离散时候信号与系统
信号与系统-离散时间域分析
滤波器性能评估
分析滤波器的幅频响应、 相频响应、群延迟等性能 指标,以评估滤波器的性 能。
数字调制与解调技术
ASK调制与解调
通过改变载波的振幅来 传递数字信息,实现 ASK调制,并通过相干 或非相干解调方法恢复 原始信号。
FSK调制与解调
利用不同频率的载波表 示不同的数字信息,实 现FSK调制,通过鉴频 器或锁相环等实现FSK 信号的解调。
分类
根据信号的性质和特征,离散时间信 号可分为周期信号和非周期信号、确 定信号和随机信号等。
离散时间系统定义及性质
定义
离散时间系统是一种对离散时间输入 信号进行变换或处理的系统,其输出 也是离散时间信号。
性质
离散时间系统具有线性、时不变性、 因果性、稳定性等性质,这些性质对 于系统的分析和设计具有重要意义。
离散时间信号处理重要性
数字信号处理基础
理论分析基础
离散时间信号处理是数字信号处理的 基础,对于数字通信、音频视频处理、 雷达声呐等领域具有重要意义。
离散时间信号和系统分析的理论和方法 可以推广到连续时间信号和系统,为信 号处理和分析提供统一的理论框架。
计算机处理方便
离散时间信号适合计算机处理,可以 通过算法实现各种复杂的信号处理和 变换。
06 实验:离散时间信号处理 实践
实验目的和要求
理解和掌握离散时间 信号的基本概念和性 质
培养实验操作能力和 分析解决问题的能力
熟悉离散时间信号的 处理方法和实现过程
实验内容和步骤
01
实验内容
02
生成离散时间信号
对信号进行基本运算(如加减、乘除、平移、翻转等)
03
实验内容和步骤
01
对信号进行频谱分析,观察信号 的频谱特性
精品课程《数字信号处理》PPT课件第1章 离散时间信号与系统
n
(a) (a)
(b) (b)
第1章 离散时间信号与系统 3. 序列的和 z(n) x(n) y(n)
4. 序列的乘积
f (n) x(n) y(n)
5. 序列的标乘
f (n) cx(n)
两序列的和是指同序号 n 的序列值
逐项对应相加而构成的一个新序列
两序列相乘是指同序号 n
的序列值逐项对应相乘
k必为整数
第1章 离散时间信号与系统
分三种情况讨论正弦序列周期
N 2k = 2 k 0 0
2 1. 0
为正整数,只要 k =1,
N
2 0
为最小正整数,即序列周期;
第1章 离散时间信号与系统
1.
2 0
为正整数,只要
k
=1, N
2 0
为最小正整数,即周期
sinnω0
1
o1
5
10 n
1
第1章 离散时间信号与系统
x(n) sin(n0 )
sin(n0T
)
0
0T
数字域角频率 0:反映序列变化的速率 ,单位 ( rad/间隔 ) 模拟域角频率 0:反映信号变化的速率 ,单位 ( rad/s )
0 0T
0
0
fS
数字域角频率是模拟域角频率对采样频率的归一化
第1章 离散时间信号与系统 6. 复指数序列
x(n) Ae j0 n
x n
2 不是整数, 0
N k
(N,k为互素整数)N
k
2 0
已知:x n sin 4π n ,求其周期。
11
ω0
4π , 则有:2π
11
ω0
2π
11 4π
离散时间信号和系统理论知识介绍
离散时间信号和系统理论知识介绍离散时间信号和系统理论是信号与系统理论领域的重要分支,用于描述和分析在离散时间点上的信号及其相应的系统行为。
离散时间信号是在离散时间集合上定义的函数,通常由离散采样得到。
