难加工材料
机械行业难加工材料与结构的加工技术(ppt 80页)
外型面难加工结构件主要有:薄壁件、叶片、涡轮盘 、微小微细零件外型面及其它特殊复杂的型面。
内型面难加工结构主要有:蜂窝结构、阵列孔、有特 殊要求的小孔、窄缝及其它特殊复杂的形腔结构。
南京航空航天大学机电学院052系
难加工材料的加工技术
南京航空航天大学机电学院052系
难加工材料与结构概述-分类
(4)低温性能好 钛合金在低温和超低温下能保 持力学性能。
(5)化学活性大 钛的化学活性大,与大气中的 O2、N2、H2、CO、CO2、水蒸气、氨气等均产 生剧烈的化学反应。
(6)导热性差 钛的导热系数低,约为Ni的1/4, Fe的1/5,Al的1/14
(1)钛合金具有密度小、强度高、能耐各种酸、碱、 海水、大气等介质的腐蚀等一系列优良的力学、物理 性能,因此在航空、航天、核能、船舶、化工、冶金 、医疗器械等工业中得到了越来越广泛的应用。
南京航空航天大学机电学院052系
难加工材料与结构概述-应用
1.钛合金
记忆钛合金镜架
钛合金刀具
南京航空航天大学机电学院052系
2.主要内容:
1)难加工材料
1)难加工材料的分类
2)难加工材料的应用
2) 难加工结构
南京航空航天大学机电学院052系
难加工材料与结构概述-分类
1.钛合金 2.高温合金 3.不锈钢 4.高强度钢与超高强度钢 5.复合材料 6.硬脆性材料
南京航空航天大学机电学院052系
难加工材料与结构概述-应用
2.高温合金
低膨胀、恒弹性、高弹 性高温合金
精密合金高温合金不锈钢棒
南京航空航天大学机电学院052系
难加工材料的主要种类及应用领域
难加工材料的主要种类及应用领域难加工材料是指具有较高硬度、强度和耐磨性的材料,其加工性和可塑性较差。
这些材料通常需要使用特殊的加工工艺和设备来进行加工和形成。
主要的难加工材料包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。
以下将对每种材料的性质和应用领域进行详细介绍。
高速钢:高速钢是一种含有大量合金元素(如钨、钼、钴等)的高温刚性材料。
其具有耐高温、耐磨和耐热腐蚀的特点,硬度较高,加工性较差。
高速钢广泛应用于切削工具、模具零件和刀具等领域,如数控机床刀具、高硬度切削刀具等。
高铬铸铁:高铬铸铁是一种具有较高强度和硬度的铸造材料。
其含有较高的铬含量,能够增加材料的耐磨性和耐蚀性。
高铬铸铁被广泛应用于矿山机械、冶金工程、水处理设备和石化设备等领域,如磨矿机、破碎机、球磨机等。
硬质合金:硬质合金是一种由硬质颗粒(如碳化钨、碳化钼等)和金属结合剂(如钴或镍)组成的复合材料。
硬质合金具有较高的硬度和耐磨性,广泛应用于切削和研磨工具、矿山工具、粉末冶金等领域,如车削刀片、铣削刀片、刨刀等。
陶瓷材料:陶瓷材料是由金属元素和非金属元素形成的非金属材料。
其具有较高的硬度、耐磨性和耐腐蚀性。
陶瓷材料广泛应用于高温炉具、电子器件、医疗器械和化学工业等领域,如陶瓷刀具、瓷砖、陶瓷零件等。
航空铝合金:航空铝合金是一种具有良好强度和轻质的金属材料。
其具有较高的硬度和耐磨性,加工难度较大。
航空铝合金广泛应用于航空航天工业和汽车工业的结构部件,如飞机主机壳、发动机部件、汽车车身等。
钛合金:钛合金是一种具有较高强度和轻质的金属材料。
其具有较高的硬度、耐腐蚀性和耐高温性,加工性较差。
钛合金被广泛应用于航空航天工业、化工设备和医疗器械等领域,如航空发动机零部件、化工反应容器、人工关节等。
综上所述,难加工材料主要包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。
这些材料具有较高的硬度、强度和耐磨性,但加工性较差。
难加工材料
难加工材料材料加工是指对原料进行加工改造,使其达到设计要求的一系列工艺。
在材料加工中,有些材料由于其特殊的性质,使得加工变得困难,需要采取一些特殊的加工方法。
下面就为大家介绍几种难加工材料及其加工方法。
首先,难加工材料之一是高温合金。
高温合金由于其高熔点和高硬度,使得加工变得困难。
在加工高温合金时,常用的加工方法包括电火花加工、激光加工和超音波加工等。
电火花加工是利用电火花放电腐蚀工件表面,使其形成所需轮廓的一种加工方法。
激光加工则是利用激光束将工件表面的材料熔融并挥发,从而获得所需形状。
超音波加工是利用超音波振动工具切割工件表面的一种加工方法。
其次,还有难加工材料是复合材料。
复合材料由于其由不同性质的材料组合而成,使得加工变得困难。
在加工复合材料时,常用的加工方法包括研磨加工、射出成型和压制成型等。
研磨加工是利用砂轮或研磨片对工件表面进行切削磨削的一种加工方法。
射出成型是将熔融的复合材料通过射出机加热喷射到模具中,并经冷却固化得到所需形状。
压制成型则是利用压力将熔融的复合材料填充到模具中,经冷却固化得到所需形状。
最后,还有难加工材料是硬质合金。
硬质合金由于其高硬度和脆性,使得加工变得困难。
在加工硬质合金时,常用的加工方法包括电火花加工、磨削加工和激光加工等。
