统计与概率高考题文科资料全

合集下载

高考文科数学大题专项统计概率A精编版

高考文科数学大题专项统计概率A精编版

……………………………………………………………最新资料推荐…………………………………………………四统计概率(A)1.(2018·大庆模拟)某人租用一块土地种植一种瓜类作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455 kg.已知当年产量低于450 kg时,单位售价为12元/kg,当年产量不低于450 kg时,单位售价为10元/kg.(1)求图中a,b的值;(2)估计年销售额大于3 600元小于6 000元的概率.2.(2018·沈阳三模)根据相关数据统计,沈阳市每年的空气质量优良天数整体好转,2013年沈阳优良天数是191天,2014年优良天数为178天,2015年优良天数为193天,2016年优良天数为242天,2017年优良天数为256天,把2013年年份用代码1表示,以此类推,2014年用2表示,2015年用3表示,2016年用4表示,2017年用5表示,得到如下数据:1……………………………………………………………最新资料推荐…………………………………………………(1)试求y关于x的线性回归方程(系数精确到0.1);(2)试根据(1)求出的线性回归方程,预测2018年优良天数是多少天(精确到整数).=3 374,=55.x附:y参考数据ii-==.,参考公式:3.(2018·厦门一模)为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如表所示:2……………………………………………………………最新资料推荐…………………………………………………若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);(2)根据已知条件完成下面的2×2列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?2n=a+b+c+d.:其中,参考公式K=附:临界值表3……………………………………………………………最新资料推荐…………………………………………………4.(2018·焦作四模)某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了n名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.(1)求n,a,b的值;(2)估计该校高三学生体质测试成绩的平均数和中位数m;(3)若从成绩在[40,60)的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.4……………………………………………………………最新资料推荐…………………………………………………1.解:(1)由频率分布直方图的性质得100(a+0.001 5+b+0.004)=1, 得100(a+b)=0.45,由300×100a+400×0.4+500×100b+600×0.15=455,得300a+500b=2.05,解方程组得a=0.001 0,b=0.003 5.(2)由(1)结合频率分布直方图知,当年产量为300 kg时,其年销售额为3 600元,当年产量为400 kg时,其年销售额为4 800元,当年产量为500 kg时,其年销售额为5 000元,当年产量为600 kg时,其年销售额为6 000元,因为年产量为400 kg的频率为0.4,即年销售额为4 800元的频率为0.4,而年产量为500 kg的频率为0.35,即年销售额为5 000元的频率为0.35,故估计年销售额大于3 600元小于6 000元的概率为0.05+0.4+0.35+0.075=0.875.=×,计算(1+2+3+4+5)=3, :(1)2.解根据表中数据=×(191+178+193+242+256)=212,=3 374,=55,yx又ii5……………………………………………………………最新资料推荐…………………………………………………=19.4,=所以=3=153.8.=212-19.4所以=×-=19.4x+153.8. 的线性回归方程是y关于x, (1)的线性回归方程(2)根据270, 6+153.8≈,=19.4计算x=6时×. 天2018年优良天数是270即预测: 该校学生的每天平均阅读时间为3.解:(1) +110×+9010+30×××+50××+70=1.6+6+12+15.4+12.6+4.4=52., 11+7+2=20人(2)由频数分布表得,“阅读达人”的人数是: 2列联表如下根据等高条形图作出2×24.327,K计算==≈. 99%的把握认为“阅读达人”跟性别有关4.327<6.635,由于故没有,人的有由题中茎叶图可知分数在解4.:(1)[50,60)46 ……………………………………………………………最新资料推荐…………………………………………………n==40,所以=0.005,10b=×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)=45×0.05+55×0.1+65×0.2+75×0.3+85×0.25+95×0.1=74,由10×(0.005+0.010+0.020)+(m-70)×0.03=0.5,得m=75.(3)两名男生分别记为B,B,四名女生分别记为G,G,G,G, 411223从中任取两人共有15种结果,分别为:(B,B),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G),(B21112212331421221,G ),(G,G),(G,G),(G,G),(G,G),(G,G),(G,G), 4144322431231至少有一名男生的结果有9种,分别为:(B,B),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G), 3422112212111213(B,G),42=p=. 所以至少有一名男生的概率为7。

专题七-统计与概率-数学(文科)-全国卷地区专用

专题七-统计与概率-数学(文科)-全国卷地区专用

P1=2145,则小波
不去唱歌的概率⑥ 为________.
—— 体验高
考 —[答—案]
11 15
核心知识聚焦
⇒ 互斥事件的 概率 关键词:3 互斥事件、
对立事件,如⑤⑥.
——主干知识 — —
[解析] P=1-P1=1-145=1115.
第16讲 统计
—— 基础知识必备 — —
第16讲 统计
► 考向一 古典概型
(2)要使 S4=2,需出现 3 个 1,1 个-1,所以基本事 件的总数是 2×2×2×2=16,满足 S4=2 的基本事件有 4 个,所以 S4=2 的概率为146=14.
第16讲 统计
► 考向二 几何概型
考向:从基本事件的无限性构建几何模型.
考例:2010 年 T14,近五年新课标全国卷共考查了 1 次.
第16讲 统计
规范解答 8.高考中常见的概率问题 解:(1)第 3 组的人数为 0.3×100=30,第 4 组的人数 为 0.2×100=20,第 5 组的人数为 0.1×100=10.(2 分) 因为第 3,4,5 组共有 60 名志愿者,所以利用分层抽 样的方法在 60 名志愿者中抽取 6 名志愿者,每组抽取的人 数1600分×别6=为1命:.所题第以考3应向组从探,究第36003×,64=,35;组第中4各组抽,取2600×3 名6=,22;名第,51组名, 志愿者.(4 分) (2)根据频率分布直方图,样本的平均数的估计值为: 22.5×(0.01×5)+27.5×(0.07×5)+32.5×(0.06×5)+ 37.5×(0.04×5)+42.5×(0.02×5)=6.45×5=32.25(岁). 所以这 100 名志愿者样本的平均数为 32.25 岁.(6 分)

高中数学文科概率与统计

高中数学文科概率与统计

概率与统计主要考点:(1)等可能事件、互斥事件(对立事件)、相互独立事件及独立重复实验的基本知识及四 种概率计算公式的应用,考查基础知识和基本计算能力.(2)求简单随机变量的分布列、数学期望及方差,特别是二项分布,常以现实生活、社 会热点为载体.(3)抽样方法的确定与计算、总体分布的估计.题型一 几类基本概型之间的综合【例1】 (08·安徽高考)在某次普通话测试中,为测试汉字发音水平,设置了10张 卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.(Ⅰ) 现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测 试后放回,余下2位的测试,也按同样的方法进行。