离散时间系统则是对输入离散时间信号进行操作和处理得到输出信号的过程。
离散时间信号是时间的一个离散序列,可以通过对连续时间信号进行采样得到。
最常见的离散时间信号是离散时间单位脉冲信号,其在一个时间点的值为1,其他时间点的值为0。
其他常见的离散时间信号包括阶跃信号、正弦信号、方波信号等。
每个离散时间信号都有其特定的频谱和幅度特性。
离散时间系统是对离散时间信号进行处理和操作的载体。
离散时间系统可以是线性系统或非线性系统。
线性系统可以通过线性时不变(LTI)系统模型来描述,即系统的输入和输出之间存在线性时不变关系。
LTI系统可以用巴特沃斯(Bartow)方程式或其它传输方程式来表示,并可以通过离散时间卷积来分析系统的响应。
非线性系统则不满足线性性质的要求,其描述和分析方法更为复杂。
离散时间信号和系统理论的基本概念包括线性性、时不变性、因果性和稳定性等。
线性性要求系统对输入信号的加法性和乘法性具有反应;时不变性要求系统的性质不随时间变化而改变;因果性要求系统的响应仅依赖于过去和当前的输入信号;稳定性要求系统的输出有界且有限。
离散时间信号和系统的分析方法包括时域分析和频域分析。
时域分析主要关注信号和系统在时间域上的行为,如脉冲响应、单位样本响应、单位阶跃响应等;频域分析则关注信号和系统在频域上的特性,如频谱分析、频率响应等。
离散时间信号和系统在实际应用中有广泛的应用。
例如,它们可以用于数字音频处理、数字图像处理、通信系统、控制系统等领域中。
在这些应用中,离散时间信号和系统的理论方法可以帮助我们分析和设计系统,优化信号处理算法,并提高系统的性能。
总而言之,离散时间信号和系统理论是信号与系统理论中重要的一部分,用于描述和分析离散时间信号和系统的特性。
信号系统第6章离散信号与系统
end
6.4 应用举例
例
信号与系统
6.4-22
菲波那契数列:如小兔的繁殖、蝗虫灾害 {0,1,1,2,3,5,8,13,……} 其数学模型为: 如小兔的繁殖、蝗虫灾害。方程的解: 图6为求解结果。
end
图6
阶跃响应s( n )与单位响应h( n ) :
因
故
三、卷和的性质
交换律:f 1( n )
f 2( n ) = f 2( n ) f 1( n )
结合律:f 1( n ) [ f 2( n )
f 3( n ) ] = [ f 1( n ) f 2( n ) ] f 3( n )
分配律: f 1( n ) [ f 2( n ) + f 3( n ) ] = f 1( n ) f 2( n ) + f 1( n ) f 3( n )
位移不变性: f 1( n m )
f 2( n r ) y( n m r )
连续系统与离散系统的比较:
离散系统
图3 从模拟信号到数字信号
二、离散时Байду номын сангаас系统
差分方程:微分方程的离散化。对一阶RC电路
对上式取样,得
令T = 1,即 梯形网络的节点电位方程(见图5)
图5 梯形电阻网络
根据KCL,有
整理可得
一般形式:
LTI系统:
•
线性: a1f1( n ) + a2f2( n ) a1y1( n ) + a2y2( n )
离散时间信号与系统
若要
2
2 若要 为有理数(N/k),则: T0 2 N NT k T
为整数,T0应为T的整数倍;
kT 0
即N个抽样间隔应等于连续正弦信号的k 个周期.