电火花加工能够在硬质合金表面形成一层陶瓷膜,从而减小工件和工具的接触面积,降低切削力,从而使得加工更容易进行。
磨削加工则是利用砂轮或研磨片对硬质合金表面进行切削磨削的一种加工方法。
激光加工则是利用激光束将硬质合金表面的材料熔融并挥发,从而实现加工目的。
综上所述,对于难加工材料,我们需要结合其特殊性质采取相应的加工方法。
这些方法中包括电火花加工、激光加工、超音波加工、研磨加工、射出成型和压制成型等。
这些方法能够较好地克服难加工材料的特点,实现高质量、高效率的加工过程。
典型难加工零件工艺分析及编程
绿色制造的推广
要点一
环保材料
采用环保材料,如可回收材料、低毒材料等,减少对环境 的污染。
要点二
节能技术
采用节能技术,如高效加工技术、能源回收技术等,降低 能源消耗和排放。
THANKS
感谢观看
工艺分析的方法
工艺流程规划
根据零件的结构和加工要求,规划合理的加工流 程和顺序。
刀具与夹具选择
根据加工要求和零件结构,选择合适的刀具和夹 具,确保加工过程的稳定性和精度。
ABCD
加工参数确定
根据材料特性、刀具性能和加工条件,选择合适 的切削速度、进给速度和切削深度等参数。
工艺风险评估
对工艺流程和参数进行风险评估,确保加工过程 的安全性和可靠性。
编程技巧的应用
总结词
运用有效的编程技巧可以提高程序的可读性和执行效率。
详细描述
使用条件语句、循环语句和子程序等结构化编程技巧,可以简化复杂的加工过程。同时,利用优化算法和并行处 理技术可以提高程序的运行速度。
数控编程软件的使用
总结词
熟练掌握数控编程软件是实现高效编程的关键。
详细描述
常用的数控编程软件包括Mastercam、Fusion 360和SolidWorks等。这些软件提供了丰富的库函数 和工具,可以帮助程序员快速生成准确的数控代码。此外,程序员还需要了解如何设置工件坐标系、 选择合适的加工策略和刀具路径优化等技术。
降低生产成本
准确的工艺分析有助于减少 材料浪费、降低能耗和减少 刀具磨损,从而降低生产成 本。
提高产品质量
合理的工艺安排和参数选择 有助于减小加工误差,提高 零件的精度和一致性,从而 提高产品质量。
保障生产安全
正确的工艺分析可以避免因 不合理的加工方法和参数导 致的设备故障或生产事故, 保障生产安全。
难加工材料
摘要:阐述了难加工材料的特点,重点介绍了对难加工材料进行车削加工时应采取的措施,列举了几种不同材料车削时应选取的参数。
引言在压缩机的生产过程中,经常会接触到一些难加工的材料,如制造压缩机叶轮的材料有一种含有Cr、Ni、Mo等合金元素的高强度结构钢,这种钢材一经调质处理达到一定的硬度时,很难车削。
钦合金叶轮因为钦合金元素的存在给车削带来诸多麻烦,大型硬齿面齿轮,渗碳淬火的过程会造成一些需要加工的表面过硬而难以车削加工;还有一些运输机械常用紫铜等纯金属制造的套类零件也给车削带来相当大的麻烦。
为了解决这些难加工材料的车削加工问题,需要对难加工材料的特性有足够的了解,然后采取有针对性的措施才能予以解决。
1 难加工材料的加工特点1.何谓难加工材料所谓难加工材料,主要是指切削加工性能差的材料。
金属材料切削加工性的好坏,主要是从切削时的刀具耐用度、已加工表面的质量及切屑形成和排除的难易程度3个方面来衡量。
只要上述这3个方面有一项明显的差,就可认为是难加工材料。
常见的难加工材料有高强度钢、不锈钢、高温合金、钦合金、高锰钢和纯金属(如紫铜)等。
2.难加工材料的切削特点a.车削温度:在切削难加工材料时,切削温度一般都比较高,主要原因有以下两方面。
i.导热系数低:难加工材料的导热系数一般都比较低(纯金属紫铜等除外),在切削时切削热不易传散,而且易集中在刀尖处。
ii.热强度高:如镍基合金等高温合金在500一800℃时抗拉强度达到最高值。
因此在车削这类合金时,车刀的车削速度不宜过高,一般不宜超过10m/min,否则刀具切人工件的切削阻力将会增大。
b.切削变形系数和加工硬化:难加工材料中的高温合金和不锈钢等,这些材料的变形系数都比较大。
在较小的切削速度开始,变形系数就随着车削速度的增大而增大,在切削速度大约达到6m/min的情况下,切屑的变形系数将达到最大值。
由于车削过程中形成切屑时的塑性变形,金属产生硬化和强化,使切削阻力增大,刀具磨损加快,甚至产生崩刃。
难加工材料的铣削
钛合金
特点: 与TiC的亲和能力强、易粘结;导热性差;易 与氧、氮化合形成硬而脆的外皮;其他与不锈 钢接近 典型牌号: TC4 措施: 不宜使用YT类硬质合金刀具,采用YG、 YH 类硬质合金刀具 使用大量的切削液
纯铜 特点: 塑性高、切屑变形大易粘刀 措施: 刀刃锋利、磨卷屑槽、前后刀面表面粗 糙度小 采用高速钢铣刀或K类硬质合金刀具
奥氏体不锈钢
不锈钢分三种:马氏体、铁素体、奥氏体; 马氏体、铁素体不锈钢以铬为主 奥氏体不锈钢为铬镍不锈钢 奥氏体不锈钢的特点: ①塑性大、加工硬化严重 ②导热性差、切削温度高 ③加工硬化严重、易产生冷焊磨损,使刀具耐用度下降 ④易形成积屑瘤 典型牌号:1Cr18Ni9Ti 措施: 机床工艺系统刚性好、铣刀刀齿数少、采用顺铣 采用YG、YW和YH类硬质合金或高碳高钒类高速钢、 无钴超硬型高速钢刀具
