温、振荡时 间及方式有关。本法严格规定土液比为1:20, 浸 提 液 温 度 为 25℃±1℃ , 振 荡 提 取 时 间 为 30min。
土壤微量元素的测定
![土壤微量元素的测定](https://img.taocdn.com/s3/m/a8978f23a36925c52cc58bd63186bceb19e8edd6.png)
颜色 正常 下降20% 下降70%
(三)姜黄素比色法
2、显色条件: (2)脱水措施:络合物是在脱水过程中形成旳,因
此脱水旳温度、蒸发速度都会影响显色。 (3)反应介质:酸性介质中显色(草酸) (4)干扰离子:
氧化剂:可使姜黄素氧化,显棕色。土壤中主要 为NO3-,不小于20 mg L-1有干扰,可碱化后灼烧 除去。 (5)稳定时间:95%酒精中稳定3小时
(4) 温度: • 一般以为敏捷度随温度上升而下降,一般是在室温
下反应,样品应与工作曲线在相同温度下测定。
(二)甲亚胺比色法
2、显色条件: (5) 干扰物: A、Al3+、Fe3+、Ca2+等:用EDTA掩蔽,但对Fe3+不好; 也可加氨三乙醇(NTA)。 B、NH4+:可使成果偏高。NH4+少时有正干扰,多时干 扰固定, 所以加入氨缓冲液, 使其干扰恒定。
中下游中性和石灰性土、水稻土) 缺硼和缺钼土壤主要分布于东半部; 大多土壤铜供给适中
第一节 概述
三、土壤微量元素旳形态
水溶态:存在土壤溶液中 互换态:吸附于固相表面 螯合态:与有机质结合在一起 矿物态:存在于原生和次生矿物
有效态
第一节 概述
四、土壤微量元素常见测定措施 原子吸收分光光度法 可见光分光光度法 极谱分析法 ICP X光荧光分析 中子活化分析
(2) 显色和稳定时间:
• pH低(5.5) 显色2h
稳定4h
• pH低(6.5) 显色0.3-1h 稳定2-3h(试验中显色30min)
(二)甲亚胺比色法
2、显色条件:
(3) 显色剂浓度: • 甲亚胺为黄色,与络合物相同,所以要精确加入。 • 甲亚胺浓度高,敏捷度也高,最高0.27%,我国常
土壤中微量元素的测定
![土壤中微量元素的测定](https://img.taocdn.com/s3/m/2d35ef25360cba1aa911da30.png)
土壤中微量元素的测定7.1概述微量元素是指土壤中含量很低的化学元素,除了土壤中某些微量元素的全含量稍高外,这些元素的含量范围一般为十万分之几到百万分之几,有的甚至少于百万分之一。
土壤中微量元素的研究涉及到化学、农业化学、植物生理、环境保护等很多领域。
作物必需的微量元素有硼、猛、铜、锌、铁、钳等。
此外,还有一些特定的对某些作物所必需的微量元素,如钻、机是豆科植物所必需的微量元素。
随着高浓度化肥的施用和有机肥投入的减少,作物发生微量元素缺乏的情况愈来愈普遍。
有时候微量元素的缺乏会成为作物产量的限制因素,严重时甚至颗粒无收。
土壤中微量元素对作物生长影响的缺乏、适量和致毒量间的范围较窄。
因此,土壤中微量元素的供应不仅有供应不足的问题,也有供应过多造成毒害的问题。
明确土壤中微量元素的含量、分布、形态和转化的规律,有助于正确判断土壤中微量元素的供给情况。
土壤中微量元素的含量主要是由成土母质和土壤类型决定,变幅可达一百倍甚至超过一千倍(见下表),而常量元素的含量在各类土壤中的变幅则很少超过5 倍。
表7-1 我国土壤微量元素的含量★刘铮,中国土壤的合理利用和培肥影响土壤中微量元素有效性的土壤条件包括土壤酸碱度、氧化还原电位、土壤通透性和水分状况等,其中以土壤的酸碱度影响最大。
土壤中的铁、锌、猛、硼的可给性随土壤pH的升高而降低,而钳的有效性则呈相反的趋势。
所以,石灰性土壤中常出现铁、锌、猛、硼的缺乏现象。