25
四、序列的能量 x(n)的能量定义为序列各样本的平方和,即:
E
n
x ( n)
2
26
1.3
连续时间信号的采样
采样器可以看成是一个电子开关,开关每隔T秒闭
合一次,(理想采样闭合时间无穷短,实际采样闭
合时间τ秒,)对输入信号进行采样。
采样过程可以看成脉冲调幅, xa(t)为调制信号,被 调脉冲载波是周期为T的周期性脉冲串。当脉冲宽 度为τ时,实际采样,τ→0时,理想采样。
29
实际采样:
T
p(t)为脉冲 序列 …
n
a为实数,当
a 1时, 收敛 a 1时, 发散
17
5.复指数序列 complex exponent sequence
① 实、虚部
x(n) Ae
( j ) n
x(n) Ae jn
为数字域频率。
② 极坐标
x(n) Ae jn | x(n) | e j arg[ x ( n)]
X a ( j) xa (t )e
jt
dt
33
s (t )
n
(t nT )
s (t ) Ak e jk s t
周期函数
利用傅立叶级数展开,可得:
k
s=2/T,s称为采样角频率 fs=1/T,fs为采样频率
1 T2 其中: Ak T s (t )e jk s t dt T 2 1 T2 T (t nT )e jk s t dt T 2 n 1 T2 1 jk s t T (t )e dt 2 T T
离散时间信号与系统教程
离散时间信号与系统教程离散时间信号与系统是一门重要的信号与系统理论课程,它在现代信息处理、通信和控制等领域有着广泛的应用。
本教程将介绍离散时间信号与系统的基本概念、特性和分析方法,帮助读者建立对离散时间信号与系统的理解和应用能力。
首先,我们来了解离散时间信号的基本概念。
离散时间信号是以时间为自变量的数字信号,它在时间上以离散的方式变化。
离散时间信号可以用数学表示为一个序列,每个序列值对应一个离散时间点上的信号强度。
离散时间信号的特性包括有界性、统一性和周期性。
有界性表示信号在某一区间内取有限的值,统一性表示信号在整个时间范围上都存在,周期性表示信号以一定的间隔重复出现。
离散时间系统是对离散时间信号进行处理和变换的系统。
离散时间系统可以用差分方程或差分方程组来描述。
常见的离散时间系统包括差分方程、差分方程组、差分方程的状态空间表示等。
离散时间信号与系统的分析方法主要包括时域分析和频域分析。
时域分析主要通过对信号和系统的零输入响应、零状态响应和总响应进行分析来研究其特性。
频域分析则通过傅里叶变换、离散傅里叶变换等方法,将信号和系统转换到频域中进行分析。
在离散时间信号与系统的教程中,还会介绍一些重要的概念和性质,如单位样本序列、单位阶跃序列、单位冲激响应等。
同时,会引入一些经典的离散时间系统,如差分方程、滤波器等,通过实例来说明它们在实际应用中的重要性和应用方法。
最后,离散时间信号与系统还与连续时间信号与系统存在一定的联系。
在这方面,我们将介绍采样定理和离散化方法,以及连续时间系统与离散时间系统之间的转换关系。
离散时间信号与系统是信号与系统理论中的重要分支,它为我们理解和分析数字信号的产生、传输和处理提供了基础。
通过学习离散时间信号与系统的基本概念、特性和分析方法,读者将能够掌握离散时间信号与系统的基本原理和应用技巧,为将来的工程实践和科学研究打下坚实基础。
离散时间信号与系统在现代信息处理、通信和控制等领域有着广泛的应用。
信号与系统-离散信号与系统
(1)
y (k + 3) − 2 2 y (k + 2) + y (k + 1) + 0 y (k ) = f (k ) 1 y (k + 2) − y (k + 1) + y (k ) = f (k ) 4
(2)
解:用转移算子法求。
1 (1) H ( E ) = 3 2 E − 2 2E + E 1 = E ( E − 2 − 1)( E − 2 + 1) 1 1 1 2( 2 + 1) 2( 2 − 1) = + − E E − 2 −1 E − 2 + 1
f ( n )= ∑ i=-∞ f(i) ∗ δ (k-i)=f(n) ∗ δ (n)
∞
四 离散信号的卷积和
l 定义
f1 (n) ∗ f2 (n)=∑i=-∞ f1 (i) ∗ f2 (k-i)=∑i=-∞ f2 (i) ∗ f1 (k-i)
∞ ∞
l 上下限范围
– 当f1(n), f2(n)均为因果序列
yh (n) =
l
l
∑
K
N i =1
A iα
n i
i −1 n yh (n) = ∑i =+1 An α1 + ∑i=k +1 Aiαin i N
