PCB的阻抗控制要点
PCB的阻抗控制要点

浅谈PCB的阻抗控制随着电路设计日趋复杂和高速,如何保证各种信号(特别是高速信号)完整性,也就是保证信号质量,成为难题。
此时,需要借助传输线理论进行分析,控制信号线的特征阻抗匹配成为关键,不严格的阻抗控制,将引发相当大的信号反射和信号失真,导致设计失败。
常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。
阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,我对这个问题有了一些粗浅的认识,愿和大家分享。
多层板的结构:为了很好地对PCB进行阻抗控制,首先要了解PCB的结构:通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。
而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。
通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。
外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。
内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。
多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。
阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。
当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。
下面是一个典型的6层板叠层结构:PCB的参数:不同的印制板厂,PCB的参数会有细微的差异,通过与上海嘉捷通电路板厂技术支持的沟通,得到该厂的一些参数数据:表层铜箔:可以使用的表层铜箔材料厚度有三种:12um、18um和35um。
PCB阻抗设计准则

PCB阻抗设计准则PCB(Printed Circuit Board)阻抗设计是在高速电路设计中的一个关键环节,它直接影响到电路的性能和稳定性。
合理的阻抗设计可以减少信号的反射、串扰和损耗,提高信号的传输质量和稳定性。
在进行PCB阻抗设计时,有一些准则需要遵循。
下面将详细介绍这些准则。
1.根据电路需求确定PCB层次:根据电路的复杂程度,确定PCB的多层设计,其中内层可以用作阻抗控制层。
2.定位器研究和优化:通过研究信号的传输路径和布线,确定合适的定位器位置,使信号的功率尽量平均分布在整个PCB中。
3.地的设计:地是阻抗设计中非常重要的一部分,良好的地设计可以减少信号的反射和串扰。
要避免地回流,需使用地孔。
4.差分信号的布局:差分信号的布局能使得信号平等的分布在PCB上,减少串扰和不匹配引起的损耗。
5.控制合理的层间间距:层间间距会影响信号的传输速度,通常的层间距是4H,其中H为标准PCB高度。
6.保持合适的阻抗匹配:根据信号的频率和阻抗需求选择合适的线宽和距离,以确保阻抗的匹配。
7.特殊形状的布线:对于高速信号,可以采用宽度变化、走线方式变化等布线技巧来优化阻抗控制。
8.合理绘制地平面:在整个PCB中布满地平面,以减少信号的反射和串扰,提高信号的质量。
9.足够的缝隙:为了避免因成本考虑太小的缝隙导致信号失效,需要仔细考虑线宽和缝隙的选择。
10.验证和优化设计:在完成阻抗设计后,通过使用仿真工具和实际测试来验证设计的正确性,如果有必要,则进行优化。
以上是PCB阻抗设计的一些准则,实际设计过程中还需根据具体的电路需求和工艺条件来做出适当的调整。
通过合理的阻抗设计,可以提高电路的性能和稳定性,满足高速电路的要求。
PCB阻抗控制

PCB阻抗PCB阻抗控制,在PCB设计中经常遇到阻抗计算,但是我不明白阻抗计算是计算整板PCB的阻抗还是几个部分的阻抗PCB阻抗,在PCB设计中经常遇到阻抗计算,但是我不明白阻抗计算是计算整板PCB的阻抗还是几个部分的阻抗:如我有差分阻抗,单线阻抗。
那到底该采用哪些数值呢?可能几个部分的阻抗都不一样在同一PCB板上?这样的话该计算哪个阻抗来作为PCB的阻抗呢!完整性最佳。
是不是每个地方阻抗不一样,我得告诉PCB厂商,这个地方阻抗做多少,哪个地方阻抗做多少啊,比如:USB2.0差分做成90欧姆,DDR与DSP连接线做成多少欧姆,和时钟线做成多少欧姆等等啊?这样的话是不是要详细说明多处的阻抗要求。