求这三位被测试者抽取的卡片上, 拼音都带有后鼻音“g”的概率。

(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张, 求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率.【分析】 第(Ⅰ)小题首先确定每位测试者抽到一张带“g”卡片的概率,再利用相互独 立事件的概率公式计算;第(Ⅱ)利用等可能事件与互斥事件的概论公式计算. 【解】 (Ⅰ)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有 后鼻音“g”的概率为310,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为310×310×310=271000.(Ⅱ)设A i (i =1,2,3)表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g”的事件,且其相应的概率为P(A i ),则P(A 2)=C 17C 23C 310=740,P(A 3)=C 33C 310=1120,因而所求概率为P(A 2+A 3)=P(A 2)+P(A 3)=740+1120=1160.【点评】 本题主要考查等可能事件、互斥事件、相互独立事件的概率.解答题注意不要 混淆了互斥事件与相互独立事件,第(Ⅱ)的解答根据是“不少于”将事件分成了两个等 可能事件,同时也可以利用事件的对立事件进行计算. 【例2】(08·福建高考)三人独立破译同一份密码,已知三人各自破译出密码的概率分 别为15,14,13,且他们是否破译出密码互不影响。

统计概率文科高考题精选

统计概率文科高考题精选

2012年统计概率文科高考题精选(重庆15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)(重庆18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分。

)甲、乙两人轮流投篮,每人每次投一球。

约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束。

设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。

(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率。

(陕西3).对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是( A )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53(陕西19)(本小题满分12分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(Ⅰ)估计甲品牌产品寿命小于200小时的概率;(Ⅱ)这两种品牌产品中,,某个产品已使用了200小时,试估计该产品是甲品牌的概率。

(湖南5).设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为$y=0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg(湖南13).图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦L ,其中x 为x 1,x 2,…,x n 的平均数)(湖南17).(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值; (Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) (广东13). 由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为_________。

最新各地高考数学文科分类汇编——统计与概率

最新各地高考数学文科分类汇编——统计与概率

(全国1卷3)答案:(全国1卷19)答案:(全国2卷5)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3答案:D(全国2卷18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模y t型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.答案:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y$=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y$=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.(全国3卷5)答案:B(全国3卷14)答案:分层抽样(全国3卷18)答案:(北京卷17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)答案:(天津卷15)(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人.(II)(i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率5()21P M =.。

文科高考概率大题各省历年真题及答案

文科高考概率大题各省历年真题及答案

概率及统计1.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球 (I )试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

2.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C 的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人) (Ⅰ)求x,y ;(Ⅱ)若从高校B 、C 抽取的人中选2人作专题发言,求这二人都来自高校C 的概率。

3.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm 之间的概率;(Ⅲ)从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率。

4.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率. 5.有编号为1A ,2A ,…10A 的10个零件,测量其直径(单位:cm ),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品 (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这2个零件直径相等的概率。

6.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差],)()()[(1222212x x x x x x nsn -+-+-= 其中x 为n x x x ,,,21 的平均数) 7. 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概8.某日用品按行业质量标准分成五个等级,等级系数X 依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:编号1A2A3A4A5A6A7A8A9A10A直径1.511.491.491.511.491.511.471.461.531.47(I )若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a 、b 、c 的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

高考文科统计概率习题(含答案)汇编

高考文科统计概率习题(含答案)汇编

160/3120/3100/360/340/380/320/3频率/组距pm2.5(毫克/立方米)0.1050.1000.0950.0900.0850.0800.0750.0700.0650概率统计习题(文)概率统计习题(文) 1.某中学为了了解学生的课外阅读情况,某中学为了了解学生的课外阅读情况,随机调查了随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图1的条形图表示。

根据条形图可得这50名学生这一天平均每人的课外阅读时间为均每人的课外阅读时间为A.0.67(小时)(小时) B.0.97(小时)(小时) C.1.07(小时)(小时) D.1.57(小时) 2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .31 B .21 C .32D .43 3.近年来,随着以煤炭为主的能源.近年来,随着以煤炭为主的能源消耗大幅攀升、机动车保有量急消耗大幅攀升、机动车保有量急 剧增加,我国许多大城市灰霾现剧增加,我国许多大城市灰霾现 象频发,造成灰霾天气的“元凶” 之一是空气中的pm2.5(直径小(直径小于等于2.5微米的颗粒物)微米的颗粒物)..右图是某市某月(按30天计)根据对“pm2.5” 24小时平均浓度值测试的结果画成的频率分布直方图,若规定空气中“pm2.5”24小时平均浓度值不超过0.075毫克/立方米为达标,那么该市当月有立方米为达标,那么该市当月有 天“pm2.5”含量不达标.”含量不达标.4.对某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为( )A . 300B . 100C . 60D . 205.高三某班学生每周用于数学学习的时间x (单位:小时)与数学成绩y (单位:分)之间有如下数据:之间有如下数据:x 24 15 23 19 16 11 20 16 17 13y 92 79 97 89 64 47 83 68 71 59根据统计资料,该班学生每周用于数学学习的时间的中位数是该班学生每周用于数学学习的时间的中位数是▲ ; 根据上表可得回归方程的斜率为3.53,截距为13.5,若某同学每周用于数学学习的时间为18 小时,则可预测该生数学成绩生数学成绩是 ▲ 分(结果保留整数). 6.记集合{}22(,)|16A x y x y =+£和集合{}(,)|40,0,0B x y x y x y =+-£³³表示的平面区域分别为12,W W ,若在区域1W 内任取一点(,)M x y ,则点M 落在区域2W 内的第12题图题图24小时平均浓度小时平均浓度 (毫克/立方米)0.060 0.0560.0400.034 0组距频率体重(kg )45 50 55 60 65 70 0.010(第4题图)概率为概率为( )A .12pB .1pC .14D .24p p- 7.已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则回归直线方程为( )A .ˆ 1.234y x =+B .ˆ 1.235y x =+C .ˆ 1.230.08y x =+D .ˆ0.08 1.23y x =+8.(本小题满分13分)分) 2012年春节前,有超过20万名广西、四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年的摩托车驾驶人有一个停车休息的场所。

统计、概率-全国各地文科数学高考试题汇总 知识点总结(近5年)

统计、概率-全国各地文科数学高考试题汇总 知识点总结(近5年)

全国各地文科数学(统计、概率)高考试题汇总(近5年)知识点归纳1 事件的定义:随机事件;必然事件;不可能事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3、等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件,其事件A 的概率()mP A n=4、互斥事件的概念:不可能同时发生的个事件叫做互斥事件 A 、B 互斥,即事件A 、B 不可能同时发生,这时P(A •B)=0)P(A+B)=P (A )+ P(B)。