l l l
将所求得的强迫解和自由解相加,即可得到全响应 将给定的全响应的初始值代入到方程中,已确定待定系数 将所求得的待定系数带入到全响应方程中
例:求下列差分方程所 描述的系统的单位响应 h(k)
1 故h(k) =δ (k −1) +[ ( 2 +1)k−1 − 2( 2 +1) 1 k−1 ( 2 −1) ]U(k −1) 2( 2 −1) 1 k−2 1 k−2 =δ (k −1) +[ ( 2 +1) − ( 2 −1) ]U(k −2) −δ (k −1) 2 2 1 k−2 k−2 = [( 2 +1) −( 2 −1) ]U(k −2) 2
数字信号处理课件第二章--离散时间信号与系统(ppt文档)
• 2.2.4 因果性(Causality) 系统在n时刻的输出只取决于n时刻以及n时刻以 前的输入,而与n时刻以后的输入无关。 y[n] x[n], x[n-1], x[n-2], … 因果系统---- 物理可实现性 x[n+1], x[n+2], … 非因果系统---- 物理不可实现性
一个非因果系统的例子: y[n]=x[n+1]-x[n]
2.2离散时间系统
离散系统可以定义为一种变换或一个算子,即:
用公式表示为:
y[n] T x[n]
2.2.1 无记忆系统(Memoryless Systems)
y[n]x[n] 例: y[n] x[n]2
2.2.2 线性系统(Linear Systems) 满足叠加原理的系统称为线性系统
y[n] x[k]h[n-k]
k
一个线性时不变(LTI)系统完全可以由它的单位脉冲 响应来表征。
• 卷积和(Convolution)
x1[n] x2[n] x1[k]x2[n k] k
系统输出可表示为:
y[n] x[k]h[n k] x[n] h[n] k
因果序列: x[n] 0, n 0
因果稳定的线性时不变系统:h[n]单边且绝对可和
例:
h[n] anu[n]
a 1
h[n]有限长非零样本-------- 有限冲击响应系统(finite-duration impulse response,FIR)------- 系统总是稳定的
h[n]无限长非零样本-------- 无限冲击响应系统(infinite-duration impulse response,IIR)
离散时间信号与离散系统
三、离散信号的基本运算
1.加减运算(对应样点值相加减)
如 (n) U (n) U (n 1)
函数
U (n) (n k)
k 0
2.相乘(除)运算(对应样点值相乘除)
如 因果信号(序列)f (n)U (n) — — — n 0 才有非零值
离散信号与系统的时域分析
反因果信号 f (n)U (n 1) ――― n 0 才有非零值
n -m n -m
0
m
注意: (1)f (n) 1与 (n) 区别
(2) (t) 与 (n) 区别
离散信号与系统的时域分析
n
函数
2. 单位阶跃序列
1, n 0 U (n) 0, n 0
位移
U
(n
m)
1, 0,
nm nm
注意与 U(t) 区别
3.矩形序列
1, GN (n) 0,
0 n N 1 其他
离散信号与系统的时域分析
U(n)
1
仿真
源码
0 12 GN(n) 1
0 1 N-1 N
n
函数1
函数2
仿真
n
源码
仿真 源码
以上三种序列关系
(1)U
(n)
(nk)=n Nhomakorabea(k
)
k 0
k
t
U (t) ( )d
证明:
(n k) (n) (n 1) (n 2) ...
k 0
k
n
(k
(1 2
n),
f
(2n)
f
(n)
解:f (n) {10
n0,1,2,3 其他
1
12 3
函数
第一章 离散时间信号与系统1
根据定义
n y ( n ) 1 ( 1 ) k , n 1 2 2 k 1 y ( n) 0, n 1
14
我们计算几个值,画出图形。显然,
n 2 n 1 n0 n 1 n2
y(2) 0
1 3 2 2 3 1 7 y(1) y(0) x(1) 2 4 4 7 1 15 y(2) y(1) x(2) 4 8 8
j 0 n
0 :复正弦的数字域频率 用欧拉公式将复指数序列展开: n n n x(n) e (cos0 n j sin 0 n) e cos0 n j e sin 0 n
用极坐标表示 其中 x(n)
x(n) x (n)
n
e
j arg[ x ( n )]
f2 (t )
0 1 1 0
, t 1 , 1 t 1 , 1 t 3 , t 3