关键布线部分是要给出详细的设计要求的,设计时的阻抗大小,是通过仿真软件,使信号完整性达到最好状态下,得到的。
根据仿真结果,可以得到该信号线的线长,线宽,线间距,在那层布线,串接多大的匹配电阻等要求,然后仿真设计人员将此仿真结果交给PCB LAUOUT设计人员,PCB LAUOUT设计人员会根据此要求进行PCB布线设计,设计完毕后的PCB文件生成为GERBER文件,送给PCB制造厂商即可制造出相应的PCB。
1.阻抗控制是控制信号线的阻抗,不是整板PCB的阻抗2.差分阻抗是两条差分信号的阻抗,单线阻抗是单一信号的阻抗。
如USB 2.0要做差分90欧姆,射频信号线一般做单线50欧姆等等。
哪些线要做阻抗控制,控制为多少,一般每个硬件平台都有自己的要求。
3.没有PCB阻抗这种说法,只有信号的阻抗。
电路设计中,差分信号的两条差分线能不能交换顺序?题目说的有些笼统,主要是想知道哪些是可以交换的,为什么,哪些是不可以交换的,又是为什么?还有差分线之间跨加100ohm或12 0ohm的电阻的作用是什么,是阻抗匹配还是将电流转换为电压?各位大牛,ths了会变小。
差分信号实际传输是电压还是电流,什么差分信号,说的通俗一点,差分信号时属于数字信号吗进一步看是以电压为的标准的能量信号,若内阻小,就可以带多个负载(电流大)。
PCB迹线的阻抗控制技术

随着通信科技的不断提升,必然对PCB的要求也有了相应的提高,传统意义上PCB已受到严峻的挑战,以往PCB的最高要求open&short从目前来看已变成PCB的最基本要求,取而代之的是一些为保证客户设计意图的体现而在PCB上所体现的性能的要求,如阻抗控制等。
在过去几年之中,控制阻抗的PCB迹线已经开始从纯粹的专家应用转变为更加普及的应用,到目前为止有“阻抗”控制的PCB已广泛的应用于:SDH、GSM、CDMA、PC、大功率无绳电话、手机等,同时也为国防科技提供了相当数量的PCB。
本文结合我所在PCB 设计过程中的阻抗控制经验,围绕PCB迹线的阻抗控制,从下面五个方面分别进行了讨论。
一、PCB迹线的阻抗控制简介二、传输线特性阻抗三、实现阻抗控制的传输线配置方式四、传输线阻抗计算中的有关问题五、传输线阻抗控制典型应用总结一PCB迹线的阻抗控制简介PCB上的阻抗控制电信和计算机设备操作的速度和切换速率正在不断增长。
尽管在低频情况下,这是一个可以忽略的物理规律,但现在却需要严肃考虑了。
现代PCB上处理器时钟速度和组件切换速度的提高意味着组件间的互连路径(例如PCB迹线:PCB trace)不能再视为简单的导线。
实际应用中快速切换速度或高频(即数字边际速度超过1ns或者模拟频率大于300MHz)的PCB迹线必须视为传输线--其电子特性必须由 PCB 设计厂商来控制的信号线。
就是说,为了稳定和可预测的高速运行,PCB迹线和PCB绝缘物的电子特性必须得到控制。
PCB 迹线的关键参数之一就是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。
这是一个有关迹线物理尺寸(例如迹线的宽度和厚度)和PCB底板材质的绝缘物厚度的函数。
PCB迹线的阻抗由其电感和电容电抗决定。
实际情况中,PCB传输线路通常由一个导线迹线、一个或者多个参考层和绝缘材质组成。
传输线路,即迹线和板材构成了控制阻抗。
PCB通常采用多层结构,并且控制阻抗也可以采用多层方式来构建。
PCB的阻抗控制要点

PCB的阻抗控制要点PCB布线中,阻抗控制是一个十分重要的问题。
在高速信号传输过程中,如果不控制好阻抗,将会导致信号反射、降低信号质量以及信号干扰,严重影响系统的性能。
因此,本文将介绍PCB布线中阻抗控制的要点。
什么是阻抗?阻抗是电路元件在交流电路中所表现出来的总阻力,它和电阻是不同的。
电阻是指电子通过一个导体时所需消耗的能量,而阻抗则是指电子在交流电路中产生的总消耗,包括电阻和电容的影响。
通常情况下,阻抗的性质决定了信号在传输线上的反射系数和传输特性。
因此,在高速布线中必须进行阻抗匹配来获得最佳的传输性能。
PCB阻抗控制要点PCB设计流程中的阻抗控制PCB板的阻抗由两个方面的因素影响:底层金属的尺寸和层和板材的介电常数。
因此,在PCB设计流程中,可以采用以下方法来控制阻抗。
•使用可控阻抗线(CPW)或微带线(MIL)进行布线:这两种线的阻抗可以通过线的宽度和间隙以及与参考层的距离等参数进行调节,以实现所需的阻抗特性。
•选择合适的板材和层数:通过选择合适的板材和层数,可以获得所需的介电常数,从而实现所需的阻抗特性。
