电容器的常见故障处理方法与技术
电容器常见故障的处理和预防对策研究
电容器常见故障的处理和预防对策研究摘要:影响电容器运行的因素主要有工作电压,工作电流与谐波,环境温度。
本文分析了电容器常见的渗漏油现象,鼓肚现象,保护动作,爆炸,电容器温度过高,电容器异常响声等故障及其处理方式。
提出了合理选择电容器及其接线方式;保证合适的运行温度,谐波控制;电容器要进行安全操作;加强巡视和检查等电力电容器故障的预防措施。
关键词:电容器故障处理预防对策电容器是电力系统中大量使用的一种设备,它的合理应用关系着整个电网的安全,同时在保证输电质量的情况下,它的无功补偿性质可有效降低能量损耗、调节整条线路的电压。
日常生活以及工业生产中,电容器故障屡见不鲜。
一方面由于电容器属于损耗元件,长时间的工作导致结构老化;另一方面主要是人为因素,操作不当加上电容器本身设计存在缺陷,导致其使用寿命非常短。
因而,为保障电网的安全和稳定运行,有必要采取有效措施来应对电容器的故障问题,从而提高电容器的工作效率和使用寿命。
1 影响电容器运行的因素电容器除了生产质量要过关以外,运行时还受到许多外界因素的影响,如电压、电流以及外界温度等。
其中伴有闪电的阴雨天、人为地操作不当、运行方式的调整都会导致电压忽高忽低,非常不稳定;电流的变化一般是由于一些谐波的介入,导致线路中可用电阻的变化。
电容器存在的故障问题,为工业生产和人身安全埋下了隐患。
1.1 工作电压工作电压的不稳定很大几率导致电容器出现故障,尤其是电压过大,超出一定范围需要马上断开回路,否则会造成整个线路的瘫痪。
1.2 工作电流与谐波工作电流的激增原因一般分为三种情况:一是线路电压的升高或特殊负荷的接入,使得电容器的工作电流瞬间变大,超出承载范围;二是一些谐波、非正常频段波的介入,引起线路中出现过电流,对电容器损害非常大;谐波主要是由谐波电流源产生,一般在非线性设备上比较常见;三是由于基波过电压和谐波过电流一起引发的电容器故障。
1.3 环境温度电容器的正常运行对外界环境要求比较严格,温度不适中会引起不同级别的故障。
电容器运行维护及异常现象的处理方法
办公自动化杂志一、引言电容器组的巡行检查主要项目如下:注意监视运行电压及电流和周围环境温度不应超过制造厂规定的范围,并将数值记入运行记录薄。
电容器的外壳有无膨胀(鼓肚)、喷油、漏油的痕迹。
放电电阻的阻值和容量应符合规程要求,并经检验合格。
接线正确,电压与电网电压一致。
电容器组三相容量应平衡,其误差不应超过单相总容量的5%。
附属设备是否清洁完好。
电容器内部有无异音。
熔丝是否已经熔断。
放电装置是否良好,放电指示灯是否熄灭。
各处接点有无发热及小火花放电现象。
套管是否清洁完整,有无裂纹、闪络放电现象[1]。
引线连接各处是否牢固可靠,有无松动、脱落或断线;母线各处有无烧伤、过热现象。
电容器室内通风是否良好。
外壳接地线的连接是否良好。
电容器组继电保护的动作情况是否正常。
特殊巡视的检查项目除上述各项外,必要时应对电容器进行试验;在查不出故障电容器或断路器跳闸、熔丝熔断原因之前,不能合闸送电。
二、漏油电容器漏油是一种常见的异常现象,一般发生在下底部和上盖边沿的滚焊焊缝处、上盖地线端子和注油孔、铭牌及两侧搬运把手焊接处。
其原因多方面,主要是产品质量不良、运行维护不当、长期运行缺乏维修导致外壳生锈腐蚀造成电容器漏油。
电容器出现漏油,如果是轻微漏油,可用胶黏剂进行修补,或用锡和环氧树脂补焊或钎焊,并同时减轻负荷或降低环境温度,但是不能长时间继续运行。
电容器是一个密封体,如果密封不严,空气、水分和杂质会渗入其中而使其绝缘性能下降,甚至导致绝缘击穿。
所以,如果发现电容器漏油严重时应及时将其退出运行。
在运输或运行过程中,若发现电容器外壳漏油,可用锡铅焊料钎焊的方法修理。
套管焊缝处渗油,可用锡铅焊料修补,但应注意烙铁不能过热以免银层脱焊。
电容器发生油渗漏的部位主要是油箱与套管的焊缝,发生渗漏油的主要原因是焊接工艺不良;另外国内制造厂对电容器做密封试验的要求不严格,试验采用加热到75℃保持2h 的抽样加热试验,而不是逐台试验。
电力电容器常见故障问题及解决方法
电力电容器常见故障问题及解决方法摘要:电力系统运行过程中,电压的高低随着无功的变化而变化。
为了控制无功,保证电压稳定,提高电能质量,需要在系统中通过串联或是并联的方式接入电容器。
随着输变电技术的发展,电力电容已经成为了电力系统中的重要设备。
本文就针对电力电容器常见故障进行分析,然后提出相应的预防措施。
关键词:电力电容器;故障;问题;解决方法电力电容器是电力系统中重要的设备之一,在系统运行中,通过对电容器的投切来控制系统的无功功率,从而减少运行中损耗的电能,达到提高功率因数的目的。
长期的运行经验表明,电容器在运行过程中会因本身缺陷或者系统工况运行等原因出现漏油、膨胀变形、甚至“群爆”等故障,若无查出电容器故障原因,对系统的安全运行将造成严重威胁。
因此,对电容器运行故障进行分析处理显得至关重要。
1、电力电容器的常见故障现象1.1电力电容器的渗油现象电容器的渗漏油现象主要由电容器密封不严造成,具有很大的危害,要坚决避免渗漏油现象的出现。
但在实际的运行中,由于加工工艺、结构设计和认为因素等多方面的影响,套管的根部法兰、螺栓和帽盖等焊口漏油的现象经常出现。
这些问题,采取措施加强对厂家和运行维修人员的管理,对机器的运行进行严密的管理,都可以使漏油现象得到缓解。
1.2鼓肚现象在所有电容器的故障中,鼓肚现象是比较常见的故障。
发生鼓肚的电容器不能修复,只能拆下更换新电容器。