定义域是连续的(-∞,∞),但是函数值只取-1,0,1三个离 散的值。(在间断点-1,1,3处一般不定义其函数值) f 以上两例中,1 (t ) 我们也称为模拟信号。
8
2 n , n 1 1 1 1 1 z (n) x(n) y(n) 2 ( 2 ) 2 3 , n 1 2 1 1 n 2 ( 2 ) n 1, n 0
图 1· 9 在求序列的和的时候要注意:相同序列 (n) 的序列值相加。
9
4.积(相乘) 两序列的积指相同序号 (n) 的序列值逐项对应相乘: z (n) x(n) y(n) 0.5, n 1 1.5, n 0 例1.1.4已知序列 x(n) = 1, n 1 求 y(n) x(n) 2 x(n) x(n 2) 0.5, n 2 0, n为其它值
离散时间信号与系统教程
离散时间信号与系统教程离散时间信号与系统教程离散时间信号与系统是数字信号处理领域中的重要内容之一。
离散时间信号是在离散时间点上取值的信号,而离散时间系统则是对这些信号进行处理和变换的设备或算法。
本文将介绍离散时间信号与系统的基本概念、性质以及常用的变换方法和应用。
一、离散时间信号离散时间信号是在离散时间点上取值的函数,离散时间点一般用整数表示。
例如,对于一个音频信号,可以按照每秒采集多少个样本来表示离散时间点。
离散时间信号可以表示为x(n),其中n为离散时间点。
离散时间信号有许多重要的性质,例如周期性、能量与功率、线性性等。
周期性是指信号具有重复的特征,可以表示为x(n)=x(n+N),其中N为周期。
能量与功率是用来描述信号的能量和功率大小的,能量表示信号的总能量,功率表示单位时间内信号的平均功率。
线性性是指信号满足线性叠加原理,即若有两个信号x1(n)和x2(n),则对应的线性组合也是一个信号。
二、离散时间系统离散时间系统是对离散时间信号进行处理和变换的设备或算法。
离散时间系统可以表示为y(n)=T[x(n)],其中T为系统的变换操作。
常见的离散时间系统有线性时不变系统(LTI系统)、卷积系统和差分方程系统等。
LTI系统是指具有线性性和时不变性的系统,线性性表示系统满足线性叠加原理,时不变性表示系统的输入与输出之间的关系不随时间变化。
卷积系统是通过卷积操作实现信号的处理和变换的系统,可以将输入信号与系统的冲击响应进行卷积运算得到输出信号。
差分方程系统是通过差分方程描述系统的输入与输出之间的关系,可以通过求解差分方程得到输出信号。
三、离散时间变换离散时间变换是将离散时间信号从一个表示域转换到另一个表示域的方法。
常见的离散时间变换有傅里叶变换、Z变换和小波变换等。
傅里叶变换是将离散时间信号从时间域转换到频率域的方法,可以将信号分解成一系列不同频率的正弦和余弦波的叠加。
Z变换是将离散时间信号从时间域转换到复平面的方法,可以得到离散时间系统的频率响应。
第1章 离散时间信号与系统
h ( m) x ( n m)
m
m
a
n
u ( m) u ( n m)
am ,
m 0
对于 n 0,,
1 a n 1 u ( n) 1 a
28
第1章 离散时间信号与系统
离散卷积运算服从交换律、结合律和分配律。即
x(n) * h(n) h(n) * x(n)
2n, n 1 3 则 x ( n) y ( n) n 1 2, 2 ( n 1) n 1, n 0
如图1.1.8所示。
15
第1章 离散时间信号与系统
图1.1.8 两序列相加
16
第1章 离散时间信号与系统
4. 积
两序列之积是指它们同序号(n)的序列值逐项对应相 乘得到的一个新序列。
图1.1.9 例1.1.5的两个序列
18
第1章 离散时间信号与系统
1.1.3 序列的周期性
如果对所有n存在一个最小的正整数N,使x(n)满足
x(n) x(n N )
(1.1.8)
则称序列x(n)是周期序列,其周期为N。 下面讨论正弦序列的周期性 由于 则
x n Asin 0n
这时正弦序列就是周期序列,其周期满足 N (N,K必 须为整数)。具体可分以下三种情况:
0
2 k
(1)当 N 2 为整数时,只要k =1,N 就为最小正整 0 2 。 数,故正弦序列的周期即为 N
0
2
(2)当 2 不是整数,而是一个有理数时, k值逐步增 0 2 加,其取值使 N k 为最小整数,这就是正弦序列的 2 N 周期。此时 k ,其中k,N是互为素数的整数,
离散时间信号与离散时间系统
§7-1 概述一、 离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。
离散时间系统:处理离散时间信号的系统。