而酸性土壤易出现钳的缺乏,酸性土壤使用石灰有时会引起硼猛等的“诱发性缺乏”现象。
土壤中微量元素以多种形态存在。
一般可以区分为四种化学形态:存在于土壤溶液中的“水溶态”;吸附在土壤固体表面的“交换态”;与土壤有机质相结合的“螯合态”;存在于次生和原生矿物的“矿物态”。
前三种形态易对植物有效,尤其以交换态和螯合态最为重要。
因此,无论是从植物营养或土壤环境的角度,合理地选择提取剂或提取方法以区分微量元素的不同形态是微量元素分析的重要环节。
土壤有效性铜-锌-铁-锰简易测定方法
![土壤有效性铜-锌-铁-锰简易测定方法](https://img.taocdn.com/s3/m/946638d67f1922791688e888.png)
土壤有效性铜\锌\铁\锰简易测定方法植物所需微量元素包括铜、锌、铁、锰、硼、钼等,其主要生理作用有参与体内碳氮代谢、与叶绿素合成及稳定性有关、参与体内氧化还原反应、促进生物固氮、促进生殖器官的发育等。
总之,尽管作物对微量元素的需求很少,但其对植物的生理作用却是必不可少的。
目前,全国缺乏微量元素的农田面积逐年增加,但微肥的重要性还未引起农民的足够重视。
因此,推广测土配方施肥,大力宣传植物所需微量元素的重要性以及测定土壤微量元素的含量迫在眉睫。
现就土壤微量元素铜、锌、铁、锰简易测定方法介绍如下:1基本方法土壤样品经DTPA-TEA-CaCl2提取后,用原子光谱法直接测定溶液中的锌、锌、铁、锰。
2主要仪器、设备①原子吸收分光光度计;②酸度计;③往复式振荡机;④带盖塑料瓶。
3试剂3.1DTPA浸提剂其成分为0.005mol/L DTPA、0.01mol/ L CaCl2和0.10mol /L TEA。
称取1.967g二乙酸胺五乙酸(DTPA),溶于14.92g三乙醇胺(TEA)和少量水中;再将 1.47g氯化钙(CaCl2.H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用6mol/ L盐酸溶液调节pH至7.30,用水定容,贮于塑料瓶中。
3.2标准贮备液3.2.1铜标准贮备液称取1.00g金属铜(优级纯),溶解于20mL 1:1硝酸溶液,移入1L容量瓶中,用水定容,即为1 000ug /mL铜标准贮备液。
分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铜标准溶液。
3.2.2锌标准贮备液称取1.00g金属锌(优级纯),用40mL 1:2盐酸溶液溶解,移入1L容量瓶中,用水定容,即为1 000ug/ mL锌标准贮备液。
分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL锌标准溶液。
3.2.3铁标准贮备液称取1.00g金属铁(优级纯),溶解于40mL 1:2盐酸溶液中(加热溶解),移入1L容量瓶中,用水定容,即为1 000ug/ mL铁标准贮备液。
土壤和沉积物—12种金属元素的测定
![土壤和沉积物—12种金属元素的测定](https://img.taocdn.com/s3/m/c681383ff08583d049649b6648d7c1c708a10bb4.png)
土壤和沉积物—12种金属元素的测定土壤和沉积物是重要的环境资源,其中含有大量的金属元素。
这些金属元素的测定对环境污染和土壤肥力评价具有重要的意义。
本文旨在介绍土壤和沉积物中12种金属元素的测定方法。
1、铜(Cu)的测定铜是大部分生物体内的必需微量元素,但高浓度的铜对环境生态系统具有毒性。
常用的铜测定方法有原子吸收光谱法(AAS)、电感耦合等离子体质谱法(ICP-MS)、火焰原子吸收光谱法(FAAS)、离子选择性电极法等。