难加工材料的 切削性能差的材料 衡量切削性能的指标: 刀具耐用度、已加工表面质量、 切屑的形成与排除 常见的难加工材料: 高锰钢、高强度钢、奥氏体不锈钢、 高温合金、钛合金、纯铜
一、 难加工材料的铣削特点 铣削力大、铣削温度高、加工硬化严重 易粘刀、刀具耐用度低 二、铣削措施 采用适当的刀具材料 选择合理的铣刀几何参数 采用合适的切削液 选择合适的铣削用量 选择合理的铣削方式
高强度钢
屈服点在1176Mpa、抗拉强度在1372Mpa 以上的钢 典型牌号: 38CrNi3MoVA、30CrMnSiA 特点: 很高的强度、足够的韧性、铣削力大、铣削 温度高、刀具耐用度低 措施; 用耐磨性好的刀具(YT14、YW2、YN和涂层 硬质合金刀具、 W12CrV4Mo高速钢刀具)
三、典型的难加工材料
1、高锰钢的铣削 含锰量为13%或13%以上的合金钢 典型牌号:Mn13、40Mn18Cr3 特点: 冲击韧性大、延伸率高、加工硬化严重、 导 热性差、切削温度高 措施: ①采用硬度高、有一定韧性、导热系数较大 、高温性能好的刀具( YW2硬质合金刀具、 含钴高速钢刀具和粉末冶金高速钢刀具) ②进给量、铣削深度不能太小、刃口锋利
工件切削加工性
刃和刀尖的强度,一般取γ。=-4—0º,主偏角kr适当减小,刀
尖圆弧半径rε适当加大。
淬硬钢的组织为回火马氏体,硬度达HRC60以上,塑性
和导热系数都很低。其加工性及刀具材料、刀具几何参数的 选择基本上与冷硬铸铁同。对它们进行精加工,可采用CBN 刀具。
κr= 45° ~ 75°、λs= -10 °
6.钛合金切削加工性分析
1).钛合金特点和分类
a)密度小(约为 4.5g / cm3 ),比钢约小一倍。
b)强度极限高(可达σb=0.981~1.37GPa), 钛合金的比强度(单位重量强度)很高,尤其在高温下比强度仍 很高,这一点对航空、航天工业尤为重要。
工件切削加工性
表 7– 1 材料可加工性分级
分级
名称及种类
Kv
1 很容易切削材料 一般有色金属
> 3.0
2
易切削钢
容易切削材料
3
较易切削钢
2.5 ~ 3.0 1.6 ~ 2.5
4
一般钢及铸铁
1.0 ~ 1.6
普通材料
5
稍难切削材料 0.65 ~ 1.0
6
较难切削材料 0.5 ~ 0.65
7
难切削材料
理 ;对镍基高温合金可采用固溶处理(淬火)
b)、首选一足够的vc以保证加工质量,再选f 、ap
c)、选择合适的刀具材料和角度 连续切:YG6X、YW1 断续切:M42、501、B201
高速钢刀具:γo=15 ° ~20°、αo=12 ° 、κr=45 ° 硬质合金刀具:γo=5° ~ 10°、αo= 8° ~ 15° 、
在自动机床或自动生产线上,常常以切屑
难加工材料
加工高温合金、不锈钢材料时,刀具切削用量的选用一、高温合金的切削特点1.性能特征高温合金是一种多组元、激活能很高的高熔点,金属元素含量很多的复杂合金化材料。
有极好的热稳定性及热强性。
热稳定是高温下抗氧化、抗腐蚀的能力。
热强性是指高温下抵抗塑性变形和断裂的能力。
如以45号钢的切削加工性为100%,则高温合金的相对切削加工性为5%—20%。
可以说高温合金是各种各种难加工材料中最难切削的材料。
2.切削特点⑴切削力大:由于高温合金出众的高熔点、激活能大的组元,原子结合十分稳定。
切削时要使其原子脱离平衡位置,所需的能量很大,变形抗力大大上升。
合金中沉淀的硬化相对会增大塑性变形抗力,而塑性变形抗力使晶格严重扭曲,硬度大大提高,使变形抗力加大。
所以切削高温合金时,切削力比一般钢大2-3倍。
⑵切削温度高:由于切削时巨大的塑性变形,刀具与工件,切屑之间存在着强烈的摩擦,产生大量的切削热。
高温合金的导热系数很低,致使变形区的切削热高度集中于极小的切削区域内,使刀具切削刃及刀尖处的温度非常高。
在高温下会加剧刀具的扩散磨损和氧化磨损。
⑶加工硬化现象严重:高温中,高温合金的强化系数大,并且在切削过程中,合金中的强化相从固液中分解出来,弥散分布,使强化能力增加,加大了硬化程度。
切削高温合金时,已加工表面硬度要比基体硬度高的多约50%—100%。
⑷刀具易磨损:由于高温合金中的各种强化相和加工硬化现象,在切削过程中给刀具造成了巨大的摩擦,发生磨料磨损。
在高温高压条件下,刀具材料与被加工材料之间的亲和作用而造成粘附,使切屑与刀具之间出现粘结现象,造成粘结磨损。
在切削高温合金时,刀具除出现一般的正常磨损外,还会出现边界磨损及沟纹磨损。
主要原因是加工过程中高温合金的加工硬化所造成。
3.刀具的选用根据前面的了解,高温合金的切削加工性的确很差,导致刀具的耐用度低。
因此,应当寻求各种提高刀具的耐用度的措施。
⑴从刀具材料的选择着手:切削高温合金的刀具,要具备有高温硬度,高的耐磨性,强度和冲击韧性,良好的导热性,抗粘性及抗氧化性。
难切削材料切削加工性论文