若事件A 与B 不是互斥,运用P (A+B )=1-P (A B •)进行计算5、对立事件的概念:事件A和事件B 必有一个发生的互斥事件 A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生,()()A P A p -=1 6、事件的和的意义:事件A 、B 的和记作A +B ,表示事件A 、B 至少有一个发生 当A 、B 为互斥事件时,事件A +B 是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的, 因此当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥),且有P (A +A )=P (A )+P (A )=17、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅8、独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率n k k n n P P C k P --=)1()( 表示事件A在n 次独立重复试验中恰好发生了.....k .次.的概率 9、解答概率问题的三个步骤:(1)确定事件的性质:事件是等可能,互斥,独立还是重复独立事件; (2)判断事件的运算:所求事件是由哪些基本事件通过怎样运算而得;(3)运用公式计算其事件的概率:等可能事件:()mP A n=,独立事件:()()()P A B P A P B ⋅=⋅互斥事件: P (A +B )=P (A )+P (B ),对立事件:P (A )=1-P (A )2011山东18.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女。

(完整word版)统计与概率高考题(文科)

(完整word版)统计与概率高考题(文科)

【小题训练】1.(2018全国卷I, T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番•为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村 的经济收入构成比例.得到如下饼图:则下面结论中不正确的是D .新农村建设后,2.(2018全国卷H, T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为作物亩产量稳定程度的是切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点, 则此点取自黑色部分的概率是统计与概率%|英他收入建i 殳輕济收入鞫成出锢A •新农村建设后, 种植收入减少B •新农村建设后, 其他收入增加了一倍以上C •新农村建设后, 养殖收入增加了一倍养殖收入与第三产业收入的总和超过了经济收入的一半3. 4. A . 0.6(2018全国卷川, 现金支付的概率为 A . 0.3(2017新课标I,B . 0.5C . 0.4T5)某群体中的成员只用现金支付的概率为0.15,则不用现金支付的概率为 B . 0.4C . 0.6T2)为评估一种农作物的种植效果,选了的亩产量(单位:kg )分别为x 1, X 2 ,…,X n ,0.30.45,既用现金支付也用非D . 0.7n 块地作试验田.这 n 块地F 面给出的指标中可以用来评估这种农5. A . X 1 , X 2 ,- C . X 1 , X 2 ,- (2017新课标I, ,X n 的平均数 ,X n 的最大值 T4)如图,正方形X 1 , X 2,…,X n 的标准差 X 1 , X 2 ,…,X n 的中位数ABCD 内的图形来自中国古代的太极图,正方形内建设血红济蛟入构戒比例帥埴收入第二严业妆入1310T11)从分别写有1, 2, 3, 4, 5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为1132A .B . -C .D .-1051057. ( 2017新课标川,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并 整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的 折线图•根据该折线图,下列结论错误的是 A •月接待游客逐月增加 B. 年接待游客量逐年增加C •各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于 7月至12月,波动性更小,变化比较平稳 8 . ( 2016全国I 卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选 2种花种在一个花坛中,余下的 2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概9. ( 2016全国II 卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待 为6. ( 2017新课标n.2 - 315秒才出现绿灯的概率 D .—4是1 3107 53A .B .C.-108 815101010. (2016年全国III 卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各14. (2015新课标1, T4 )如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数, 从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概 率为 3 A .月平均最高气温和平均最低气温的雷达图•图中 A 点表示十月的平均最高气温约为15C, B 点表示四月的平均最低气温约为5C.下面叙述不正确的是A •各月的平均最低气温都在0 C 以上B •七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D .平均最高气温高于 20C 的月份有5个11. (2016全国III 卷,T5 )小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M , I , N 中的一个字母,第二位是 1 , 2, 3, 4, 5中的一个数字,则小敏输入81 11A .B . —C . ——D . —158 1530 12. (2016年北京,T6) 从甲、乙等 5名学生中随机选出 2人, 则甲被选中的概率为A 1B .2 8D9 A.-C .—55252530秒跳绳两个单项比赛分成预赛和决学生序号1 2 3 4 5 6 7 8 9 10立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30秒跳绳(单位:次)63a7560637270a-1b65决赛的有6人,则A . 2号学生进入30秒跳绳决赛 C . 8号学生进入30秒跳绳决赛B . 5号学生进入30秒跳绳决赛 D. 9号学生进入30秒跳绳决赛120次密码能够成功开机的概率是 13. (2016 年北京,T8 某学校运动会的立定跳远和 赛两个阶段•下表为10名学生的预赛成绩,其中有三个数据模糊 在这10名学生中,进入立定跳远决赛的有 8人,同时进入立定跳远决赛和 30秒跳绳15. (2015新课标2, T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A .逐年比较,2008年减少二氧化硫排放量的效果最显著B . 2007年我国治理二氧化硫排放显现成效C. 2006年以来我国二氧化硫年排放量呈减少趋势D . 2006年以来我国二氧化硫年排放量与年份正相关16. (2015北京,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A . 90B . 100 C. 180 D. 30017 . (2018全国卷川,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异. 为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是___________ .18、为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区户家庭,得到如下统计数据表:根据上表可得回归直线方程倉一V:…「陀,据此估计,该社区一户收入为丨.,万元家庭年A. J i 万元B.丨’'万元C. I . 万元D. [一’ 万元支出为()大题题型题型一:回归分析1、社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一•重庆市教委调研了某中学近五年(・」二年-二:-'年)高考被清华北大录取的学生人数,制作了如下所示的表格(设・」二年为第一年).4 Jk A.⑴ 试求人数」关于年份二的回归直线方程;(2)在满足⑴ 的前提之下,估计…〉年该中学被清华北大录取的人数(精确到个位);(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率•参考iff It* Z f- - V)^X t y f-nxy “_ _b = -- -- -------------- = ----------------- ,X7 = y — bx乞(科-工尸公式:n某複场营销人员迸厅某商品市场莒销调奁发现,每回茨消费者一定的点数,该商品兰天的销量就会发生一走的变化,经过试点统计得到以下表:(1)经分析发现,可用线性叵归模型拟合当炮该商品一天销量r(百件)与该天返还点数X之间的相关关系.请书最小二乘法求丿•关于•的线性叵归方程八2,并预测若返叵6个点时该直品当天链量;(2)若节日期问営销聖対茂品逬行新一牡调整.已知英竝拟购头该商品的溢费李体+分庞大,经过营销韶诡斫机构对其中的200名沦费者的返点数戡的心理挾期说逬行了一个抽样调查,得到如下一份频数表:将对返点点数的心理预期值在[1,3和[11,13的消费者分别定义为“欲望紧缩型”消费者和“欲墓澎胀型"消费者,现采月分层抽样的方法从位于这两个区间的30名消费者中随机推取6名,再从这6人中遇机抽取3名进行轰踪调查,求抽出的3人中至少有1名“欲望膨胀盘”消费者的概率一-B-y ® y 严xy—■b= ------------ —?a=y-bx $y x^-nx* y\y =18.8(参考公式及数据:①回归方程y=bx+a,其中= ;②自•.)题型二统计图1、某服装店对过去•上天其实体店和网店的销售量(单位:件)进行了统计,制成 频率分布直方图如频率视为概率,已知该服装店过去丨「天的销售中,实体店和网店销售量都不低 于j 件的概率为:.丄,求过去-I 「天的销售中,实体店和网店至少有一边销售量 不低于7件的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人 工成本为工■-元,门市成本为1-」元,每售出一件利润为“元,求该门市一天获 利不低于;:'■元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售 量中位数的估计值(精确到(1).下:O.(I4U0 IB20他 n 咖 or>140 25 30 35 40 J 5 50 5565 70~(1)若将上述2、某工厂有工人•「名,记…岁以上(含「岁)的为i 类工人,不足;.岁的为:.类 工人,为调查该厂工人的个人文化素质状况, 现用分层抽样的方法从!;两类工 人中分别抽取了 |人、|「人进行测试• (1) 求该工厂£:旨两类工人各有多少人? (2) 经过测试,得到以下三个数据图表:*12名善勺Q 测试工A.屣锚频莘分布表组昌戏豹站塞1[EEr eo> 5 O.QS Z[AO: 55>200- go3 [碍,TO)寸LQ, 75>黑0-355LT5:切[80 . S?>1DQ 1-00图一:「分以上’「两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字) ①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补 充完整;②该厂拟定从参加考试的宀分以上(含「分)的匸类工人中随机抽取一人 参加高级技工培训班,求抽到的 '一人分数都在、分以上的概率•图一;乃分urn 、 吕两类工人成绩的垒叶图九类B 类75.6.7.7,S.93. 18U3.4囹二:100名塁加则试工人成篇倒频奉 分布旨方图题型三独立性分析-I年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会议和中国人民政治协商会议第十二届全国委员会第四次会议,分别于二|.:丨[年.月日和.月.:日在北京开幕。