因此,鼓肚造成的损失很大,而造成鼓肚的原因主要是产品的质量,保证产品的质量,加强对电容器质量的管理,是避免鼓肚的根本措施。
1.3熔丝熔断电容器外观检测后没有明显的故障时,可以进行实验检测,看是否存在熔丝熔断的现象。
一般情况下,外观没有明显的故障而电容器出现故障时,熔丝熔断就可能是其发生故障的原因。
1.4爆炸现象爆炸发生的根本原因是极间游离放电造成的电容器极间击穿短路。
爆炸时的能量来自电力系统和与相关电力电容器的放电电流,爆炸现象会对电容器本身及其周围的设施造成极大的破坏,是一种破坏力很大的严重故障现象,但由于科技的发展和人们的重视,爆炸现象在近年来很少出现,但我们在电容器的维修检查中,也要对引起爆炸的因素进行严格的控制,极力的避免爆炸现象的出现。
电力电容器的常见故障及排除方法
2.瓷套管与外壳交接处碰伤,造成裂纹,或在旋紧接头螺丝时用力太大,造成裂纹;电容器本身质量差
2.用铅锡焊料进行焊修补;如在套管焊缝处修补时,不应过热,以免套管上银层脱落
开路
电力电容器本身质量不佳
排油后拆开,查出断开处,重新焊接;修复后必须经过干燥处理
套管
3.经常清理积灰,保证平面无灰
4.长期超电压运行,造成过载,使绝缘过早老化击穿
4.限止超电压运行,一般不允许超过额定电压的5%才可长期运行
电力电容器的常见故障及排除方法
发热
1.接头螺丝松动,产生拉弧
1.拧紧松动螺丝,加强检修
2.频繁起闭,反复受浪涌电流作用
2.做到不频繁起闭电力电容器,除非线路停时才切断电力电容器
3.长期受过电压运行,造成过负荷
3.更换电压较高的电力电容器
4.环境温度过高,超过允许值
4.设法降低环境温度
渗油
1.保养不良,外壳涂漆剥落,有锈绝缘油若已变质,应更换合格的新油,并需经过干燥处理
变形
(凸肚)
1.由于漏油,空气入内使内部介质膨胀
2.绝艳老化引起
3.使用期已满
均需立即更换
短路
击穿
1.本身质量差
1.更新
2.小动物如老鼠、蛇钻入接头间短路击穿
2.接头周围加装防护罩
3.瓷瓶平面上积尘太多,产生相间拉弧或对地拉弧短路击穿
电容故障处置方案
电容器是一种常见的电子元件,它在电路中承担着储存电荷和滤波的功能。
当电容器出现故障时,可能会对电路的正常运行产生影响。
下面是一些常见电容故障的处置方案:
1.观察和检查:首先,需要观察电容器是否出现物理损坏,如破裂、漏电或膨胀等情况。
同时,还需检查电容器引脚的连线是否松动或烧焦。
这有助于发现明显的故障状况。
2.测量电容值:使用万用表或电容表进行电容值的测量。
如果测量结果与规格书中标明的电容值相差较大,可能表示电容器损坏。
需要注意的是,测量前应先将电容器从电路中拆除,并确保电容器已经放电。
3.替换故障电容器:如果电容器损坏,可以考虑将其替换为新的电容器。
在选择替代电容器时,需要与原来的电容器匹配,确保规格和特性相符。
此外,还需考虑电容器的工作电压、工作温度等参数。
4.检查电路其他元件:有时电容器故障可能是由于其他元件或电路问题引起的。
因此,在处理电容器故障时,也要检查电路中的其他元件,例如连接线路、电源供应等,确保没有其他问题。
5.预防措施:为避免电容器故障,可以采取一些预防措施。
例如,正确选用合适的电容器,避免超过其额定工作电压和温度范围。
另外,在系统设计和制造过程中,还要注意电容器的布局和散热问题,避免过高的温度和电磁干扰。
需要注意的是,对于高压大容量电容器或电力电容器,处理故障时需要格外谨慎,建议由专业人员进行操作。
如果不确定故障原因或不具备相应的技术经验,最好咨询专业的电子工程师或技术支持人员进行准确的故障诊断和处置。
电容器常见故障及处理
电容器常见故障及处理【摘要】电力电容器作为一种无功补偿装置,是电网安全运行的重要设备,在调整电网电压、降低线路损耗、提高供电质量中发挥重要作用。
但在实际的应用中,由于人为因素和环境等各方面的影响,电容器在运行中频繁的出现故障,影响到正常的工作。
本文从介绍电力电容器入手,主要对电力电容器常见的故障进行了分析,并给出了电力电容器故障的预防措施,提出了解决问题的方法。
【关键词】电容器;常见故障;运行维护引言电力电容器是一种静止的无功补偿设备,其主要作用是向电力系统提供无功功率,提高功率因数。
作为电网中重要的电器设备,电容器的长期正常运行,是保证电网运行安全,提高电能质量,保证企业效益的重要基础条件。
为了提高电容器的运行效率,降低电容器的故障率,加强了对常见故障的分析制定了相应的方法对其安全性能进行保证。
1 电力电容器的常见故障及处理1.1 渗、漏油电容器渗、漏油是一种常见的故障,其原因是多方面的,主要有:搬运方法不当,或提拿瓷套管致使其法兰焊接处产生裂缝;接线时,因拧螺丝用力过大或导线连接过紧,造成瓷套焊接处损伤;产品制造过程中存在的缺陷,均可造成电容器出现渗、漏油现象;电容器投入运行后,由于温度变化剧烈,内部压力增加则会使渗、漏油现象更加严重;运行维护不当,电容器长期运行缺乏维修导致外壳漆层剥落,铁皮锈蚀,也是造成运行中电容器渗、漏油的一个原因。
电容器渗、漏油的后果是使浸渍剂减少,元件上部容易受潮击穿而使电容器损坏。
因此,必须及时进行处理。
1.2 渗、漏油的处理(1)安装电容器时,每台电容器的接线最好采用单独的软线与母线相连,不要采用硬母线连接,以防止装配应力造成电容器套管损坏,破坏密封而引起漏油。
(2)搬运电容器时应直立放置,严禁搬拿套管,并做到轻拿轻放,防止撞击;接线时,应注意导线松紧程度,拧螺丝不能用力过大并要保护好套管。