难切削材料的切削加工性研究【摘要】新材料的出现,使得传统的切削加工变得困难,切削加工性降低。
本文主要介绍了三种难切削材料的切削加工性的一些特点,并以此提出了提高难切削材料切削加工性的途径。
【关键词】切削加工性;钛合金;镍基高温合金;高强度钢一、钛合金的切削加工性钛合金是一种比强度和比刚度较高,在温度550℃以下耐腐蚀很高的材料。
它是应用很广泛的飞行器结构材料,也应用于造船、化工等行业。
钛合金从金属组织上可分为α相钛合金、β相钛合金、(α+β)相钛合金。
硬度及强度按α相、(α+β)相、β相的次序增加,而切削加工性按这个次序下降。
钛合金的切削加工性是较低对的,其原因如下:(1)钛合金导热性能低,切屑与前刀面的接触面积很小,致使切削温度很高,可为45钢切削温度的2倍。
(2)钛合金在600℃以上的温度时,与气体发生剧烈的化学作用。
(3)钛合金塑性较低,特别是和周围的气体发生化学变化后,硬度增高,剪切角增大,切屑与前角面的接触长度很小,使前刀面上应力很大,刀刃容易发生破损。
(4)钛合金的弹性模量低,弹性变形大,接近后刀面处工件表面的回弹量大,故已加工表面与后刀面的接触面积特别大,磨损也比较严重。
根据钛合金的性质和切削过程中的特点,切削时应该考虑的措施是:(1)尽可能使用硬质合金刀具,以提高生产率,应该选用与钛合金亲和力小,导热性能良好的强度高的细晶粒钨钴类硬质合金。
成型和复杂刀具可选用高温性能好的高速高。
(2)为增大切屑与前刀面的接触长度,以提高耐用度,应采用较小的前角。
后角应比切普通钢的大。
刀尖采用圆弧过渡刃,刀刃上避免有尖角出现。
(3)刀刃的粗糙度应尽可能小,以保证排屑流畅和避免崩刃。
(4)切削速度宜低,切削深度可以较大,进给量应适当。
进给量过大易引起刀刃的烧损;进给量过小将因刀刃在加工硬化层中工作而磨损过快。
(5)应进行充分冷却,慎用含氯的极压切削液。
在使用含氯的切削液时,使用后应将工件充分清洗,以防止应力腐蚀。
第12章 硬脆材料与难加工材料磨削
上两式分别预测了四面体压头时P与C的比例 关系及球面体压头时P与C的比例关系。 • 材料强度的降低通常是由中央 /径向裂纹 和残余应力的扩展作用引起的。靠近接触 表面的残余压应力在次表面弹 /塑性边界 突然跃迁为拉应力,达到0.1~0.5H (硬 度)。研究表明由压痕引起的残余应力将 使材料强度降低约30%。
College of Mechanical & Vehicle Engineering
第12章 硬脆材料与难加工材料磨削
• 塑性磨削可以提高表面质量,但效率低,经济性差。一种提高塑性变形以获 得较高去除比的可能方法是提高砂轮速度。提高砂轮速度能降低切屑厚度, 从而降低每磨粒磨削力,增加塑性变形,减少强度损失。砂轮速度越高,每 粒法向磨削力,越降低。当然塑性变形的比例还与磨削温度有关。普遍认为 温度的增高会降低工件质量,然而当磨削热压氮化硅陶瓷的温度达到800。C 时,工件强度却有所提高。这是由于玻璃质状态使裂纹钝化的缘故。因此, 表面破裂比的降低和塑性的明显增加与磨削温度升高时产生的玻璃质状态有 关。使用移动热源理论,最大的磨削区温度增加值可计算如下:
•
c.塑性流动引起的材料去除——压痕断裂力学指出了在其之下不会出现横向断裂的临 界载荷力的存在。因此在临界载荷以下,塑性磨削方式是普遍存在的。塑性状态下的 磨削样件在强度上都有所提高,表面粗糙度值有所降低。使用装有超精密进给控制的 特殊平面磨床来系统地研究塑性状态下的磨削,得到与单颗磨粒上临界断裂载荷 相对应的临界切深bd可表示为:
•
除横向裂纹外,材料去除还与破碎有关。磨粒前端和其下面的材料破碎是表面圆周 应力和剪切应力分布引起的各种形式破坏的结果。关于陶瓷材料破碎的产生原因, 有的研究解释为破碎是由弹性张力超过临界值以前存在着分散的裂纹引起的。还有 的认为破碎是由运动压头下连续的裂纹分支引起的。这种模型成功地预测了玻璃的 单刃磨削的破碎深度,但对Si3N4 陶瓷磨削的破碎深度的预测值却偏大。这与纯弹性 应力场的假设有关。而实际上材料局部塑性变形对Si3N4的影响很大,则导致应力强 度和破碎深度的降低。
怎样算是难加工零件,遇到怎么办
经常听到做机加工的人说某个零件难加工,那么到底什么样的零件才算难加工呢?今天为您全面总结一下,难加工零件的种种特征,以及在加工难加工零件时,需要注意哪些问题。
难加工零件的特征:首先在于零件材料。
难加工材料普遍具有“四高”,即高硬度、高强度、高韧性和高脆性的特点,另外,还有的工件导热性低,有微观的硬质点或硬夹杂物,化学性质活泼。
这些特性会导致切削过程中的切削力变大、切削热增加、切屑不易控制、刀具耐用度下降,从而影响加工的表面质量,降低加工效率和加工质量。
其次是零件外形。
外形越复杂的零件越难加工,像是具有不规则外形的异形件、壁厚度不一致的箱体类零件、半封闭腔体零件,都无法再普通机床上加工,必须使用数控设备才能够加工出来。
还有加工精度和加工误差的要求。
加工精度和加工误差都是评价加工表面几何参数的术语。
加工精度越高误差也就越低,反之亦然。