如FR-4是一种常用的PCB板材,它的介电常数为4.2,因此它不适合高速布线。
而高介电常数板材可以更好地匹配高阻抗线。
•合理安排PCB布局:通过合理安排PCB布局,可以最大程度地减少信号的反射和串扰。
例如,通过避免布置信号线与边缘相邻,可以减少边缘效应的影响。
阻抗匹配方法阻抗匹配可以通过以下两种方法来实现。
•直接阻抗匹配:将阻抗为Z1的传输线直接连接到阻抗为Z2的电网上,可以采用电容、电感和输变比等方式来实现。
•变压器法:将阻抗为Z1的传输线和阻抗为Z2的电网之间加上一个变压器,变压器的变比可以根据阻抗比值确定。
在布线高频时,变压器法是最常用的阻抗匹配方式。
阻抗检查与测试在PCB设计中,阻抗控制成功与否需要进行阻抗检查和测试。
阻抗检查可以通过仿真软件进行,仿真结果应符合设计要求。
阻抗测试可以通过使用专业的测试设备进行,例如网络分析仪(Network Analyzer)。
pcb阻抗设计要求

PCB阻抗设计要求介绍PCB(Printed Circuit Board)是电子产品中常见的一种电路板,用于连接和支持电子元件。
在PCB设计中,阻抗是一个重要的参数,它决定了电路板传输信号的质量和稳定性。
本文将探讨PCB阻抗设计的要求和技巧。
为什么需要阻抗设计阻抗是电路中的电阻和电感的综合体现,它与电流和电压的比例有关。
在PCB设计中,阻抗的控制对于信号的传输和抗干扰能力起着重要作用。
具体而言,以下是为什么需要阻抗设计的几个原因:1.信号完整性: 控制阻抗可以减少信号的反射和衰减,确保信号在传输过程中保持完整性,减少失真。
2.抗干扰能力: 正确的阻抗匹配可以提高电路板的抗干扰能力,减少外界电磁干扰对信号的影响。
3.功耗优化: 合理的阻抗设计可以降低功耗,提高电路的效率和稳定性。
PCB阻抗设计要求1. 阻抗规格在进行PCB阻抗设计之前,首先需要明确设计要求和规格。
根据设计的电路和信号要求,确定所需的阻抗数值。
常见的PCB阻抗规格包括50欧姆(Ω)和75欧姆(Ω),根据不同的应用选择合适的数值。
2. 材料选择PCB阻抗设计的首要任务是选择合适的材料。
常见的PCB材料包括FR-4和Rogers 等。
FR-4是一种常用的玻璃纤维层压板材料,适用于一般电路板设计。
Rogers材料具有更好的阻抗控制和高频特性,适用于高性能和高频率的应用。
3. 线宽和线间距线宽和线间距是影响PCB阻抗的重要参数。
根据所需的阻抗数值和材料特性,选择合适的线宽和线间距。
通常情况下,线宽越宽,阻抗越低;线间距越小,阻抗越高。
4. 地平面设计地平面是PCB阻抗设计中的关键因素之一。
在设计过程中,应尽量保持地平面的连续性和完整性。
通过增加地平面的面积,可以降低电感和电阻,提高阻抗的稳定性和一致性。
5. 信号层和电源层分离为了减少信号层和电源层之间的相互干扰,应尽量将它们分离开来。
通过在信号层和电源层之间设置地层,可以有效地减少电磁干扰和信号损耗。
印刷电路板(PCB)的特性阻抗与特性阻抗控制

印刷电路板(PCB)的特性阻抗与特性阻抗控制印刷电路板(PCB)的特性阻抗与特性阻抗控制1、电阻交流电流流过一个导体时,所受到的阻力称为阻抗(Impedance),符合为Z,单位还是Ω。
此时的阻力同直流电流所遇到的阻力有差别,除了电阻的阻力以外,还有感抗(XL)和容抗(XC)的阻力问题。
为区别直流电的电阻,将交流电所遇到之阻力称为阻抗(Z)。
Z=√ R2 +(XL -XC)22、阻抗(Z)近年来,IC集成度的提高和应用,其信号传输频率和速度越来越高,因而在印制板导线中,信号传输(发射)高到某一定值后,便会受到印制板导线本身的影响,从而导致传输信号的严重失真或完全丧失。
这表明,PCB导线所“流通”的“东西”并不是电流,而是方波讯号或脉冲在能量上的传输。
3、特性阻抗控制(Z0 )上述此种“讯号”传输时所受到的阻力,另称为“特性阻抗”,代表符号为Z0。
所以,PCB导线上单解决“通”、“断”和“短路”的问题还不够,还要控制导线的特性阻抗问题。
就是说,高速传输、高频讯号传输的传输线,在质量上要比传输导线严格得多。
不再是“开路/短路”测试过关,或者缺口、毛刺未超过线宽的20%,就能接收。
必须要求测定特性阻抗值,这个阻抗也要控制在公差以内,否则,只有报废,不得返工。
二、讯号传播与传输线1、信号传输线定义(1)根据电磁波的原理,波长(λ)越短,频率(f)越高。
两者的乘积为光速。
即C = λ.f =3×1010 cm/s(2)任何元器件,尽管具有很高的信号传输频率,但经过PCB导线传输后,原来很高的传输频率将降下来,或时间延迟了。