其中,AAS测定灵敏度高,安全可靠,广泛应用于土壤和沉积物中铜的测定。
铝是土壤中主要的非机械性质,也是土壤中最丰富的元素之一。
铝的测定方法主要包括磷钼酸法、荧光分析法、原子荧光法等。
其中,磷钼酸法是最常用的铝测定方法,由于其操作简单、成本低,适用于高通量的样品分析。
铬是土壤和水体中常见的重金属,长期过量摄入可导致人体健康问题。
铬的测定方法有原子荧光法、ICP-MS、AAS等。
其中,ICP-MS是铬测定的高灵敏度方法,能够同时测定多个金属元素,适用于复杂的样品分析。
锰是植物和动物生命体内必需的微量元素,但过量的锰对人体和动物的健康产生危害。
锰的测定方法包括AAS、原子荧光法等。
AAS测定方法被广泛应用于土壤和沉积物中锰的测定,且对样品的消解要求不高。
铁是常见元素之一,在土壤和沉积物中占有非常重要的地位。
铁的测定方法主要包括原子吸收法和原子荧光法。
在样品处理方面,铁的分离和富集往往是铁测定的关键步骤。
镉是重金属污染的重要元素之一,对人体健康具有危害性。
镉的测定方法有离子选择性电极法、ICP-MS等。
离子选择性电极法操作简单,适用于样品处理不复杂的物质中镉的测定。
银是一种重要的贵金属,同时也是环境污染的元素之一。
银的测定方法有AAS、ICP-MS等。
其中,AAS测定方法广泛应用于土壤和沉积物中银的测定。
锡是环境中的常见元素之一,持续过量的锡摄入会对人类和动物产生健康上的问题。
锡的测定方法包括原子荧光分析法和AAS等。
简述地质样品中微量元素的高效测试方法
![简述地质样品中微量元素的高效测试方法](https://img.taocdn.com/s3/m/0159d860abea998fcc22bcd126fff705cc175c96.png)
简述地质样品中微量元素的高效测试方法地质样品中的微量元素通常指的是存在于地质样品中的轻稀有金属元素和重稀有金属元素。
这些微量元素在地球化学和地质学研究中具有重要的地位,对地球内部构造和地质制约具有示踪作用。
为了准确、高效地测试地质样品中的微量元素,需要运用一系列高效的测试方法。
迄今为止,测试地质样品中微量元素的方法主要包括了原子荧光光谱法(XRF)、电感耦合等离子体发射光谱法(ICP-OES)、电感耦合等离子体质谱法(ICP-MS)以及电化学分析法等。
下面将分别对这些方法进行简要的介绍。
原子荧光光谱法(XRF)是一种用于分析或检测样品中元素成分的无损分析技术。
它通过测定样品激发的特征辐射来确定样品中元素的含量,具有快速、无需前处理、多元素测定等优点,可以广泛应用于地质样品中微量元素的测试。
XRF方法的缺点在于在样品的测试准确性和灵敏度上相对较低,因此在微量元素测试中并不是首选方法。
电感耦合等离子体发射光谱法(ICP-OES)是通过用电感耦合等离子体发射光谱仪测定样品中金属元素的浓度。
ICP-OES具有高灵敏度、高准确度和高线性范围的优点,可以同时测试多种金属元素。
ICP-OES需要昂贵的设备和复杂的预处理步骤,并且对样品的制备要求较高,因此在实际应用中并不十分常见。
电感耦合等离子体质谱法(ICP-MS)是一种高效、高分辨率、高灵敏度和高准确性的测试技术,能够测定地质样品中微量元素的含量和同位素组成。
ICP-MS技术在地质学、环境科学、生物医学等领域有着广泛的应用,可以同时测试多种元素,并且对于样品的前处理要求也相对较低。
ICP-MS技术在地质样品中微量元素测试中具有很高的研究和应用价值。
除了上述方法外,电化学分析法也是一种常用的测试微量元素的方法。
电化学分析法通过测量电流来确定样品中金属元素的含量,具有灵敏、准确、简便的特点,对于地质样品中微量元素的测试也具有一定的优势。