(3)电容器箱壳和套管焊缝处渗油,可对渗、漏处进行除锈,然后用锡钎焊料修补,修补套管焊缝处时应注意烙铁不能过热以免银层脱落,修补后进行涂漆。
电力电容器的故障模式与诊断方法
电力电容器的故障模式与诊断方法电力电容器是电力系统中常用的电能贮存和滤波元件,其稳定运行对于保障电力系统的正常运行具有重要作用。
然而,由于长期运行或其他原因,电力电容器也会出现各种故障。
本文将针对电力电容器的故障模式及其诊断方法进行深入探讨。
一、电力电容器的故障模式1. 短路故障短路故障是电力电容器常见的故障模式之一。
当电容器内部绝缘击穿或电容器的金属箔之间出现短路时,导致电容器的电极直接连接在一起。
短路故障会导致电容器电流异常增大,并可能引发其他故障。
2. 开路故障开路故障是指电容器内部绝缘失效或导体断裂,导致电容器的电极间无法传导电流。
开路故障会导致电容器无法正常工作,严重影响电力系统的运行。
3. 老化故障电力电容器在长期运行过程中,由于外界环境、电压波动等因素的影响,会出现老化故障。
老化故障主要体现在电容器的绝缘材料老化、电容值损失等方面,会导致电容器性能下降,甚至完全失效。
二、电力电容器故障的诊断方法1. 外部检查法外部检查法是最基本的电力电容器故障诊断方法之一。
通过观察电容器外部是否有明显损坏、变形、漏液等异常情况,判断电容器是否存在故障。
这种方法简单易行,但只能发现一些明显的故障。
2. 声音诊断法声音诊断法是利用电力电容器发出的声音信号来判断是否存在故障。
通过对电容器进行高频放电,观察听觉上是否有明显的噪音,可以初步判断电容器的故障类型。
3. 电容器质量指标测量法电容器质量指标测量法是一种较为直接的故障诊断方法。
通过测量电容器的电容值、损耗角正切值等参数,可以客观地评估电容器的健康状况。
这种方法需要专业的测试设备和技术,可以提供较为准确的故障诊断结果。
4. 热红外检测法热红外检测法是通过红外热像仪对电容器进行扫描,观察其温度分布情况来判断是否存在故障。
热红外检测法可以有效地发现电容器内部故障,如热点、短路等。
5. 偏差电流分析法偏差电流分析法是一种通过分析电容器绝缘材料中的偏差电流来判断其健康状况的方法。
电容器的故障处(三篇)
电容器的故障处1、电容器的常见故障。
当发现电容器的下列情况之一时应立即切断电源。
(1)电容器外壳膨胀或漏油。
(2)套管破裂,发生闪络有为花。
(3)电容器内部声音异常。
(4)外壳温升高于55℃以上示温片脱落。
2、电容器的故障处理(1)当电容器爆炸着火时,就立即断开电源,并用砂子和干式灭火器灭火。
(2)当电容器的保险熔断时,应向调度汇报,待取得同意后再拉开电容器的断路器。
切断电源对其进行放电,先进行外部检查,如套管的外部有无闪络痕迹,外壳是否变形,,漏油及接地装置有无短路现象等,并摇测极间及极对地的绝缘电阻值,如未发现故障现象,可换好保险后投入。
如送电后保险仍熔断,则应退出故障电容器,而恢复对其余部分送电。
如果在保险熔断的同时,断路器也跳闸,此时不可强送。
须待上述检查完毕换好保险后再投入。
(3)电容器的断路跳闸,而分路保险未断,应先对电容器放电三分钟后,再检查断路器电流互感器电力电缆及电容器外部等。
若未发现异常,则可能是由于外部故障母线电压波动所致。
经检查后,可以试投;否则,应进一步对保护全面的通电试验。
通过以上的检查、试验,若仍找不出原因,则需按制度办事工电容器逐渐进行试验。
未查明原因之前,不得试投。
3、处理故障电容器时的安全事项。
处理故障电容器应在断开电容器的断路器,拉开断路器两侧的隔离开关,并对电容器组放电后进行。
电容器组经放电电阻、放电变压器或放电电压互感器放电之后,由于部分残余电荷一时放不尽应将接地的接地端固定好,再用接地棒多次对电容器放电直至无火花及放电声为止,然后将接地卡子固定好。
由于故障电容器可能发生引线接触不良,内部断线或保险熔断等现象,因此仍可能有部分电荷未放出来,所以检修人员在接触故障电容器以前,还应戴上绝缘手套,用短路线将故障电容器的两极短接,还应单独进行放电。
电容器的故障处(二)电容器是电气设备中常见的元件,用于存储和释放电荷,以及调节电流和电压。
然而,在使用过程中,电容器可能会出现各种故障,例如容量减小、内阻增加、绝缘击穿等。
电容器在运行中的异常现象和处理方法(三篇)
电容器在运行中的异常现象和处理方法(1)渗漏油。
安装、检修时造成法兰或焊接处损伤,或制造中的缺陷以及在长期运行中外壳锈蚀都可能引起渗漏油,渗漏油会使浸渍剂减少,使元件易受潮从而导致局部击穿。
(2)外壳膨胀。
电容器内部故障(过电压、对外壳放电、元件击穿等)会导致介质分解气体,使外壳内部压力增加造成外壳膨胀,此时应立即采取措施或停电处理,以免扩大事故。
(3)电容器爆炸。
在没有装设内部元件保护的高压电容器组中,当电容器发生极间或极对外壳击穿时,与之并联的电容器组将对之放电,当放电能量散不出去时,电容器可能爆炸。
爆炸后可能会引起其他设备故障甚至发生火灾。
防止爆炸的办法除加强运行中的巡视检查外,最好是安装电容器内部元件保护装置。
(4)温升过高。
电容器组的过电压、过负荷、介质老化(介质损耗增加)、电容器冷却条件变差等原因皆可能使温升过高,从而影响使用寿命甚至击穿导致事故。
运行中必须严密监视和控制环境温度,或采取冷却措施以控制温度在允许范围内,如控制不住则应停电处理。
(5)瓷绝缘表面闪络。
瓷绝缘表面发生闪络的原因是:表面脏污、环境污染、恶劣天气(如雨、雪)和过电压都将产生表面闪络引起电容器损坏或跳闸,为此应对电容器组定期清扫,并对污秽地区采取防护措施。