因此,导线长度越短越好。
(3)提高PCB布线密度或缩短导线尺寸是有利的。
但是,随着元件频率的加快,或脉冲周期的缩短,导线长度接近信号波长(速度)的某一范围,此时元件在PCB导线传输时,便会出现明显的“失真”。
(4)IPC-2141的3.4.4提出:当信号在导线中传输时,如果导线长度接近信号波长的1/7时,此时的导线被视为信号传输线。
PCB设计之阻抗控制的走线细节举例

PCB设计之阻抗控制的走线细节举例1.走线的宽度和间距:走线的宽度和间距会直接影响走线的阻抗。
通常情况下,走线的宽度越宽,阻抗越低。
为了控制阻抗,可以在设计软件中使用特定的规则来指定走线的宽度和间距。
例如,对于常见的50欧姆的阻抗控制要求,可以将规则设置为适当的走线宽度和间距。
2.层数的选择:在高速信号传输中,层数的选择也会影响阻抗。
较高的层数可提供更多的走线空间,有助于降低阻抗。
因此,为了阻抗控制,可以选择适当的层数。
在多层PCB设计中,内层走线的间距和宽度也需要综合考虑,以保持阻抗的一致性。
3.地平面的设计:在PCB设计中,地平面的设计是控制阻抗的关键。
地平面应尽可能地平整,并且与走线保持一定的距离。
这样可以减少地平面与走线之间的互电容和互电感,从而提高阻抗的一致性。
为了实现这一点,可以在地平面上设置一些小孔,用于连接不同地层,从而提高地层的连贯性。
4.走线的形状和拐角:走线的形状和拐角也会影响阻抗。
通常情况下,直线和圆弧形的走线对阻抗控制较好,而直角拐弯较差。
在需要进行90度拐角的情况下,可以使用斜角拐弯来减小阻抗的变化。
此外,走线的形状和转角也会对电磁兼容性(EMC)产生影响,在设计时需要综合考虑。
5.信号层和电源/地层的分离:为了阻抗控制,信号层和电源/地层应尽可能地分离。
这样可以减少信号层与电源/地层之间的互电容和互电感,从而提高阻抗的一致性。
在多层PCB设计中,可以选择在信号层之间插入电源/地层,建立一个电源平面或地平面来提供均匀的分布。
6.终端匹配:终端匹配是一种常用的阻抗控制技术。
通过在信号线的起始和终止位置添加合适的电阻、电容等元件,可以达到匹配信号线的阻抗。
例如,可以在信号线的终止位置添加电阻,以匹配信号线和负载之间的阻抗。
终端匹配可以在设计中通过网络分析软件来实现。
综上所述,PCB设计中的走线细节对于阻抗控制至关重要。
通过选择适当的走线宽度和间距、层数、设计合理的地平面、走线的形状和拐角以及合理的终端匹配,可以实现阻抗的一致性,提高信号传输的质量和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈PCB的阻抗控制随着电路设计日趋复杂和高速,如何保证各种信号(特别是高速信号)完整性,也就是保证信号质量,成为难题。
此时,需要借助传输线理论进行分析,控制信号线的特征阻抗匹配成为关键,不严格的阻抗控制,将引发相当大的信号反射和信号失真,导致设计失败。
常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。
阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,我对这个问题有了一些粗浅的认识,愿和大家分享。
多层板的结构:为了很好地对PCB进行阻抗控制,首先要了解PCB的结构:通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。
而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。
通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。
外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。
内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。
多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。
阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。
当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。