概率统计(文科).pdf

概率统计(文科).pdf

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率1,0AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:db c a d cb a bcd a n K22满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意2k KP 0.10 0.05 0.01 0.005 0k 2.7063.8416.6357.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ . 18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间[25,30)[30,35)[35,40)[40,45)[45,50]人数25ab(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.31 B.21 C.32 D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.107 B.85 C.83 D.10322.在区间[-2,3]上随机选取一个数x ,则1x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为()A.1?x yB.1?x yC.xy 2188? D.176?y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程axb y ???中的b ?为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程at by ???;(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程at b y ???中,t by atn t yt n y t b ni ini ii ??,?1221. 28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80)[80,90)[90,100)[100,110)频数 3 4 8 15 分组[110,120)[120,130)[130,140)[140,150]频数15x32乙校:分组[70,80)[80,90)[90,100)[100,110)频数 1 2 8 9 分组[110,120)[120,130)[130,140)[140,150]频数1010y3(1)计算y x,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;(3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算db c a d cb abcadn K22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩x (分)89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;甲校乙校总计优秀非优秀总计2k KP 0.10 0.05 0.010 0k 2.7063.8416.635(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:ax b y ???,其中x byaxx y y x x b ni ini i i??,?121;90,93y x ,30,4051251yy x x xx ii i i i.30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 5保费0.85aa1.25a1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁)频数频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350 [35,40) 30 b [40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