(6)异常声响。
运行中发生异常声响(滋滋声或咕咕声)则说明内部或外部有局部放电现象,此时应立即停止运行,查找故障电容器。
在处理电容器事故时,运行人员需注意以下事项:(1)停电。
必须先拉开电容器断路器及隔离开关或取下熔断器。
(2)放电。
尽管电容器组已内部自行放电,但仍有残余电荷存在,必须人工放电,放电时一定要先将地线接地端接好.而后多次放电直至无火花和声音为止。
(3)操作时必须带防护器具(如绝缘手套),应用短路线烙两极间连接放电(因为仍可能有极间残余电荷存在)。
电容器在运行中的异常现象和处理方法(二)电容器是一种常见的电子元件,用于储存和释放电荷,在电路中具有很多重要的作用。
电容器在运行中的异常现象和处理方法
电容器在运行中的异常现象和处理方法电容器是一种储存电能的装置,广泛应用于各种电气设备中。
然而,在电容器运行过程中,有时会出现一些异常现象。
以下将介绍几种常见的电容器异常现象及其处理方法。
1.电容器内部温度过高:当电容器长时间工作或工作电流过大时,会导致电容器内部温度升高。
过高的温度会影响电容器的使用寿命,并可能导致电容器泄漏或损坏。
处理方法是合理选择电容器容量和电流等级,以避免超负荷运行,并保证电容器周围的通风良好。
2.电容器接线错误:错误的接线会导致电容器无法正常工作或损坏。
常见的接线错误包括正负极接反、接线松动或接触不良等。
处理方法是注意正确接线,仔细阅读电容器的接线图,并确保接触部分干净牢固。
3.电容器失效:电容器失效通常表现为无法正常充放电,电容量减小或电容器内部产生电弧现象。
失效可能是由于电容器本身质量问题、工作环境恶劣或长时间工作导致。
处理方法是定期检查电容器的工作状态,必要时更换失效的电容器。
4.电容器频繁开关:频繁开关电容器会引起电容器内部的过电压或冲击,从而影响电容器的使用寿命。
处理方法是合理规划电容器的使用情况,避免频繁开关。
5.电容器过电压:当电网电压超过电容器额定电压时,会引起电容器的过电压现象。
过电压会导致电容器泄漏、损坏或产生电弧现象。
处理方法是选择合适的额定电压的电容器,并做好过电压保护措施,如安装过电压保护器或限流器。
6.电容器开路或短路:电容器出现开路或短路现象会导致电容器无法正常工作。
开路通常是由于电容器内部绝缘损坏或引线断开引起,而短路则是由于电容器内部绝缘击穿或金属引线短路引起。
处理方法是检查电容器的绝缘状况和引线连接,并及时更换损坏的电容器。
总之,电容器在工作过程中可能出现各种异常现象,对其进行合理的选择、安装和维护是确保电容器正常工作和延长使用寿命的关键。
当发现异常现象时,应及时采取相应的措施进行处理,以保证电容器的安全可靠运行。
无功补偿电容器常见故障分析与预防
无功补偿电容器常见故障分析与预防无功补偿电容器是现代电力系统中的必要组成部分,其在电力系统中发挥着重要的作用。
然而,无功补偿电容器也会出现各种故障,这些故障会严重影响电力系统的正常运行,因此必须重视无功补偿电容器的故障分析与预防。
一、常见故障1、电容器短路:电容器内部绕组出现短路,使得电容器无法工作,严重影响电力系统的稳定性和质量。
4、电容器接线故障:由于电容器内部接线松动、接触不良等原因,导致电容器无法正常工作。
二、预防措施1、定期巡检:定期巡检无功补偿电容器,检查电容器接线,外观是否损坏,是否有明显热现象、异味等异常表现。
2、定期维护:对无功补偿电容器进行定期维护,包括内部的接线检查、清洁、灰尘清理等。
3、环境保护:将无功补偿电容器安装在干燥、通风、温度适宜的地方,避免电容器受到潮湿、高温、高压等外界环境的影响。
4、电容器组件的选择:适当提高电容器组件的品质和技术水平,选择具有高质量、高可靠性、低损耗率的电容器组件。
5、电容器控制系统的完善:建立完善的电容器控制系统,对电容器进行严格的监控和控制,保证电容器能够在整个电力系统中良好的工作。
三、应急处理如果无功补偿电容器发生故障,需要立即采取以下措施:1、停止无功补偿电容器的运行,防止故障扩大。
2、及时检查故障原因,进行故障排除,对于无法处理的故障,应及时更换或修理无功补偿电容器。
3、对于无功补偿电容器故障给电力系统带来严重影响的情况,应及时采取措施维护和修复,保障电力系统的安全稳定运行。
综上所述,无功补偿电容器是电力系统中非常重要的一部分,应给予高度重视。
在日常维护过程中,我们需要注意对无功补偿电容器的定期检查、维护、保护以及电容器控制系统的完善,以及及时处理故障,保证无功补偿电容器在电力系统中有效、稳定地工作。
电容器的常见故障处理方法与技术
电容 器 油 、 二 烷 基苯 、 丙基 联 苯 、 芳 基 异 烷 十 异 二 苯 甲基硅 油 ; 按照 电容 器 固体 电介 质可 分为 : 电 全 容器 纸 电介质 、 聚丙 烯 薄 膜 介 质 、 、 膜 复合 全 纸 薄
容器 、 串联 电容器 、 电热 电容 器 、 均压 电容 器 、 波 滤
电容器 、 脉冲电容器 、 标准电容器等 8 个系列。不 同类 型 的电力 电容器 具 有不 同的用途 。 并 联 电容 器 与负 荷 或 者 供 电设 备 并 联 运 行 ,
施, 正确掌握 电容器各种常见故障相应的处理方法和注意事项。可以延长电容器的使 用寿命 , 减 少运行 中 出现 故 障的机 会 , 保证 电力 系统 正 常 的运行 。 关键 词 : 电容 器 ; 故 障 ; 运行 ; 处 理 ; 检修 ; 防 火措施 中图分类 号 : M 3 . 文献 标识 码 : T 5 14 B 文章编 号 : 6 4 15 ( 0 0 0 - 6 - 1 7 —7 7 2 1 )40 1 4 0 0