除了上述的常规测试方法外,近年来还涌现出多种新型的测试方法,例如激光诱导击穿光谱(LIBS)和质谱成像等。
土壤里微量元素的检测方法
![土壤里微量元素的检测方法](https://img.taocdn.com/s3/m/af947a64abea998fcc22bcd126fff705cc175cdf.png)
土壤里微量元素的检测方法土壤中的微量元素是指在土壤中含量较低的元素,但对于作物的生长发育和产量质量至关重要。
因此,准确快速地检测土壤中的微量元素含量对于农业生产和环境监测具有重要意义。
下面将介绍几种常用的土壤微量元素检测方法。
1. 原子吸收光谱法(atomic absorption spectroscopy,AAS)原子吸收光谱法是一种广泛应用的土壤微量元素检测方法。
该方法基于金属元素吸收特定波长的可见光的原理,通过测定吸收光的强度来确定土壤中微量元素的含量。
AAS具有灵敏度高、准确性好、分析范围广的优点,但对于不同的元素需要使用特定的仪器和条件进行分析。
2. 石墨炉原子吸收光谱法(graphite furnace atomic absorption spectroscopy,GFAAS)石墨炉原子吸收光谱法是一种高灵敏度的土壤微量元素检测方法。
该方法将土壤中的微量元素溶解成溶液后,通过石墨炉的加热使其蒸发并分解为原子态,再利用原子吸收光谱法来测定吸收光的强度。
石墨炉原子吸收光谱法能够提高分析的灵敏度和准确性,但仪器价格较高。
3. X射线荧光光谱法(X-ray fluorescence spectroscopy,XRF)X射线荧光光谱法是一种非破坏性的土壤微量元素检测方法。
该方法通过将X射线瞬间照射到土壤样品上,样品吸收能量后发射出特定能量的荧光X射线,通过测定荧光X射线的能量和强度来分析土壤中微量元素的含量。
X射线荧光光谱法具有快速、准确、无需样品预处理等优点,但对不同元素的分析范围有限。
4. 原子荧光光谱法(atomic fluorescence spectroscopy,AFS)原子荧光光谱法是一种非常灵敏的土壤微量元素检测方法。
该方法通过氢化原子荧光技术,将重金属元素还原为原子态,并利用特定波长的激发光来测定原子的荧光强度来分析土壤中微量元素的含量。
原子荧光光谱法具有高灵敏度、高选择性、准确性高的优点,但仪器价格较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤里微量元素的检测方法
一、介绍
微量元素是指土壤中的一些元素,其含量很低,但是对植物的生长和发育起着至关重要的作用。
微量元素在土壤维持着一定的平衡,这些元素的含量过高或过低都会影响到作物的生长。
因此,检测土壤中微量元素的含量是重要的。
检测土壤中微量元素的方法有以下几种:
二、湿式离子交换
湿式离子交换是一种常用的检测微量元素的方法,它通过控制土壤中离子的相对浓度,来检测土壤中含有的微量元素。
该方法的原理是,将待检测的土壤溶解于一定量的碱溶液或酸溶液中,在溶液中存在的微量离子(如铜、钾、锌、锰等)依据离子交换成分的不同,与溶液中的其它离子发生交换,以交换率的变化来检测土壤中微量元素的含量。
三、微量元素的分离分析
微量元素的分离分析是利用化学试剂的作用,将土壤中的微量元素与其它元素以及杂质物分离,把微量元素从土壤中分离出来后,利用适当的方法对分离出来的微量元素进行测定,从而测定土壤中微量元素的含量。
四、原子吸收法
原子吸收法是检测土壤中微量元素的常用方法,也是一种分离分析的方法,它的原理与微量元素的分离分析是一样的,将土壤中的微量元素和杂质物分离,再用原子吸收法对分离出的微量元素的含量进行测定。