混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。
二、 连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、 离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。
例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。
例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。
四、 典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ下图表示了)(n k -δ的波形。
连续信号离散信号 数字信号 取样量化这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。
例如:)()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。
2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。
用它可以产生(或表示)单边信号(这里称为单边序列)。
3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。
4、 单边正弦序列:)()cos(0k k A εφω+(a) 0.9a = (d) 0.9a =-(b) 1a = (e) 1a =-(c) 1.1a = (f) 1.1a =-双边正弦序列:)cos(0φω+k A五、 离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。
第二章 离散时间信号与系统
9第二章 离散时间信号与系统2.1离散信号表示与运算在数字信号处理中,所有信号都是离散时间信号——序列,表示为 x(n)={...,x(-1),x(0),x(1),…} -∞<n<∞MATLAB 一般把普通的一维抽样数据信号即抽样序列表示成向量形式。
向量可以表示为1×n 的或n ×1的矩阵,其中n 为序列中抽样点的个数。
最简单的把序列引入MA TLAB 的方法是在命令行输入一个元素表。
例如:x = [3 -5 7 1 -2 ]这样就构造了一个表示成行向量的五元素简单实数序列,它是一个n ×1的矩阵。
当然,也可以用矩阵的转置将其变换为列向量,即1×n 的矩阵:x = x’ 结果为: x = 3 -5 7 1 -21. 典型信号表示(1) 单位抽样序列在MA TLAB 中可用函数zeros(1,N) 产生一个由N 个零组成的行向量,实现有限区间的δ(n)x =zeros(1,N)x(1)=1;(2) 单位阶跃序列在MATLAB 中可用函数ones(1,N) 产生一个由N 个1组成的行向量,实现有限区间的u (n)x = ones(1,N);(3) 实指数序列 ⎩⎨⎧≠==0001)(n n n δ⎩⎨⎧<≥=0001)(n n n u Ra a n x n ∈=)(10 MATLAB 实现 n = 0:N-1;x = a.^n; (3) 正(余)弦序列MATLAB 实现: n=n1:n2;x=A*sin(2*pi*f*n*Ts+φ);(5) 复指数序列 MATLAB 实现 n = 0:N-1;x = exp( ( r + j*w)*n ); (6) 随机序列MATLAB 提供了两种随机信号:Rand(1,N)产生[0,1]上均匀分布的随机矢量。
Randn(1,N)产生均值为0,方差为1的高斯随机序列,即白噪声序列。
2. 常用信号表示常用信号的MA TLAB 表示见表2-1t=0:0.0001:0.2;x=sawtooth(2*pi*50*t,1);%锯齿波 subplot(2,2,1); plot(t,x);x=sawtooth(2*pi*50*t,0.5);%三角波 subplot(2,2,2); plot(t,x);x=square(2*pi*50*t);%方波 subplot(2,2,3);n e n x n j ∀=+)()(ϖσ21)2sin()(n n n fnT A n x s ≤≤+=ϕπplot(t,x);axis([0,0.2,-1.5,1.5]);t=-5:0.1:5;x=sinc(t);subplot(2,2,4);plot(t,x);axis([-5,5,-0.4,1.1]);结果如图2.1所示图2.1 常用信号的表示3. 信号的运算(1) 信号加x(n) = x1(n) + x2(n)MATLAB实现:x = x1 +x2 ;说明:①此时序列x1和x2应该具有相同的长度,而且位置对应,才能相加,否则会出错。