有些工件对加工精度有着极高的要求,加工误差必须控制在很小的范围内,这类工件加工起来难度是比较大的。
加工难加工零件的注意问题:遇到难加工零件,有以下几个问题需要注意:首先是工艺编制。
在工艺编制的过程中,要根据零件的实际情况设定合理的加工顺序,并选择合适的加工工具,这样有助于加工更加便捷、快速、高效的完成。
如果工艺编制不合理,就会严重影响到加工的效率和质量。
其次是刀具的选择。
选择了适合的刀具可以使加工顺利地进行,尤其对于难加工零件,正确选择刀具就显得更加重要。
选择刀具应该充分考虑机床的加工能力、工件材料的性能、加工工序、切削用量以及其他相关因素。
例如在粗加工时,由于需要快速切除大量材料,应选择足够大且拥有足够切削能力的刀具;在精加工时,为了保证零件外形结构的精度,应选择较小的刀具;在切削低硬度材料的时候,可以使用高速钢刀具,而当零件材料硬度很高时,就必须选择硬质合金刀具。
接下来是零件的装卡。
正确装卡可以保证零件在切削过程中,在切削力的作用下不会发生位移,始终保持正确的位置。
不锈钢加工的难点及对策
不锈钢加工的难点及对策1 切削过程中的难点及原因分析在零件试生产时,我们按车削普通碳钢的工艺方法对3Cr13不锈钢进展了车削试验,结果是刀具磨损非常严重,生产率极低,零件外表质量达不到要求。
比较3Cr13钢与40钢、45钢等碳素构造钢的机械性能可知,3Cr1 3钢的强度比40钢和45钢高,它是一种强度高、塑性好的中碳马氏体不锈钢。
由于切削时加工硬化严重,切削抗力大,切削温度高,导致刀具磨损严重,磨刀次数增多,增加了停机时间和机床调整时间,降低了生产率。
同时又容易粘刀,产生积屑瘤,引起工件尺寸的变化并影响外表粗糙度,而且切屑不易卷曲和折断,易损伤工件已加工外表,影响零件质量。
所以,不能用切削45钢的工艺来切削3Cr13,也不能把通用车床上的加工方法照搬到自动车床上来。
因为一般自动车床装刀较少,要求最好一次走刀就能使被加工外表到达要求的尺寸和外表粗糙度,以保证较高的生产率。
2 主要技术措施1.通过热处理,改变材料的硬度马氏体不锈钢在热处理后的不同硬度,对车削加工的影响很大。
表1是用YW2材料的车刀对热处理后不同硬度的3Cr13钢的车削情况。
可见,退火状0.10.10.1态的马氏体不锈钢虽然硬度低,但车削性能差,这是因为材料塑性和韧性大,组织不均匀,粘附,熔着性强,切削过程易产生刀瘤,不易获得较好的外表质量。
而调质处理后硬度在HRC30以下的3Cr13材料,车削加工性较好,易到达较好的外表质量。
用硬度在HRC30以上的材料加工出的零件,外表质量虽然较好,但刀具易磨损。
所以,在条件允许的情况下,可以在材料进厂后,先进展调质处理,硬度到达HRC25~HRC30,然后再进展切削加工。
表13Cr13钢材料切削用量刀具耐用度min加工外表粗糙度μmνm/minsmm/rHB240(退火)45~550.190~115Ra6.3~Ra3.2HRC25~30(调质)45~550.195~110Ra3.2HRC35~38(调质)45~550.160~75Ra3.22.刀具材料的选择在自动车床上车削不锈钢,一般使用的硬质合金的刀具材料有:YG6、YG8、YT15、YT30、YW1、YW2等材料。
难加工材料
进给速度 vf
进给量f 或 进给速度vf 切削速度v 背吃刀量ap
切削用量三要素
在切削加工过程中,需要针对不同的工件材料、 刀具材料和其它技术经济要求来选定适宜的切削 速度vc 、进给量f 或进给速度vf ,还要选定适宜的 背吃刀量ap值和切削宽度ae值。
切削用量选择
选择顺序
背吃刀量ap 进给量fz 切削速度vc
工欲善其事,必先利其器
切削加工是现代机械 制造工业中最基本的 加工方法。 切削加工质量的好坏, 效率的高低,直接决定 产品的质量、性能 和生产成本。
要高质量、高效率 地进行切削加工, 就要求有高质量、高 性能的生产工具,包括 切削机床、切削刀具、 夹具和量具等。
切削刀具 的作用
刀具是直接对零件 进行加工的,刀具 的性能和质量的优 劣,直接影响加工效率、 加工精度和表面质量。
常见难加工材料及特点
•(2)宏观高硬度材料:如淬火钢、硬质合 金、陶瓷、冷硬铸铁、合金铸铁、喷涂材料 (镍基、钴基)等。
•特点是硬度高。切削这类材料时,由于切削 力大,切削温度高,刀具主要是磨料磨损和 崩刃。
常见难加工材料及特点
•(3)加工时硬化倾向严重的材料,如不锈 钢、高锰钢、耐热钢、高温合金等。 •这类材料的塑性高、韧性好、强度高,强化 系数高。切削加工时的切削表面和已加工表 面硬化现象严重。由于这类材料的强度高, 导热系数低,切削温度高,切削力大,刀具 主要承受磨料磨损、粘结磨损和热烈磨损。
螺纹铣刀和倒角刀
主运动、进给运动与合成切削运动
在切削加工过程中的运动单元分为主运动和进给 运动两种。 两个运动向量之和,称为合成切削运动。 例:在车床上,工件回转运动是主运动。 在钻床和铣床上,刀具的回转运动是主运动。
难加工材料的切削加工方法