高考文科数学概率及统计题型归纳及训练.docx

高考文科数学概率及统计题型归纳及训练.docx

2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】题型一古典概型例 1从甲、乙等5名学生中随机选出2人,则甲被选中的概率为().A. 1B.2C.8D. 5525925【答案】 B【解析】可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有种选法,其中只有前 4 种是甲被选中,所以所求概率为 . 故选 B.例 2将2本不同的数学书和1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 ________.【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数 2; 数 2,数 1,语 ;数2,语,数1;语,数2,数1;语,数1,数2共有6 种,其中 2 本数学书相邻的有 4 种,则其概率为:p 4 2.6 3【易错点】列举不全面或重复, 就是不准确【思维点拨】直接列举, 找出符合要求的事件个数.题型二几何概型例 1 如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是().A. 1B.πC.1D.π4824【答案】 B【解析】不妨设正方形边长为 a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半. 由几何概型概率的计算公式得,所求概率为21a22a28.故选B.例 2在区间[0,5]上随机地选择一个数p ,则方程 x2 + 2 px + 3 p - 2 = 0 有两个负根的概率为 ________.【答案】234 p24(3 p2)0【解析】方程 x2 + 2 px + 3p -2 = 0 有两个负根的充要条件是x1 x22p0即x1x2 3 p202p 1, 或 p 2 ,又因为 p[0,5] ,所以使方程x2+ 2 px + 3 p - 2 = 0 有两个负根的p3(1 2) (5 2) 2,故填:2 .的取值范围为 ( 2,1] U [2,5] ,故所求的概率33533【易错点】“有两个负根”这个条件不会转化 .【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可.题型三抽样与样本数据特征例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200, 400,300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】 18【解析】按照分层抽样的概念应从丙种型号的产品中抽取6018(件).3001000例 2已知样本数据 x1, x2,, x n的均值x 5 ,则样本数据2x11, 2x21,,2x n1的均值为.【答案】 11【解析】因为样本数据,,,的均值,又样本数据,,,的和为 2 x1x2 L x n n ,所以样本数据的均值为= 11.例 3 某电子商务公司对10000名网络购物者 2018 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3,0.9] 内,其频率分布直方图如图所示.(1)直方图中的a =.(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.【答案】 a 3人数为 0.6 10000 6000【解析】由频率分布直方图及频率和等于1,可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.5 0.1 a 0.1 1 ,解之得 a 3 .于是消费金额在区间0.5,0.9 内频率为 0.2 0.1 0.8 0.1 2 0.1 3 0.10.6 ,所以消费金额在区间0.5,0.9 内的购物者的人数为 0.6 10000 6000.例 4某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图所示.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取 11户居民,则从月平均用电量在220,240的用户中应抽取多少户?【答案】见解析【解析】(1)由0.002 0.0095 0.011 0.0125x 0.005 0.0025 20 1,得 x0.0075 .220 240(2)由图可知,月平均用电量的众数是230 .2因为 0.002 0.0095 0.011 20 0.450.5 ,又 0.002 0.0095 0.011 0.0125 20 0.70.5 ,所以月平均用电量的中位数在220,240 内.设中位数为 a ,由0.002 0.0095 0.011 20 0.0125 a 2200.5,得 a 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为220,240的用户有0.0125 20 100 25(户);月平均用电量为 240,260 的用户有 0.0075 20 100 15(户);月平均用电量为 260,280 的用户有 0.005 20 100 10 (户);月平均用电量为280,300 的用户有 0.0025 20 100 5 (户).抽取比例为111051 ,25155所以从月平均用电量在220,240 的用户中应抽取2515 (户).5【易错点】没有读懂题意 , 计算错误 . 不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式; 2 牵涉到策略问题 , 一般可以转化为比较两个指标的大小.题型四回归与分析例 1 下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量 .参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得,,,,.因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系 .(1)变量与的相关系数,又,,,,,所以,故可用线性回归模型拟合变量与的关系 .(2),,所以,,所以线性回归方程为.当时, . 因此,我们可以预测2016 年我国生活垃圾无害化处理亿吨.【易错点】没有读懂题意 , 计算错误 .【思维点拨】将题目的已知条件分析透彻 , 利用好题目中给的公式与数据 .题型五独立性检验例 1 甲、乙、丙、丁四位同学各自对 A、 B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数 r 与残差平方和 m如下表:甲乙丙丁rm 115 106 124103则哪位同学的试验结果体现A、B 两变量更强的线性相关性?() A.甲B.乙C.丙D.丁【答案】 D【解析】 D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数 r 的绝对值越趋向于 1, 相关性越强 . 残差平方和 m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷次,则出现向上的点数之和小于的概率是.【答案】【解析】将先后两次点数记为,则基本事件共有(个),其中点数之和大于等于有,共种,则点数之和小于共有种,所以概率为.2. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 723 .在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是().A.1B.1C.1D.1 12141518【答案】 C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个,随机选取两数有 45 (种)情况,其中两数相加和为30 的有 7 和 23,11 和 19,31P451513 和 17,共 3 种情况,根据古典概型得.故选C.3.袋中有形状、大小都相同的 4 只球,其中 1只白球, 1只红球, 2 只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.【答案】P56【解析】 1只白球设为a,1只红球设为b, 2 只黄球设为c,d,则摸球的所有情况为a,b , a, c , a,d , b, c , b,d , c,d ,共6件,足意的事件a,b , a,c , a,d , b,c , b,d ,共5件,故概率P 5 .6型二几何概型1.某公司的班在 7:00 ,8:00 ,8:30 ,学 . 小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是().B.D.【答案】 B【解析】如所示,画出.小明到达的会随机的落在中段中,而当他的到达落在段或,才能保他等的不超分 .根据几何概型,所求概率. 故B.2.