r t fc pa i ra d a s r r lo e ai n o o rs se . a e o a ct n s u e no ma p r t fp we y t m o o K e wo d c p ct r a l; o r to y r s: a a i ;f u t pea in;te t n ;ma n e n e;fr r v n o a u e o r ame t i tna c i e p e e t n me i s rs
做电容器实验时常见故障及解决方法
做电容器实验时常见故障及解决方法电容器是电子学中常用的元件之一,具备存储和释放电荷的能力,可用于多种电路应用。
然而,在进行电容器实验时,常常会遇到各种故障,如电容器无法充电或放电、电容器内部损坏等。
本文将针对这些常见故障提出解决方法,帮助读者更好地进行电容器实验。
一、电容器无法充电或放电在实验过程中,如果发现电容器无法充电或放电,可能存在以下几种故障原因及对应的解决方法:1. 导线连接错误:检查连接电容器的导线是否正确连接至电源或负载。
确保正负极连接正确无误。
2. 电源电压异常:检查电源电压是否符合电容器工作电压范围。
有时电容器的电压需求高于实验电源提供的电压。
3. 电容器损坏:检查电容器是否有破损或漏液现象,如发现异常,及时更换电容器。
另外,也要确保电容器的极性正确。
二、电容器内部损坏电容器内部损坏是电容器实验中常见的问题,这可能导致电容器无法正常工作,甚至出现短路、漏电等危险情况。
因此,一旦发现电容器内部损坏,应立即采取相应的解决措施。
1. 漏电:如果电容器表面湿润或有电解液渗出等迹象,表明电容器发生漏电,需立即断开电源,并更换损坏的电容器,避免可能的安全隐患。
2. 短路:当电容器短路时,会导致电流异常增大,可能造成电路损坏,甚至引起火灾。
在发现电容器短路时,应立即切断电源,并更换短路的电容器。
3. 极性反接:有些电容器具有极性,如果误将电容器的正极与负极连接反了,会导致电容器无法正常工作,需要检查并重新连接正确的极性。
三、电容器存储效果差在实验中,有时会发现电容器的存储效果较差,无法长时间稳定保存电荷。
这可能是由于以下原因导致的,有针对性地解决可以提高电容器的存储效果。
1. 电容器质量问题:有些低质量的电容器在制作过程中可能存在工艺不良,或电介质材料选择不当,导致存储效果差。
此时,可尝试更换质量较好的电容器,并注意选择适合实验要求的型号。
2. 温度变化:电容器在高温环境下会出现电容值下降现象,存储效果也会受到一定影响。
电力电容故障分析及处理
电力电容故障分析及处理[摘要]电力电容器作为电力系统无功补偿、消除谐波的重要装置,电容器组的正常运行对于电力系统电能的质量与效益都起着重要的作用,但由于电容器本身的设计及运行条件各方面的原因,造成电容器的损坏率较高,本文就电力电容器常见的故障进行分析,最后提出相应的处理方法及预防措施。
[关键词]电力电容故障分析处理0概述电力系统中的大多数网络元件,特别是电感元件会消耗大量的无功功率,另外如变压器、电机等负载元件也需要无功功率,在超高压直流输电系统中,交流一直流一交流的过程中产生了各次谐波电流,同时直流输电线路需要大量的无功功率,所有的这些都需要装设大量的交直流滤波电容器,用以滤除各次谐波,同时进行无功补偿。
电容器的好坏对电能的质量与效益起着至关重要的作用。
1.电容器故障的常见原因1.1电容器设计、工艺方面(1)设计场强过高。
为了降低成本,取得较高的经济效益,电容器生产厂家设计的场强普遍偏高,场强过高是电容器损坏的一个重要原因。
(2)对损坏电容器进行解剖发现,元件中部存在没有浸透的现象。
(3)电流密度过大。
电容器元件并联数量较少,造成元件引线片电流密度较大,从而引起局部过热。
另外,芯子引出线截面较小,加上套管接线头与连线的压接方式不到位,接触电阻较大,在长期工作电流下发生过热,造成引出线与套管接线头的锡焊层熔化,产生渗油现象,导致电容器的密封遭到破坏。
(4)电容器设有配备单台熔丝,或配有熔丝但熔丝特性(安秒特性)太差。
当电容器内部元件严重击穿产生故障电流时。
熔丝不能及时熔断,同时,有效的继电保护措施未跟上,过电流使电容器内部的温度急剧上升,导致电容器胀裂或爆炸。
(5)产源质量差。
油纸绝缘没在严格的真空下干燥和浸渍处理、在长期工作电压下,内部残存的气泡产生局部放电现象。
局部放电进一步导致绝缘损伤和老化。
温升也随之增加,最终导致元件电化学击穿,电容器损坏。
1.2电容器运行环境方面(1)环境温度:电容器周围环境的温度太高或者太低。
变电所电容器常见故障及对策
变电所电容器常见故障及对策摘要:电容器是变电所常用的一种电气设备,但在实际运行过程中电容器经常会发生渗油、烧毁等不同的故障问题,这就严重影响了变电所的安全运行。
因此,本文主要总结了电容器的常发故障,并提出相应的解决措施,以期为相关人员提供一定的参考。
关键词:变电所;电容器;故障;对策一、前言电容器在电力系统当中起着非常重要的作用,是变电所的一种重要电气设备,其对于电力系统的安全运行起着至关重要的作用。
由于工作环境比较复杂,电容器经常出现不同的故障问题,严重影响着电力系统的安全运行。
因此,当电容器出现故障时,维护工作人员应采取有效的措施来处理故障。
二、电容器组接线方式电容器组的一次接线图如图1所示。
其中,避雷器采用四星型接线。