下面是一个典型的6层板叠层结构:PCB的参数:不同的印制板厂,PCB的参数会有细微的差异,通过与上海嘉捷通电路板厂技术支持的沟通,得到该厂的一些参数数据:表层铜箔:可以使用的表层铜箔材料厚度有三种:12um、18um和35um。
加工完成后的最终厚度大约是44um、50um和67um。
芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜,可选用的规格可与厂家联系确定。
半固化片:规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0.095mm),实际压制完成后的厚度通常会比原始值小10-15um左右。
同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。
如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。
阻焊层:铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。
导线横截面:以前我一直以为导线的横截面是一个矩形,但实际上却是一个梯形。
以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。
比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。
上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。
介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数:板材的介电常数与其所用的树脂材料有关,FR4板材其介电常数为4.2—4.7,并且随着频率的增加会减小。
介质损耗因数:电介质材料在交变电场作用下,由于发热而消耗的能量称之谓介质损耗,通常以介质损耗因数tanδ表示。
S1141A的典型值为0.015。
能确保加工的最小线宽和线距:4mil/4mil。
阻抗计算的工具简介:当我们了解了多层板的结构并掌握了所需要的参数后,就可以通过EDA软件来计算阻抗。
可以使用Allegro来计算,但这里我向大家推荐另一个工具Polar SI9000,这是一个很好的计算特征阻抗的工具,现在很多印制板厂都在用这个软件。
无论是差分线还是单端线,当计算内层信号的特征阻抗时,你会发现Polar SI9000的计算结果与Allegro仅存在着微小的差距,这跟一些细节上的处理有关,比如说导线横截面的形状。
但如果是计算表层信号的特征阻抗,我建议你选择Coated模型,而不是Surface模型,因为这类模型考虑了阻焊层的存在,所以结果会更准确。
下图是用PolarSI9000计算在考虑阻焊层的情况下表层差分线阻抗的部分截图:由于阻焊层的厚度不易控制,所以也可以根据板厂的建议,使用一个近似的办法:在Surface模型计算的结果上减去一个特定的值,我建议差分阻抗减去8欧姆,单端阻抗减去2欧姆PCB阻抗控制随着 PCB 信号切换速度不断增长,当今的PCB设计厂商需要理解和控制PCB迹线的阻抗。
相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB迹线不再是简单的连接,而是传输线。
在实际情况中,需要在数字边际速度高于1ns或模拟频率超过300Mhz时控制迹线阻抗。
PCB迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。
印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。
这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。
阻抗控制阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。
故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为“阻抗控制”。
PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。
影响PCB走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。
PCB阻抗的范围是25 至120欧姆。
在实际情况下,PCB传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。
迹线和板层构成了控制阻抗。