宜的涂层刀具材料。据报道, 最近已开发出金刚石 具形状和夹具应很好配合, 这样可提高刀具切削部 涂层硬质合金和 D CDa od L eC r n L (i n i a o) m k b 涂层 分的振摆精度和夹持刚性 ,以便在高速回转条件 硬质合金, 使涂层刀具的应用范围进一步扩大, 并 下 , 保证将每齿进给量提高到最大限度 , 同时也可 已可用于高速切削加工领域 延长工具寿命。 4切削难加工材料的刀具形状 结束语。如前所述, 难加工材料的 最佳切削方 在切削难加工材料时 , 具形状的最佳化可充 法是不断发展的 , 刀 料时, 必须慎重选择刀具品种和切削条件, 以获得 新的难加工材料不断出现 , 对新 在切削超耐热合金时 , 由于材料的高温硬度很 高, 切削时的应力大量集中在刃尖处 , 这将导致切 削刃产生塑性变形 ; 同时, 由于加工硬化而引起的 边界磨损也}饺严重。 匕 由于这些特 , 所以要求用户在切削难加工材
损。
难加工材料中的钛、钛合金由于化学滑 眭 , 高 热传导率低 ,可选用金刚石 刀具进行切I I 工。 II C N烧结体刀具适用于高硬度钢及铸铁等材料的 B 切削加工,B 成分含量越高, CN 刀具寿命也越长, 切 削用量也可相应提高。据报道 , 前已开发出不使 目 用粘结剂的 C N B 烧结体。 金刚石烧结体刀具适用于铝合金、 纯铜等材料 的切削加工。 金刚石刀具刃口 锋利 , 热传导率高, 刃 尖滞留的热量较少 , 可将积屑瘤等粘附物的发生控 制在最低限度之内。在切削纯钛和钛合金时, 选用
5难加工材料的切削条件 难加工材料的切削条件历来都设定得比 较低,
随着刀具 陛 能的提高,高速高精度 C C机床的出 N 现, 及高速铣削方式的引进等 , 前 , 以 目 难加工材料 的切削已 进入高速加工、 具长寿命化的时期。 刀 现在 , 采用小切深以减轻刀具切削刃负荷, 从 而可提高切削速度和进给速度的加工方式 , 成为 已 切削难加工材料的最佳方式。当 , 然 选择适应难加 工材料特有性能的刀具材料和刀具几何形状也极 为重要, 目 而 应力 求刀具切削轨迹的最佳化。 例如 , 钻削不锈钢等材料时,由于材料热传导率很低, 因 单晶金刚石刀具切削 E E 较稳定, 可延长刀 具寿命。 此, 必须防止切削热大量滞留在切削刃上, 为此应 涂层硬质合金刀具几乎适用于各种难加工材 尽可能采用间断切削, 以避免切削刃和切削面摩擦 料 的切II 工 , II 但涂层 的  ̄I( - 单一涂层和复合涂 生热 , I 这将有助于延长工具寿命和保证切削的稳 层 异很大, 兰 因此, 应根据不同的加工对象 , 选用适 定。用球头立铣 刀对难加工材料进行粗加工时, 工
难加工材料细长薄板件的加工
难加工材料细长薄板件的加工周文【摘要】针对难加工材料细长薄板零件的加工特点,设计了这类零件加工的刨削加工工艺方案,探讨了刨削加工方法在细长薄板零件加工中的应用.【期刊名称】《南通纺织职业技术学院学报》【年(卷),期】2014(014)004【总页数】3页(P12-13,21)【关键词】薄板零件;刨削加工;工艺方案【作者】周文【作者单位】江苏工程职业技术学院,南通226007【正文语种】中文【中图分类】TH162板类零件是机械加工中常见的零件之一,这类零件常用的加工方法是采用铣削加工,但对于长度尺寸远大于宽度尺寸的细长薄板而言,在铣床上加工会受到限制,甚至变得不可能。
如图1所示零件,其材料为40 Cr,是不锈钢材料,属于难加工材料,零件厚度为50 mm,相对长度而言属于薄板零件,由于角度的存在,在铣床上加工十分困难,如何选择适当的加工方法就成了提高加工效率和保证加工精度的关键。
图1所示的薄板零件的厚度、宽度尺寸和上平面的形状与位置精度及表面粗糙度要求比较高,而长度尺寸精度要求不高。
该零件的主要技术要求为:①零件上底面的平面度0.050 mm,对下底面的平行度0.20 mm;②上、下底面的尺寸公差为0.020 mm;③左、右两侧面的尺寸公差为0.020 mm。
根据零件宽度、厚度尺寸以及长度尺寸,该零件属于典型的细长薄板件,其在加工过程中具有如下特点[1]:①由于材料含有合金元素Cr,其塑性、韧性较大,切削过程中易于形成积屑瘤,精加工时会影响工件加工的尺寸精度与表面粗糙度;②切削力大,加工硬化严重;③热导率低,工件热变形大。
由此可见,该零件在加工过程中的难点和关键是如何防止在加工中出现因设备、刀具以及切削参数等方面考虑不周而出现零件加工不合格现象。
根据零件图,零件所有表面均需要加工,部分表面为斜面,因而不能或很难采用铣削加工,需选择其他工艺方案。
零件比较薄,狭长,加工过程容易变形,可选择在龙门刨床上加工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难加工材料绪论:1.难加工材料分类?特点?2.难切削材料有哪些特点?3.改善难切削材料切削加工性的基本途径有哪些?第一章淬火钢的切削加工1.1 什么是淬火钢?它有哪些切削特点?1.2怎样选择切削淬火钢的刀具材料?1.3切削淬火钢的实例有哪些?第二章不锈钢的切削加工第三章高强度钢和超高强度钢的切削加工第四章高锰钢的切削加工第五章冷硬铸铁和耐磨铸铁的切削加工第六章钛合金的切削加工第七章高温合金的切削加工第八章热喷涂材料的切削加工第九章难熔金属和纯金属的切削加工第十章其他难加工材料绪论:1.难切削材料分哪几类?各有什么特点?难加工材料,科学地说,就是切削加工性差的材料,即硬度>HB250,强度σb>1000MPa,延伸率>80%,冲击值αK>0.98MJ/m2,导热系数K<41.8W(m·K)。