从区随机抽取 2n个数,,⋯,,,,⋯,,构成n个数,,⋯,,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似().A.B.C.D.【答案】 C【解析】由意得:在如所示方格中,而平方和小于 1 的点均在如所示的阴影中,由几何概型概率计算公式知,所以.故选C.3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边AB, AC ,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1, p2, p3,则A.p1p2B.p1p3C.p2p3D.p1p2p3【答案】 A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可 .设直角三角形ABC 的三个角A,B, C 所对的边长分别为 a ,b, c ,则区域Ⅰ的面积为 S11 ab,2区域Ⅱ的面积为区域Ⅲ的面积为222S21π1c1π1b1ab1π1a1ab ,2222222221 π 1 b21 πa21ab .S3 1 π 1 c1ab2222282显然 p1p2.故选A.题型三抽样与样本的数据特征1. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.【答案】 10【解析】平均数 x 1 4658766.62.某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为_________.【答案】 3;6000【解析】频率和等于 1 可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.50.1a0.1 1 ,解之得 a 3 .于是消费金额在区间 [0.5, 0.9] 内频率为 0.20.10.80.120.1 3 0.1 0.6 ,所以消费金额在区间 [0.5, 0.9] 内的购物者的人数为: 0.6100006000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费 . 为了了解居民用水情况,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照,,,分成组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数,请说明理由;(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由 .【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在中的频率为,同理,在,,,,,中的频率分别为,,,,,.由,解得 .(2)由( 1),位居民每人月均用水量不低于吨的频率为.由以上样本的频率分布,可以估计全市万居民中月均用水量不低于吨的人数为.(3)因为前组的频率之和为,而前组的频率之和为,所以由,解得 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:收入 x(万元)支出 y (万元)根据上表可得回归直线方程???,其中???y bx a b0.76,a y bx ,据此估计,该社区一户收入为 15 万元家庭年支出为()A.万元B.万元C.万元D.万元【答案】 B8.28.610.011.311.9(万元),【解析】由已知得x5106.27.58.0 8.59.88(万元),故 ?8 0.76 10 0.4,5所以回归直线方程为y? 0.76 x 0.4 .当社区一户收入为15 万元,家庭年支出为y? 0.76 150.411.8 (万元).故选B.2.为了研究某班学生的脚长x (单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为 24,据此估计其身高为().A.B.C.D.【答案】 C【解析】,,所以,时,.故选C.3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位: t )和年利润z(单位:千元)的影响,对近8 年的年宣传费 x i和年销售量y i i 1,2, ,8数据作了初步处理,得到下面的散点图及一些统计量的值.x y w82888x i x2w i w y i yw i w x i x y i y i 1i 1i 1i 1561469 3表中 w i18x i, w w i ,8 i 1(1)根据散点图判断,y a bx 与y c d x 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由)?(2)根据( 1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系式为z 0.2 y x,根据( 2)的结果回答下列问题:(ⅰ)年宣传费x49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据 u1, v1u2,v2,, u n ,v n,其回归直线v u 的斜率和n?u i u v i vi 1?截距的最小二乘估计分别为, ? v u .nu i2ui 1【答案】见解析【解析】(1)由散点图变化情况可知选择y c d x 较为适宜.8w i w y iy(2)由题意知di 182108.8 68 .又 y c d x 一定过点, y ,w i w1.6i 1所以 c y d563 68 6.8 100.6 ,所以 y 与 x 的回归方程为 y 100.6 68 x .(3)(ⅰ)由( 2)知,当 x 49 时, y 100.6 6849 576.6 t ,z 0.2 576.6 49 66.32(千元),所以当年宣传费为 x 49 时,年销售量为 576.6 t ,利润预估为 66.32千元.(ⅱ)由( 2)知, z0.2 y x0.2100.6 68 x x 13.6 x x 20.122x 6.8时,年利润的预估值最大,x 6.86.82 20.12 ,所以当即 x 6.8 2 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用, 把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2列联表计算的 K 2≈,则下列表述中正确的是( )A .有 95℅的把握认为“这种血清能起到预防感冒的作用”B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒C.这种血清预防感冒的有效率为95℅D.这种血清预防感冒的有效率为5℅【答案】 A【解析】由题可知,在假设 H 成立情况下,P( K23.841)的概率约为,即在犯错的概率不错过的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用” . 这里的 95℅是我们判断H不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误. C,D也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x,y 之间关系最强的是( )A.B.【答案】 D【解析】在频率等高条形图中,C.D.a与c相差很大时,我们认为两个分类变量a b c d有关系,四个选项中,即等高的条形图中x1, x2所占比例相差越大,则分类变量 x, y 关系越强,故选 D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于 50kg ,新养殖法的箱产量不低于50kg ,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量箱产量50kg⋯50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01).附:P K2⋯kkK 2n( ad bc)2.(a b)(c d )(a c)(b d )【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ”为事件B,“新养殖法的箱产量不低于50kg”为事件 C,由题图并以频率作为概率得P B0.040 5 0.034 5 0.024 5 0.014 5 0.012 5 0.62,P C0.068 5 0.046 5 0.010 5 0.008 50.66,P A P B P C0.4092 .(2)箱产量50kg箱产量≥50kg 旧养殖法6238新养殖法3466k 220062 6638 342由计算可得 K2的观测值为15.705 ,因为15.705 6.635,所以10010096104P K2≥ 6.6350.001,从而有 99%以上的把握认为箱产量与养殖方法有关.(3)1 5 0.2,0.10.0040.0200.0440.032,0.0320.0688,85 2.35,171750 2.35 52.35,所以中位数为52.35.。