三、电容器常见故障及其处理(一)电容器爆炸当多组电容器处于并联运行的时候,若当中一台电容器发生击穿现象就会导致其他电容器通过此台电容器发生放电。
由于放电能量较大,脉冲的功率也较高就会导致电容器发生气化进而引起爆炸,甚至发生火灾。
当电容器因爆炸而引发着火的时候要立刻切断电源,工作人员要利用有效的灭火手段,如借助砂子或干式灭火器进行灭火。
电容器发生爆炸大多是由于电容器内外过电压,内部发生严重故障导致的。
因此,为了有效防止该故障的发生,应要求每台电容器熔丝规格一定要匹配,在熔断器熔丝熔断之后还要仔细找出缘由,同时要注意电容器组不能使用重合闸,为了防止更大事故的发生,在发生跳闸之后也不能强送电。
(二)电容器渗油电容器渗油大多是由于电容器密封性不好或者不牢固所导致的。
通常电容器是一种全密封的装置,若密封性不好,就会使很多的水分、杂质以及空气等成分进入油箱内部,进而导致绝缘受损,产生很大的危害。
一旦发现电容器出现渗油现象,工作人员要立刻换下故障电容器,并上报上级单位进行电容器修补或要求更换新的合格的电容器。
(三)电容器外壳鼓肚当电容器内部的某些元件因故障发生击穿现象的时候,会在介质当中产生很大的故障电流,而这种电流所产生的电弧及高温会导致浸渍剂游离进而分散产生很多的气体,这会进一步增大电容器内部压力,并导致电容器外壳膨胀鼓肚。
电容器常见的故障原因及修理方法
电容器常见的故障原因及修理⽅法⼀、⼀般电容故障现象:电容开路、击穿、漏电、通电后击穿故障原因1、元器件开路电容器开路后,没有电容器的作⽤。
不同电路中的电容器出现开路故障后,电路的具体故障现象不同。
如滤波电容开路后出现交流声,耦合电容开路后⽆声等。
2、元器件击穿电容器击穿后,失去电容器的作⽤,电容器两根引脚之间为通路,电容器的隔直作⽤消失,电路的直流电路出现故障,从⽽影响交流⼯作状态。
3、元器件漏电电容器漏电时,导致电容器两极板之间绝缘性能下降,两极板之间存在漏电阻,有直流电流通过电容器,电容器的隔直性能变差,电容器的容量下降。
当耦合电容器漏电时,将造成电路噪声⼤。
这是⼩电容器中故障发⽣率⽐较⾼的故障,⽽且故障检测困难。
4、通电后击穿电容器加上⼯作电压后击穿,断电后它⼜表现为不击穿,万⽤表检测时它不表现击穿的特征,通电情况下测量电容两端的直流电压为零或者很低,电容性能变坏。
修理⽅法1、电容内部开路,换元器件;电容外部连线开路,重新焊好。
2、电容器击穿,换新。
3、电容器漏电,换新。
4、通电后击穿,换新。
⼆、电解电容器的检修电解电容器是固定电容器中的⼀种,它的故障特征与固定电容故障特征有许多相似之处,由于电解电容器的特殊性,电解电容器的故障特征⼜有许多不同之处。
在电路中,电解电容器的故障率较⾼。
故障现象:电容器两极短路故障原因1、未通电,击穿,电容器内部短路。
2、未通电正常,通电后击穿,电容器外部连线短路。
修理⽅法1、更换新元器件。
2、电容器外部连线短路,检查短路点,断开。
浏览更多⼲货内容,请关注微信公众号'百斯特电⼦'(微信号:best-dz)。
电容器的故障处理
电容器的故障处理电容器是一种常见的电子元件,在电路中起到储存电能、平滑电流、分离电路等作用。
然而,由于长期使用或者其他原因,电容器可能会出现故障。
本文将针对电容器的常见故障进行介绍,并提供相关的故障处理方法。
一、电容器故障的类型1. 短路:电容器两个极板之间出现短路现象,导致电流直接通过电容器,绕过其他元件,使电路出现异常。
2. 开路:电容器两个极板之间出现断路现象,导致电容器无法充电或放电,无法发挥正常作用。
3. 漏电:当电容器在放电过程中,漏电电流超过正常范围,导致电容器无法稳定工作。
4. 容值下降:电容器的容值随着时间的推移或电容器受到电压冲击而减小,导致电容器不能正常储存电能。
二、电容器故障处理方法1. 短路故障处理方法:(1)首先,切断电源,断开故障电容器与其他电路的连接。
(2)检查故障电容器,观察是否有明显的物理损伤,如外壳裂开、电解液泄漏等。
(3)使用万用表将电容器进行测量,如果测量结果显示电容器两个极板之间电阻接近于零,则可判断为短路,需要更换电容器。
(4)更换电容器时,应注意选用合适的规格和类型,并确保正确安装。
2. 开路故障处理方法:(1)切断电源,断开故障电容器与其他电路的连接。
(2)使用万用表将电容器进行测量,如果测量结果显示电容器两个极板之间电阻非常大或者无穷大,则可判断为开路,需要更换电容器。
(3)更换电容器时,应注意选用合适的规格和类型,并确保正确安装。
同时,检查电路中其他元件,避免电容器开路故障对其他元件造成损害。
3. 漏电故障处理方法:(1)切断电源,断开故障电容器与其他电路的连接。
(2)使用万用表将电容器进行测量,如果测量结果显示电容器两个极板之间的电阻较小,则可判断为漏电。
(3)对于漏电故障,可以尝试使用相同参数的电容器进行更换。
如果漏电现象仍然存在,说明其他元件可能存在问题,需要进一步检查和排除。
4. 容值下降故障处理方法:(1)使用电容测试仪或万用表测试电容器的容值,与电容器标称值进行比较。
电容器常见故障及处理
电容器常见故障及处理引言电力电容器是一种静止的无功补偿设备,其主要作用是向电力系统提供无功功率,提高功率因数。
作为电网中重要的电器设备,电容器的长期正常运行,是保证电网运行安全,提高电能质量,保证企业效益的重要基础条件。
为了提高电容器的运行效率,降低电容器的故障率,加强了对常见故障的分析制定了相应的方法对其安全性能进行保证。