PCB将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。
但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定:信号迹线的宽度和厚度迹线两侧的内核或预填材质的高度迹线和板层的配置内核和预填材质的绝缘常数PCB传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。
微带线(Microstrip):微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数 Er 线路板的表面之上,以电源或接地层为参考。
如下图所示:注意:在实际的PCB制造中,板厂通常会在PCB板的表面涂覆一层绿油,因此在实际的阻抗计算中,通常对于表面微带线采用下图所示的模型进行计算:带状线(Stripline):带状线是置于两个参考平面之间的带状导线,如下图所示,H1和H2代表的电介质的介电常数可以不同。
上述两个例子只是微带线和带状线的一个典型示范,具体的微带线和带状线有很多种,如覆膜微带线等,都是跟具体的PCB的叠层结构相关。
用于计算特性阻抗的等式需要复杂的数学计算,通常使用场求解方法,其中包括边界元素分析在内,因此使用专门的阻抗计算软件SI9000,我们所需做的就是控制特性阻抗的参数:绝缘层的介电常数Er、走线宽度W1、W2(梯形)、走线厚度T和绝缘层厚度H。
对于W1、W2的说明:此处的W=W1,W1=W2.规则:W1=W-AW—-设计线宽A—–Etch loss(见上表)走线上下宽度不一致的原因是:PCB板制造过程中是从上到下而腐蚀,因此腐蚀出来的线呈梯形。
走线厚度T与该层的铜厚有对应关系,具体如下:铜厚COPPER THICKNESSBase copper thk For inner layer For outer layerH OZ 0.6mil 1.8mil1OZ 1.2MIL 2.5MIL2OZ 2.4MIL 3.6MIL绿油厚度:*因绿油厚度对阻抗影响较小,故假定为定值0.5mil。
我们可以通过控制这几个参数来达到阻抗控制的目的,下面以安维的底板PCB为例说明阻抗控制的步骤和SI9000的使用:底板PCB的叠层为下图所示:第二层为地平面,第五层为电源平面,其余各层为信号层。
各层的层厚如下表所示:Layer Name Type Material Thinkness ClassSURFACE AIRTOP CONDUCTOR COPPER 0.5 OZ ROUTINGDIELECTRIC FR-4 3.800MILL2-INNER CONDUCTOR COPPER 1 OZ PLANEDIELECTRIC FR-4 5.910MILL3-INNER CONDUCTOR COPPER 1 OZ ROUTINGDIELECTRIC FR-4 33.O8MILL4-INNER CONDUCTOR COPPER 1 OZ ROUTINGDIELECTRIC FR-4 5.910MILL5-INNER CONDUCTOR COPPER 1 OZ PLANEDIELECTRIC FR-4 3.800MILBOTTOM CONDUCTOR COPPER 0.5 OZ ROUTINGSURFACE AIR说明:中间各层间的电介质为FR-4,其介电常数为4.2;顶层和底层为裸层,直接与空气接触,空气的介电常数为1。
需要进行阻抗控制的信号为:DDR的数据线,单端阻抗为50欧姆,走线层为TOP和L2、L3层,走线宽度为5mil。
时钟信号CLK和USB数据线,差分阻抗控制在100欧姆,走线层为L2、L3层,走线宽度为6mil,走线间距为6mil。
对于计算精度的说明:1、对于单端阻抗控制,计算值等于客户要求值;2、对于其他特性阻抗控制:对于其它所有的阻抗设计(包括差别和特性阻抗)*计算值与名义值差别应小于的阻抗范围的10%:例如:客户要求:60+/-10%ohm阻抗范围=上限66-下限54=12ohms阻抗范围的10%=12X10%=1.2ohms计算值必须在红框范围内。
其余情况类推。
下面利用SI9000计算是否达到阻抗控制的要求:首先计算DDR数据线的单端阻抗控制:TOP层:铜厚为0.5OZ,走线宽度为5MIL,距参考平面的距离为3.8MIL,介电常数为4.2。
选择模型,代入参数,选择lossless calculation,如图所示:计算得到单端阻抗为Zo=55.08ohm,与要求相差5欧姆。