难加工材料种类很多,从金属到非金属材料的范围也很广泛,初步可分为以下八大类:(1)微观高硬度材料:如玻璃钢、岩石、可加工陶瓷、碳棒、碳纤维、各种塑料、胶木、树脂、合成材料、硅橡胶、铸铁等。
这类材料的特点是含有硬质点相,其中有的研磨性很强。
由于这些材料的耐磨性很好,切削时起磨料作用,故刀具主要承受磨料磨损,在高速切削时也同时伴随着物理、化学磨损。
(2)宏观高硬度材料:如淬火钢、硬质合金、陶瓷、冷硬铸铁、合金铸铁、喷涂材料(镍基、钴基)等。
这类材料的主要特点是硬度高。
切削这类材料时,由于切削力大,切削温度高,刀具主要是磨料磨损和崩刃。
(3)加工时硬化倾向严重的材料,如不锈钢、高锰钢、耐热钢、高温合金等。
这类材料的塑性高、韧性好、强度高,强化系数高。
切削加工时的切削表面和已加工表面硬化现象严重。
由于这类材料的强度高,导热系数低,切削温度高,切削力大,刀具主要承受磨料磨损、粘结磨损和热烈磨损。
(4)切削温度高的材料:如合成树脂、木材、硬质橡胶、石棉、酚醛塑料、高温合金、钛合金等。
这类材料的导热系数很低。
切削这类材料时,刀具易产生磨料磨损、粘结磨损、扩散磨损和氧化磨损。
(5)高塑性材料:如纯铁、纯镍、纯铜等。
由于这类材料延长率大于50%,塑性高,切削时塑性变形很大,易产生积屑瘤和鳞刺,刀具主要时磨料磨损和粘结磨损。
(6)高强度材料:是指强度σb>1000MPa的材料,如奥氏体不锈钢、高锰钢、高温合金和部分合金钢。
由于它们的强度高,切削时的切削力大,切削温度高,不仅刀具易磨损,而且切屑不易处理。
(7)化学活性大的材料:如钛、镍、钴及及其的合金。
这类材料化学活性大、亲和性强,切削加工时易粘结在刀具上,与刀具材料产生化学、物理反应、相互扩散。
(8)稀有高熔点材料:是指熔点高于17000C的难熔金属材料,如钨、钼、铌、钽、锆、铪、钒、铼的纯金属及其合金。
由于这些材料本身的熔点高,在切削加工时切削力大,切屑变形也大,刀具主要是磨料磨损和粘结磨损。
2.难切削材料有哪些切削特点?(1)切削力大:难切削材料大都具有高的硬度和强度,原子密度和结合力大,抗断裂韧性和持久塑性高,在切削过程中切削力大。
一般难切削材料的单位切削力是切削45钢的单位切削力的1.25-2.5倍。
(2)切削温度高:多数的难切削材料,不仅具有较高的常温硬度和强度,而且具有高温硬度和高温强度。
因此,在切削过程中,消耗的切削变形功率大,加之材料本身的导热系数小,切削区集中了大量的切削热,形成很高的切削温度。
例如,当切削速度为75m/min时,不同材料的切削温度比切削45钢的切削温度高的情况是:TC-4高435 0C,GH2132高3200C,GH2036高2700C,1Cr18Ni9Ti高1950C。
(3)加工硬化倾向大:一部分难切削材料,由于塑性、韧性高,强化系数高,在切削过程中的切削力和切削热的作用下,产生巨大的塑性变形,造成加工硬化。
无论是冷硬的程度还是硬化层深度都比切削45钢高好几倍。
加之在切削热的作用下,材料吸收周围介质中的氢、氧、氮等元素的原子,而形成硬脆的表层,给切削带来很大的困难。
如高温合金切削后的表层硬化程度比基体大50-100%,1Cr18Ni9Ti奥氏体不锈钢85-95%,高锰钢(Mn13)高200%,其硬化层深度达0.1mm 以上。
(4)刀具磨损大:切削难切削材料的切削力大,切削温度高,刀具与切屑之间的磨檫加剧,刀具材料与工件材料产生亲和力作用,材料硬质点的存在和严重的加工硬化现象的产生,使刀具在切削过程中产生粘结、扩散、磨料、边界和沟纹磨损,而使刀具丧失切削的能力。
(5)切削难处理:材料的强度高,塑性和韧性大,切削时的切削呈带状的缠绕屑,既不安全,又影响切削过程的顺利进行,而且也不便于处理。
3.改善难切削材料切削加工性的基本途径有哪些?改善难切削材料切削加工性的途径是多方面的,但我们研究切削加工,只能从切削加工上去考虑,但也要因地制宜采用其他的加工工艺。
(1)选用合理的刀具材料。
(2)改善切削条件。
(3)选择合理的刀具几何参数和切削用量。
(4)对被加工材料进行适当的热处理(5)重视切屑控制(6)采用其他加工措施:如采用等离子加热切削、振动切削、电熔爆切削,都可以获得较高的切削效率。
第一章淬火钢的切削加工1.什么是淬火钢?它有哪些切削特点?淬火钢是指金属经过淬火后,组织为马氏体,硬度大于HRC50的钢。
它在难切削材料中占有相当大的比重。
加工淬火钢的传统方法是磨削。
但是为了提高加工效率,解决工件形状复杂而不能磨削和淬火后产生形状和位置误差的问题,往往就需要采用车削、铣削、镗削、钻削和铰削等切削加工方法。