1 电力电容器的常见故障及处理1.1 渗、漏油电容器渗、漏油是一种常见的故障,其原因是多方面的,主要有:搬运方法不当,或提拿瓷套管致使其法兰焊接处产生裂缝;接线时,因拧螺丝用力过大或导线连接过紧,造成瓷套焊接处损伤;产品制造过程中存在的缺陷,均可造成电容器出现渗、漏油现象;电容器投入运行后,由于温度变化剧烈,内部压力增加则会使渗、漏油现象更加严重;运行维护不当,电容器长期运行缺乏维修导致外壳漆层剥落,铁皮锈蚀,也是造成运行中电容器渗、漏油的一个原因。
电容器渗、漏油的后果是使浸渍剂减少,元件上部容易受潮击穿而使电容器损坏。
因此,必须及时进行处理。
1.2 渗、漏油的处理(1)安装电容器时,每台电容器的接线最好采用单独的软线与母线相连,不要采用硬母线连接,以防止装配应力造成电容器套管损坏,破坏密封而引起漏油。
(2)搬运电容器时应直立放置,严禁搬拿套管,并做到轻拿轻放,防止撞击;接线时,应注意导线松紧程度,拧螺丝不能用力过大并要保护好套管。
(3)电容器箱壳和套管焊缝处渗油,可对渗、漏处进行除锈,然后用锡钎焊料修补,修补套管焊缝处时应注意烙铁不能过热以免银层脱落,修补后进行涂漆。
渗、漏油严重的要更换电容器。
1.3 外壳变形由于电容器内部介质在高压电场作用下发生游离,使介质分解而析出气体,或者由于部分元件击穿,电容器极对外壳接地放电等原因均会使介质析出气体。
密封的外壳中这些气体将引起内部压力增大,因而将引起外壳膨胀变形。
所以,电容器外壳变形是电容器发生故障或故障前的征兆。
1.4 外壳变形的处理经常对运行的电容器组进行外观检查,如发现电容器外壳膨胀变形应及时采取措施,膨胀严重者应立即停止使用,并查明原因,更换电容器。
常见的电容器故障有哪些-解决电容器常见故障的方法
常见的电容器故障有哪些-解决电容器常见故障的方法常见的电容器故障有哪些-解决电容器常见故障的方法电容器的故障及处理电容器在变、配电所中的主要作用是无功补偿,因此电容器一旦发生故障就必需马上处理。
下面,我为大家共享解决电容器常见故障的方法,希望对大家有所关怀!电容器声音异样电容器在正常运行时不会发出较大的声音,有点象蜜蜂发出的均匀嗡嗡声,我们所说的异音是指电容器发出的声音不均匀并拌有放电的劈啪声。
造成电容器声音异样的主要缘由有:①、电容器母线与导电杆连接松动引起的放电声。
②、电容器内部元件老化或过电压击穿所造成的放电声。
③、由于高次斜波侵入所引发的噪声。
④、电容器组投入运行时所产生的合闸涌流,也会使电容器发出一阵异样声音。
当值班员觉察电容器熔丝熔断后,应首先弄清熔断相及电容器号码,然后检查。
电容器的外观有无鼓肚现象,是否渗油,套管有无闪络放电痕迹,然后将发生的`时间,相位、电容器号及观看的现象一并汇报给调度,一切按调度指令执行。
电容器组熔丝熔断当电容器组接受熔丝爱惜时(必需接受跌落式熔断器),电容器本身故一障或系统发生过电压等外界条件的影响,都会使电容器组熔丝熔断。
电容器熔一丝一旦熔断将造成三相电流指示不在平衡。
电容器渗油电容器是全密封设备,但由于制造的缺陷和使用维护不当,往往导致电容器渗油,电容器主要的渗油部位一是绝缘套管、导电杆密封处的密封垫失效,导致渗油。
二是电容器壳体焊缝开焊或锈蚀处渗油。
值班员觉察电容器渗油时,应尽快向调度报告,以便尽快处理或更换。
电容器外壳膨胀一电容器外壳膨胀(又称鼓肚),也是电容器常见的一种异样现象。
原来电容器一油箱随温度转变发生膨胀和收缩是正常现象,但是当电容器内部发生局部放电一或绝缘被击穿,绝缘油将产生大量气体,使电容器油箱产生变形,持续下去很危险,一旦觉察应马上报告调度,以便将电容器准时更换。
(电容器外壳一旦膨胀就无修复必要.电容器爆炸一电容器爆炸这是一种严重的事故状态,有时还会发生"群爆',导致电容器爆炸的主要缘由是:①、电容器元件击穿并对壳体放电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容器的常见故障处理方法与技术
发表时间:2017-06-14T11:12:30.767Z 来源:《电力设备》2017年第6期作者:秦蓉
[导读] 摘要:电力电容器在具体的应用过程中,常会发生各种运行障碍,进而对整个电力网络无功系统运行的可靠性、安全性和正确性造成不良影响。
(广西电网有限责任公司桂林供电局 541002)
摘要:电力电容器在具体的应用过程中,常会发生各种运行障碍,进而对整个电力网络无功系统运行的可靠性、安全性和正确性造成不良影响。
在调整电网电压、降低线路损耗、提高供电质量中发挥重要作用。
但在实际的应用中,由于人为因素和环境等各方面的影响,电容器在运行中频繁的出现故障,影响到正常的工作。
关键词:电容器;故障处理;方法;技术
引言
分析了电力电容器在正常使用条件下的渗漏油、缺油及处理 ,论述了电容器绝缘不良现象、温升高、过电压、外力因素的破坏、瓷瓶表面闪络放电、外壳变形、爆炸等原因及处理措施 ,作为电网中重要的电器设备,电容器的长期正常运行,是保证电网运行安全,提高电能质量,保证企业效益的重要基础条件。
为了提高电容器的运行效率,降低电容器的故障率,加强了对常见故障的分析制定了相应的方法对其安全性能进行保证。
1.电力电容器的常见故障及处理
1.1 渗、漏油
电容器渗、漏油是一种常见的故障,其原因是多方面的,主要有:搬运方法不当,或提拿瓷套管致使其法兰焊接处产生裂缝;接线时,因拧螺丝用力过大或导线连接过紧,造成瓷套焊接处损伤;产品制造过程中存在的缺陷,均可造成电容器出现渗、漏油现象;电容器投入运行后,由于温度变化剧烈,内部压力增加则会使渗、漏油现象更加严重;运行维护不当,电容器长期运行缺乏维修导致外壳漆层剥落,铁皮锈蚀,也是造成运行中电容器渗、漏油的一个原因。