高中数学总复习第11章 三年高考真题与高考等值卷(概率与统计)(文科数学)(解析版)

高中数学总复习第11章 三年高考真题与高考等值卷(概率与统计)(文科数学)(解析版)

2020年领军高考数学一轮复习(文理通用)三年高考真题与高考等值卷( 概率与统计 )(文科数学)1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.4.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.5.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.6.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.7.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.8.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用.1.【2019年新课标3文科03】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.B.C.D.【解答】解:用捆绑法将两女生捆绑在一起作为一个人排列,有A33A22=12种排法,再所有的4个人全排列有:A44=24种排法,利用古典概型求概率原理得:p,故选:D.2.【2019年新课标3文科04】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出维恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:0.7.故选:C.3.【2019年新课标2文科04】生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.B.C.D.【解答】解:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标的所有情况数为.∴p.故选:B.4.【2019年新课标1文科06】某学校为了解1000名新生的身体素质,将这些学生编号1,2, (1000)从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生【解答】解::∵从1000名学生从中抽取一个容量为100的样本,∴系统抽样的分段间隔为10,∵46号学生被抽到,则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,设其数列为{a n},则a n=6+10(n﹣1)=10n﹣4,当n=62时,a62=616,即在第62组抽到616.故选:C.5.【2018年新课标2文科05】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P0.3,故选:D.6.【2018年新课标1文科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.7.【2018年新课标3文科05】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.7【解答】解:某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1﹣0.45﹣0.15=0.4.故选:B.8.【2017年新课标1文科02】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【解答】解:在A中,平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,故A不可以用来评估这种农作物亩产量稳定程度;在B中,标准差能反映一个数据集的离散程度,故B可以用来评估这种农作物亩产量稳定程度;在C中,最大值是一组数据最大的量,故C不可以用来评估这种农作物亩产量稳定程度;在D中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D不可以用来评估这种农作物亩产量稳定程度.故选:B.9.【2017年新课标1文科04】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S,则对应概率P,故选:B.10.【2017年新课标2文科11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【解答】解:从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p.故选:D.11.【2017年新课标3文科03】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【解答】解:由已有中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A.12.【2017年天津文科03】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,基本事件总数n10,取出的2支彩笔中含有红色彩笔包含的基本事件个数m4,∴取出的2支彩笔中含有红色彩笔的概率为p.故选:C.13.【2019年新课标2文科14】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:(10×0.97+20×0.98+10×0.99)=0.98.故答案为:0.98.14.【2018年新课标3文科14】某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.【解答】解:某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是分层抽样.故答案为:分层抽样.15.【2019年天津文科15】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【解答】解:(Ⅰ)由已知,老、中、青员工人数之比为6:9:10,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人;(Ⅱ)(i)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种;(ii)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种,所以,事件M发生的概率P(M).16.【2019年新课标3文科17】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解答】解:(1)C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:,解得乙离子残留百分比直方图中a=0.35,b=0.10.(2)估计甲离子残留百分比的平均值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值为:3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.17.【2019年新课标2文科19】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:8.602.【解答】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:0.21=21%,产值负增长的企业频率为:0.02=2%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数0.1×2+0.1×24+0.3×53+0.5×14+0.7×7=0.3=30%,产值增长率的方程s2[(﹣0.4)2×2+(﹣0.2)2×24+02×53+0.22×14+0.42×7]=0.0296,∴产值增长率的标准差s0.17,∴这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.18.【2019年新课标1文科17】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2.【解答】解:(1)由题中数据可知,男顾客对该商场服务满意的概率P,女顾客对该商场服务满意的概率P;(2)由题意可知,K2 4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.19.【2019年北京文科17】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【解答】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.20.【2018年新课标2文科18】如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【解答】解:(1)根据模型①:30.4+13.5t,计算t=19时,30.4+13.5×19=226.1;利用这个模型,求出该地区2018年的环境基础设施投资额的预测值是226.1亿元;根据模型②:99+17.5t,计算t=9时,99+17.5×9=256.5;.利用这个模型,求该地区2018年的环境基础设施投资额的预测值是256.5亿元;(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的,而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.21.【2018年新课标1文科19】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)【解答】解:(1)根据使用了节水龙头50天的日用水量频数分布表,作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:(2)根据频率分布直方图得:该家庭使用节水龙头后,日用水量小于0.35m3的概率为:p=(0.2+1.0+2.6+1)×0.1=0.48.(3)由题意得未使用水龙头50天的日均水量为:(1×0.05+3×0.15+2×0.25+4×0.35+9×0.45+26×0.55+5×0.65)=0.48,使用节水龙头50天的日均用水量为:(1×0.05+5×0.15+13×0.25+10×0.35+16×0.45+5×0.55)=0.35,∴估计该家庭使用节水龙头后,一年能节省:365×(0.48﹣0.35)=47.45m3.22.【2018年新课标3文科18】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2,【解答】解:(1)根据茎叶图中的数据知,第一种生产方式的工作时间主要集中在72~92之间,第二种生产方式的工作时间主要集中在65~85之间,所以第二种生产方式的工作时间较少些,效率更高;(2)这40名工人完成生产任务所需时间按从小到大的顺序排列后,排在中间的两个数据是79和81,计算它们的中位数为m80;由此填写列联表如下;(3)根据(2)中的列联表,计算K210>6.635,∴能有99%的把握认为两种生产方式的效率有差异.23.【2018年北京文科17】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【解答】解:(Ⅰ)总的电影部数为140+50+300+200+800+510=2000部,获得好评的第四类电影200×0.25=50,故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)获得好评的电影部数为140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=372,估计这部电影没有获得好评的概率为10.814,(Ⅲ)故只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,则使得获得好评的电影总部数与样本中的电影总部数的比值达到最大.24.【2018年天津文科15】己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【解答】解:(Ⅰ)由已知得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,∴应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人.(Ⅱ)(i)从抽取的7名同学中抽取2名同学的所有可能结果为:{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21个.(i)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,则事件M包含的基本事件有:{A,B},{A,C},{B,C},{D,E},{F,G},共5个基本事件,∴事件M发生的概率P(M).25.【2017年新课标2文科19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:K 2.【解答】解:(1)根据题意,由旧养殖法的频率分布直方图可得: P (A )=(0.012+0.014+0.024+0.034+0.040)×5=0.62; (2)根据题意,补全列联表可得:则有K 215.705>6.635,故有99%的把握认为箱产量与养殖方法有关; (3)由频率分布直方图可得: 旧养殖法100个网箱产量的平均数1=(27.5×0.012+32.5×0.014+37.5×0.024+42.5×0.034+47.5×0.040+52.5×0.032+57.5×0.032+62.5×0.012+67.5×0.012)×5=5×9.42=47.1; 新养殖法100个网箱产量的平均数2=(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.054+57.5×0.046+62.5×0.010+67.5×0.008)×5=5×10.47=52.35; 比较可得:12,故新养殖法更加优于旧养殖法.26.【2017年新课标1文科19】为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得x i =9.97,s0.212,18.439,(x i)(i ﹣8.5)=﹣2.78,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)(1)求(x i ,i )(i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3s ,3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查? (ⅱ)在(3s ,3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(xi ,y i )(i =1,2,…,n )的相关系数r,0.09.【解答】解:(1)r 0.18.∵|r |<0.25,∴可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i )9.97,s =0.212,∴合格零件尺寸范围是(9.334,10.606),显然第13号零件尺寸不在此范围之内, ∴需要对当天的生产过程进行检查. (ii )剔除离群值后,剩下的数据平均值为10.02,16×0.2122+16×9.972=1591.134,∴剔除离群值后样本方差为(1591.134﹣9.222﹣15×10.022)=0.008, ∴剔除离群值后样本标准差为0.09.27.【2017年新课标3文科18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天。