淬火钢在切削时有以下特点。
(1)硬度高、强度高,几乎没有塑性:这是淬火钢的主要切削特点。
当淬火钢的硬度达到HRC50-60时,其强度可达σb=2100-2600 MP,按照被加工材料加工性分级规定,淬火钢的硬度和强度为9a级,属于最难切削的材料。
(2)切削力大、切削温度高:要从高硬度和高强度的工件上切下切屑,其单位切削力可达4500MP。
为了改善切削条件,增大散热面积,刀具选择较小的主偏角和副偏角。
这时会引起振动,要求要有较好的工艺系统刚性。
(3)不易产生积屑瘤:淬火钢的硬度高、脆性大,切削时不易产生积屑瘤,被加工表面可以获得较低的表面粗糙度。
(4)刀刃易崩碎、磨损:由于淬火钢的脆性大,切削时切屑与刀刃接触短,切削力和切削热集中在刀具刃口崩碎和磨损。
(5)导热系数低:一般淬火钢的导热系数为7.2W(m·K),约为45钢的1/7.材料的切削加工性等级是9a级,属于很难切削的材料。
由于淬火钢的导热系数低,切削热很难通过切屑带走,切削温度高,加快了刀具磨损。
2.怎样选择切削淬火钢的刀具材料?合理选择刀具材料,是切削加工淬火钢的重要条件。
根据淬火钢的切削慝点,刀具材料不仅要有高的硬度、耐磨性,耐热性,而且要有一定的强度和导热性。
(1)硬质合金:为了改善硬质合金的性能,在选择硬质合金时,应优先选择加入适量TaC或NbC的超细微粒的硬质合金。
因为在WC-Co类硬质合金中,加入TaC以后,可将其原来的8000C 高温强度提高150-300MP,常温硬度提高HV40-100.加入NbC以后,高温强度提高150-300MP,常温硬度提高HV70-150。
而且Ta和NbC 可以细化晶粒,提高硬质合金抗月牙洼磨损的能力。
TaC还可以降低磨檫系数,降低切削温度,增强硬质合金抗热烈和热塑性性变形的能力,同时也将WC的晶粒细化到0.5-1μm,其硬度提高HRA1.5-2,抗弯强度可提高600-800MP,高温硬度比一般硬质合金高。
常用来切削淬火钢的硬质合金牌号有:YS8、YN05、YN10、600、610、726、758、767、813等。
(2)热压复合陶瓷和热压氮化硅陶瓷:在Al2O3中加入TiC等金属元素并采用热压工艺,改善了陶瓷的致密性,提高了氧化铝基陶瓷的性能,使它的硬度提高到HRA95.5,抗弯强度可达800-1200MP,耐热性可达1200-13000C,在使用中可减少粘结和扩散磨损。
其主要牌号有AG2、AG3、AG4、LT35、LT55、AT6等。
氮化硅基陶瓷是在Si3N4中加入TiC等金属元素,其硬度为HRA93-94,抗弯强度为70-1100MP。
主要牌号有HS73、HS80、F85、ST4、TP4、SM、HDM1、HDM2、HDM3。
这两种陶瓷适用于车、铣、镗、刨削淬火钢。
(3)立方氮化硼复合片(PCBN)刀具:它的硬度为HV8000-9000,复合抗弯强度为900-1300MP,导热性比较高,耐热性为1400-15000C,是刀具材料最高的。
它十分适合于淬火钢的半精加工和精加工。
综上所述,切削淬火钢最好的刀具材料是立方氮化硼,其次是复合陶瓷,再其次是新牌号硬质合金。
3.怎样选择切削淬火钢时的切削用量?切削加工淬火钢的切削用量,主要是根据刀具材料、工件材料的物理、力学性能、工件形状、工艺系统刚性和加工余量来选择。
在选择切削用量三要素时,首先考虑选择合理的切削速度,其次是切削深度,再次是进给量。
(1)切削速度:硬质合金刀具速度为30-75m/min;陶瓷刀具速度为60-120m/min;立方氮化硼刀具速度为100-200m/min。
在连续切削和工件材料硬度太高时,应降低切削速度,一般约为上面最低切削速度的1/2.在连续切削时的最佳切削速度,以切下的切屑呈暗红色为宜。
(2)切削深度:一般根据加工余量和工艺系统刚性选择,一般情况下a p=0.1-3mm。
(3)进给量一般为0.05mm/r到0.4mm/r。
在工件材料硬度高或断续切削时,为了减小单位切削力,应当减小进给量,以防崩刃和打刀。
第二章不锈钢的切削加工1.什么是不锈钢?通常,人们把含铬量大于12%或含镍量大于8%的合金叫做不锈钢。
这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>4500C)下具有较高的强度。
含铬量达16-18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。
钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。
为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。
这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的不能热处理。
由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。
所含有的合金元素对切削加工性影响很大,有时甚至很难切削。