电容器渗、漏油的后果是使浸渍剂减少,元件上部容易受潮击穿而使电容器损坏。
因此,必须及时进行处理。
1.2 渗、漏油的处理
(1)安装电容器时,每台电容器的接线最好采用单独的软线与母线相连,不要采用硬母线连接,以防止装配应力造成电容器套管损坏,破坏密封而引起漏油。
(2)搬运电容器时应直立放置,严禁搬拿套管,并做到轻拿轻放,防止撞击;接线时,应注意导线松紧程度,拧螺丝不能用力过大并要保护好套管。
(3)电容器箱壳和套管焊缝处渗油,可对渗、漏处进行除锈,然后用锡钎焊料修补,修补套管焊缝处时应注意烙铁不能过热以免银层脱落,修补后进行涂漆。
渗、漏油严重的要更换电容器。
1.3 外壳变形
由于电容器内部介质在高压电场作用下发生游离,使介质分解而析出气体,或者由于部分元件击穿,电容器极对外壳接地放电等原因均会使介质析出气体。
密封的外壳中这些气体将引起内部压力增大,因而将引起外壳膨胀变形。
所以,电容器外壳变形是电容器发生故障或故障前的征兆。
2. 10kV并联电容器故障及其原因
并联电容器的损坏一般由两方面造成,分别是电击穿和热击穿。
其直接表现主要有本体鼓肚变形、引起外熔丝或内熔丝熔断及相关保护动作等。
就10kV并联电容器的实际运行情况来看,造成电容器损坏、故障主要有以下几种原因。
2.1高次谐波对并联电容器组的影响
电容器的发热主要来自绝缘的介质损耗,P=U2ωCtgδ为其正弦波电压下的公式表达。
当电容器中存在谐波分量时,其绝缘引起的损耗为:
(1)
式(1)中:U——电压;C——电容;t——时间;ω——电流角频率。
由公式可知,谐波含量越大,次数越多,电容器的发热就越严重,而介损大的电容器特别不耐受高次谐波的影响。
在电容器的运行过程中,谐波会引起附加绝缘介质的损耗,加快绝缘老化,严重时,会直接导致电容器的热击穿。
2.2熔丝保护造成的影响
根据2014年电容器故障的统计分析,由熔丝保护(特别是外熔丝保护)原因引起的10kV并联电容器故障及扩大故障占2014年电容器全年故障量的2/3以上。
现运行的大部分10kV并联电容器外熔丝在设计、厂家质量保证等方面存在着较明显的缺陷,由此导致开断性能较低,容易造成电容器熔断器拒动、误动,进而引起电容器组群爆炸。
这使得外熔丝作为电容器内部故障主保护的可靠性大打折扣,给电容器的安全运行带来了很大的隐患。
现在所用的熔断器主要存在以下两个问题:①铜铰线与熔丝之间的压接头面积不能满足运行电流的要求。
②熔断器内的消弧管存在质量问题。
正常情况下,当熔断器动作后,尾线与树脂管脱离,电弧使消弧管内分解出气体,强力吹灭电弧,同时利用自身的弹力将电弧拉长,加大弧阻,使电弧迅速熄灭。
但消弧管内的高温在引起消弧管老化、龟裂或存在密封等质量问题后,熔断器动作,电弧分解出的气体不能在消弧管内产生足够的气压,使熔断器熔断后不能及时将铜铰线脱离树脂管。
3.防止电容器火灾的措施
电容器都是充油的。
如果电力系统超负荷,温度过高或者电器元件老化等, 电容器容易发生爆炸引发火灾,势必会造成电力系统的停电事故。
怎样预防电力电容器火灾呢?电容器的安装环境应满足制造厂规定的技术条件要求。
电容器室最好是单独的防火建筑, 如果电容器数量
不超过 20台 ,也允许与开关柜在同一个房间内 ,但电容柜应当单独排列 ,不得与开关柜混在一起。
电容器室应通风良好 ,百叶窗应加铁丝网 ,以防小动物钻进去。
电容器室不应有窗户 ,门应朝北或朝东向开 ,应能向左右开 180°,最好是铁门。
如果是木质门 ,应包上铁皮。
室温不应超过 40 ℃,湿度不得大于 80%,而且周围环境不得含有对金属和绝缘有害的侵蚀性气体、蒸汽及尘埃 ,不得堆积有易燃易爆物品或杂物。
电容器安装一般不超过 3层。
电容器母线对上层架构的垂直距离不小于200mm, 底部距地面不应小于 300 m m;电容器架构间的水平距离不应小于0.5mm, 每台电容器之间的距离不应小于500mm。
电容器的铭牌应朝向通道, 外壳应可靠接地,应该设置温度计和贴示温蜡片,以便监视运行温度。
对电容器进行安全检查时,要注意以下几点:
1) 检查温升情况 ,如果室温超过了规定的限度 ,就要采取通风降温措施。
听一听电容器运行中有无异常响声;看一看电力电容器外壳有无膨胀鼓起现象;
2) 当电容器母线电压超过规定电压的1.1倍或电流超过额定电流的1.3倍以及室温超过40 ℃时,电力电容器应该退出运行;
3) 电容器最容易发生事故的时段是用电高峰和温度升高时。
因此, 在这个时间一定要加强对电容器的巡视检查。
4)电容器长期在高温环境下运行,会对其绝缘性能产生不良影响,加速电容器的绝缘老化。
因此,在电容器设计安装时,单台电容器之间必须保持10mm以上的间隙,且电容器室必须有合理的通风装置。
特别是无人值班站,需加装温控自动驱动通风装置,当温度达到设定值时,自动启动电容器室的通风装置,给电容器的安全运行创造一个良好的环境。
4.结语
综上所述,我们了解了电容器正常运行要求、电容器常见故障的排除方法。
在实际应用中, 应全面综合考虑多种因素的影响,为电容器提供必要的运行条件,尽可能减少电容器存在的不安全因素。
这样电容器就能够正常稳定地工作,使电力更好地为人类服务。
参考文献
[1]刘源清.浅谈并联电容器组维护及运行管理的问题[J].中国新技术新产品.2014
[2]冯剑波.10kV电力电容器故障预警系统设计[J].现代建筑电气,2011.。