信号与系统(第三版)第五章离散时间系统的时域分析
连续时间系统的信号在任意时刻都有取值,而离散时间系统的信 号只在离散时刻上取值。
离散时间系统的数学描述
02
差分方程
定义
差分方程是描述离散时间信号变化的数学方程,通常表示为y[n] = f(n) + g(n),其中y[n]是离散时间信号,f(n)和g(n)是已知的 离散时间信号。
类型
差分方程可以分为线性和非线性两种类型。线性差分方程是指方程中未知数的系数为常数且方程中未知数次数不超过1的差分方 程。
稳定性判据
通过判断系统的极点位置,确定系统的稳定性。
稳定性分析的意义
对于实际应用中的系统,稳定性是非常重要的性能指标。
系统的动态性能分析
动态性能的定义
描述系统在输入信号激励下,输出信号随时间变 化的特性。
动态性能的参数
包括超调和调节时间、上升时间和峰值时间等。
动态性能的分析方法
通过系统函数的Leabharlann 点和零点位置,以及时间常数等参数进行分析。
04 离散时间系统的时域响应 单击添加文本具体内容
离散时间系统 的定义与特点
离散时间系统的定义
离散时间系统
在时间上离散取样,信号在离散时刻上变化的系统。
离散时间信号
只在离散时刻上取值的信号。
离散时间系统分析
通过数学模型对离散时间信号和系统进行描述和分析 的方法。
离散时间系统的特点
时域离散
01
离散时间系统的状态变量和信号只在离散时刻上取值,时
定义
分类
稳定性判据
劳斯判据 通过求解劳斯表,判断系统的极点和稳定性。
赫尔维茨判据 通过判断系统的特征方程的根的性质,判断系统的 稳定性。
波波夫判据 通过求解波波夫矩阵,判断系统的稳定性。
第1章离散时间信号与系统
右移n;当n为负数时,左移n。 (3)相乘:将h(n-k)和x(k)的对应取样值相乘。 (4)相加:把所有的乘积累加起来,即得y(n)。 上图为:
与
的线性卷积。
计算线性卷积时,一般要分几个区间分别加以考虑,下面 举例说明。
y[k] x[n]h[k n] n
例:已知x1[k] * x2[k]= y[k],试求y1[k]= x1[kn] * x2[km]。
结论: y1[k]= y[km+n)]
例:x[k] 非零范围为 N1 k N2 , h[k] 的非零范围为 N3 k N4
求: y[k]=x[k]* h[k]的非零范围。
单位脉冲响应(Impulse response)
定义: h[k ] T{ [k ]}
例:累加器:
k
y[k] x[n]
n
h[k ] u[k ]
LTI系统对任意输入的响应
T{x[k]} T{ x[n][k n]}
n
x[n]T{[k n]}
n
x[n]h[k n]
n
x[k]* h[k]
第1章离散时间信号与系 统
2021年8月29日星期日
离散信号(序列)的表示
2 x[k]
1
1
1
2
k
-1
0
1
3
-1
x[k] {1,1, 2,1,1}
x [k]={1, 1, 2, -1, 1;k=-1,0,1,2,3}
离散序列的产生
▪ 对连续信号抽样 x[k]=x(kT) ▪ 信号本身是离散的 ▪ 计算机产生
数字信号处理-第一章离散时间信号与系统ppt课件
1
n0
δ(n)和u(n)间的关系为u(n)0
n0
(n )u (n ) u (n 1 )
u (n ) (n m ) (n ) (n 1 ) (n 2 )
令n-m=k代m 0 入上式,得(1-6)式
n
u(n) (k)
问:上两实的区别是什么?
k
实际系统一般无n<0的情况,但理论分析需要,故 实际信号可用理想信号乘阶跃序列来分析
如果y(n)=T[x(n)]满足比例性和可加性,则 该系统是增量线性系统。
.
24
1.2.2移不变系统
系统的输出随输入的位移而位移,则该系统为移 不变系统。
即若输入x(n)产生输出y(n),则输入x(n-m)产生 输出 y(n-m)
表达:移不变系统 y(n)T[x(n)]
则
y(nm )T [x(nm )]
1、交换律 卷积和与卷积序列的次序无关,有
y(n)=x(n)*h(n)=h(n)*x(n)
即:把单位冲击响应h(n)作为输入,将输入x(n) 作为系统单位冲击响应,其输出相同。
x(n) h(n) y(n) = h(n)
x(n)
y(n)
.
30
2、结合律(串联)
x(n)*h1(n)*h2(n)=[x(n)*h1(n)]*h2(n) =x(n)*[h1(n)*h2(n)]=[x(n)*h2(n)]*h1(n)
证明:
x(n)*[h1(n)h2(n)] x(m)[h1(nm)h2(nm)] m
x(m)h1(nm) x(m)h2(nm)
m
m
x(n)*h1(n)x(n)*h2(n)
x(n)
h1(n)
h2(n)
y(n)
离散时间信号和系统的频域分析
离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。
频域分析是对信号与系统在频率域上的特性进行研究和分析。
对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。
在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。
频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。
离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。
DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。
DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。
频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。
除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。
DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。
DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。
DFT的结果是一个离散的频域信号,也称为频谱。
DFT通常使用快速傅里叶变换(FFT)算法来快速计算。
离散时间系统的频域分析主要是通过系统的频率响应函数来实现。
频率响应函数是系统在不同频率上对信号的响应情况的描述。
对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。
频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。
频域分析在离散时间信号与系统中有着广泛的应用。
首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。
其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。
此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。
第1章离散时间信号与系统
2 (a)若: N ,N为整数,则序列的最小周期为N
0
(b)若: 2 N S L ,N为有理数但不是整数,L、S 0
为整数,则序列的最小周期为S。
2 0 N , 不是有理数,则序列是非周期性的 (c)若:
所以 x(n) 的周期N是 N1 , N2的最小公倍数30
(2) 1 2 1 , N1 8 ; 4 14
2
4
, N2
2 8; 4
13
N1/N2是无理数,所以x(n)是非周期的。
n0 n0
u(n-n0),n0>0
…
-1
…
0 1
(a)
2
3
n
… … -1
u(-n0-n),n0>0
…
0 1 (b) n0
… …
n
… … 图1.1.2
-n0
…
-1
… 0 1 …
n
思考: u(n+n0),n0>0; 的图形。
4
(c)
单位脉冲序列与单位阶跃序列的相互关系:
(n) u (n) u (n 1)
u(n) (n) (n 1) (n 2) (n m)
m 0
5
(3)矩形序列 (Rectangle sequence)
1, RN (n) 0,
0 n N 1 n 0, n N
RN ( n )
1
…
0 1
-3 -2 -1
第1章 离散时间信号与系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证法 2 设 y(n)=T[x(n)],对于所有 n,x(n)=0,并设 y1(n) T[x1(n)] ,因为线性
系统满足叠加原理,所以T[x(n) x1(n)] T[x(n)] T[x1(n)] T[x1(n)] 因此
第一章 离散时间信号与系统
1. 讨论一个输入为 x(n)和输出为 y(n)的任意线性系统。证明如果对于所有 n,x(n) =0,则对于所有 n,y(n)必然为零. 证 证法 1 设 y(n)=T[x(n)],因为对于所有 n,x(n)=0,所以
x(n)=x(n)-x(n)=0 由于 2=-2 y(1)=2 2+(-1) (-1)=5, y(2)=1 2+2 (-1)=0, y(3)=-1 1=-1, y(n)=0; n 0,1,2,3,
(a) 、(b)和(c)中求得的序列 y(n)如图 p1.2-1(a)、(b) 、(c)所示.
3.讨论一个单位取样响应为 h(n)的时域离散线性非移变系统.如果输入 x(n)是周 期为 N 的周期序列,即 x(N)=x(n+N),证明输出 y(n)亦是周期 N 的周期序列
既 y(n)也是周期 N 的周期序列. 4.一个时域离散系统如图 p1.15 所示,系统变换 y(n)=T[x(n)]是任意的,它还可以 是非线性的和时变的,只知道系统是有定义的,即对于任意给定的输入,系统的输
出是唯一的,假设选择输入为 x(n) Ae jwn ,并测量输出的某个参数 p(例如,最大
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
幅度),一般来说,p 将是 w 的函数. 我们研究一下不同的激励频率下 p 的性态,证明 p 是 w 的周期函数,试求其
周期.类似的结果在时域连续情况下是否成立?
k
解 假设输入为 x(n) Ae jwn ,它是周期为 2 的 w 的周期序列,对于的系统
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
T[x(n)] y(n) 0
2.对于图 p1.2 中的每一组序列,试用离散卷积法求线性非移变系统[单位取样响 应为 h(n)]对于输入 x(n)的响应
解 计算可按下式进行:
y(n) x(n) h(n) x(k)h(n k) k
(a) y(0)=1*2=2, y(1)=1, y(n)=0, n 0,1 (b) y(1)=1*2=2, y(2)=1, y(n)=0 n 1, 2
证 按照卷积的定义,可以得到下面两式:
y(n) h(k)x(n k) k
y(n N) h(k)x(n N k) h(k)x(n k N)
k
因为 x(n)是周期为 N 的周期序列,所以 x(n-k+N)=x(n-k)
比较上面两式,便可以得到 y(n)=y(n+N)