高三文科数统计概率归纳总结(超详细)(精华版)

高三文科数统计概率归纳总结(超详细)(精华版)

统计概率考点总结【考点一】分层抽样01,交通治理部门为明白机动车驾驶员(简称驾驶员)对某新法规的知晓情形,对甲,乙,丙,丁四个社N ,其中甲社区有驾驶员区做分层抽样调查;假设四个社区驾驶员的总人数为96 人;如在甲,乙,N 丙,丁四个社区抽取驾驶员的人数分别为12,21,25,43,就这四个社区驾驶员的总人数为()A ,101 B,808 C,1212 D ,202102,某个年级有男生560 人,女生420 人,用分层抽样的方法从该年级全体同学中抽取一个容量为280 的样本,就此样本中男生人数为.03,一支田径运动队有男运动员56 人,女运动员42 人;现用分层抽样的方法抽取如干人,如抽取的男运动员有8 人,就抽取的女运动员有人;04,某单位有840 名职工, 现采纳系统抽样方法抽取42 人做问卷调查, 将840 人按1, 2, , 840 随机,编号, 就抽取的42 人中, 编号落入区间[481, 720] 的人数为()A .11B .12 C.13 D .1405,将参与夏令营的600 名同学编号为:001,002,600,采纳系统抽样方法抽取一个容量为50 的样本,且随机抽得的号码为003.这600 名同学分住在三个营区,从001 到300 在第Ⅰ营区,从301 到495 住在第Ⅱ营区,从496 到600 在第Ⅲ营区,三个营区被抽中的人数依次为()A .26, B.25,17,8 C.25,16,9 D .24,17,916, 8【考点二】频率分布直方图(估量各种特点数据)01,从某小区抽取100 户居民进行月用电量调查, 发觉其用电量都在50 到350 度之间, 频率分布直方图所示.x 的值为;(I) 直方图中(II) 在这些用户中, 用电量落在区间100,250 内的户数为.02,下图是样本容量为200 的频率分布直方图;依据样本的频率分布直方图估量,样本数据落在[6 ,10]内的频数为,数据落在(2,10)内的概率约为03,有一个容量为200 的样本,其频率分布直方图如下列图,依据样本的频率分布直方图估量,样本数据落在区间10,12 内的频数为A .18B .36 C.54 D .7204,如上题的频率分布直方图,估量该组试验数据的众数为,中位数为,平均数为【考点三】数据特点01,抽样统计甲,乙两位设计运动员的 5 次训练成果( 单位: 环), 结果如下:运动员甲乙第 1 次8789第 2 次9190第 3 次9091第 4 次8988第 5 次9392就成果较为稳固( 方差较小) 的那位运动员成果的方差为.02,某单位200 名职工的年龄分布情形如图2,现要从中抽取40 名职工作样本,用系统抽样法,将全体职工随机按1-200 编号,并按编号次序平均分为40 组(1-5 号,6-10 号,196-200 号).如第5 组抽出的号码为22,就第8 组抽出的号码应是;如用分层抽样方法,就40 岁以下年龄段应抽取人.03,在某次测量中得到的 A 样本数据如下:82,84,84,86,86,86,88,88,88,88.如 B 样本数据恰好是 A 样本数据都加 2 后所得数据,就A,B 两样本的以下数字特点对应相同的是(A) 众数(B) 平均数(C)中位数(D) 标准差04,总体由编号为,19,2的020 个个体组成;利用下面的随机数表选取 5 个个体,选取方法是从随01,02,机数表第 1 行第5 列和第6 列数字开头由左到右依次选取两个数字,就选出的第 5 个个体编号为A .08B .07 C.02 D.0105,容量为20 的样本数据,分组后的频数如下表就样本数据落在区间[10,40] 的频率为A B C D06,小波一星期的总开支分布图如图1 所示,一星期的食品开支如图2 所示,就小波一星期的鸡蛋开支占总开支的百分比为% % % D. 不能确定07,对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),就该样本的中位数,众数,极差分别是( )A .46,45,56B . 46,45,53C . 47,45,56D .45,47,5308,考察某校各班参与课外书法小组人数, 在全校随机抽取 5 个班级 , 把每个班级参与该小组的人数作为样本数据. 已知样本平均数为 7, 样本方差为 4, 且样本数据相互不相同 , 就样本数据中的最大值为【考点四】求回来直线,相关系数,相关指数 依据一组样本数据 (x i , 01,设某高校的女生体重y (单位: kg )与身高 x (单位: cm )具有线性相关关系, y y i )(i=1 ,2, , n ),用最小二乘法建立的回来方程为 ,就以下结论中不正确选项A.y 与 x 具有正的线性相关关系 x , )y B. 回来直线过样本点的中心( C.如该高校某女生身高增加 1cm ,就其体重约增加D.如该高校某女生身高为170cm ,就可肯定其体重必为x, y 有观测数据理力争( x 1 , y 1 )( i=1,2, 02,对变量 ,10),得散点图如下左图;对变量 u ,v 有观测数据( u 1 , v 1 )( i=1,2, , 10) ,得散点图如下右图 . 由这两个散点图可以判定; ( A )变量 与 正相关, 与 正相关 x y u v ( B )变量 与 正相关, 与 负相关 x y u v ( C )变量 与 负相关, 与 正相关 x y u v ( D )变量 与 负相关, 与 负相关x y u vx 和y 的n 个样本点,直线l 是由这些样本点通过03,设(x1,y1),(x2,y2),,(x n,y n)是变量最小二乘法得到的线性回来直线(如图),以下结论中正确选项x 和y 的相关系数为直线l 的斜率A .x 和y 的相关系数在B .0 到1 之间C.当n 为偶数时,分布在l两侧的样本点的个数肯定相同D .直线l 过点( x, y)x1,y1),(x2,y2),,(x n,y n)(n≥2,x1,x2, ,x n 不全相等)的散点图中,如所04,在一组样本数据(1有样本点(x i,y i)( i=1,2 ,, n) 都在直线y= x+1 上,就这组样本数据的样本相关系数为2(C)12(A )-1 (B)0 (D)105,如表供应了某厂节能降耗技术改造后生产甲产品过程中记录的产量x ( 吨) 与相应的生产能耗y ( 吨标准煤) 的几组对比数据;请依据表格供应的数据,用最小二乘法求出y 关于x 的线性回来方程为:ny xx i y i nx y ^b^,a^b x ,i 1y343546) (n22x i nxi 106,某产品的广告费用x 与销售额广告费用y 的统计数据如下表x(万元) 4235销售额y(万元) 49 26 39 54 依据上表可得回来方程^y=b^x+a中的b^^,据此模型预报广告费用为 6 万元时销售额为()A .万元B.万元C.万元D.万元07,某地2021 年其次季各月平均气温x (℃)与某户用水量y (吨)y 关于月平均如下表,依据表中数据,用最小二乘法求得用水量气温x 的线性回来方程是A . y.B. y.x C. y.x D . y.5x x08,( 2021 年全国 I 18 题)某公司为确定下一年度投入某种产品的宣扬费,需明白年宣扬费 x(单位:千元 )对年销售量 y(单位:t)和年利润 z(单位:千元 )的影响.对近 8 年的年宣扬费 x i 和年销售量 y i (i = 1,2, , 8)数据作了初步处理,得到下面的散点图及一些统计量的值. ( 1)依据散点图判定, y =a + bx 与 y = c + d x 哪一个相宜作为年销售量 y 关于年宣扬费 x 的回来方程类型? (给出判定即 可,不必说明理由 )( 2)依据 (1) 的判定结果及表中数据, 建立 y 关于 x 的回来方程; ( 3)已知这种产品的年利润z 与 x , y 的关系为 z = - x.依据 (2) 的结果回答以下问题:①年宣扬费 x = 49 时,年销售量及年利润的预报值是多少? ②年宣扬费 x 为何值时,年利润的预报值最大?888822( x ix)( w iw)(w iw)( y iy)( x ix)( y i y)x y wi 1i 1i 1i 15631 46981 附: ( 1)在下 表中 w i = x i , w =w i8 i1( 2)对于一组数据 (u 1, v 1), (u 2,v 2), n, (u n , v n ),其回来直线 v = α+ βu 的斜率和截距的最小二乘法 ( u iu)( v i v) ^ ,α= v -β^运算公式分别为u i 1n2(u iu)i 1【考点五】独立性检验01,通过随机询问 110 名性别不同的高校生是否爱好某项运动,得到如下的列联表:男 40 20 60女 20 30 50总计6050 110爱好 不爱好 总计22n c 2ad d k)bc a 110 40 30 20 20由 算得,.22KK a b P(Kc b d60 50 60 500. 050 0. 010 0. 001 3. 8416. 63510. 828k参照附表,得到的正确结论是 A .再犯错误的概率不超过 0.1% 的前提下,认为“爱好该项运动与性别有关” B .再犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关”C .有 99%以上的把握认为“爱好该项运动与性别有关”D .有 99%以上的把握认为“爱好该项运动与性别无关”【考点六】古典概型——列举法( 6 选 3, 5 选 3)1 14, 就 n01,从 n 个正整1,2, n 中任意取出两个不同的数 5 的概率为, 如取出的两数之和等于 m , n ( m 7 , n 9 ) 可以任意选取 , 就 m ,n 都取到奇数的概02,现在某类病毒记作X m Y n , 其中正整数 率为 .03,从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0 的概率是4 91 3291 9A.B.C.D.22x y 3的概率是 ( )04,某同学同时掷两颗骰子,得到点数分别为a ,b ,就椭圆 + b = 1 的离心率 e> 2 2a 21 51 1 A .18B . 36C . 6D . 305,一袋中装有 10 个球 , 其中 3 个黑球 , 7 个白球 , 先后两次从袋中各取一球 (不放回 ). 就其次次取出的是黑球的概率是;已知第一次取出的是黑球 ,就其次次取出的仍是黑球的概率是.06,从装有1A.103 个红球,2 个白球的袋中任取 3 个球,就所取的 3 个球中至少有 1 个白球的概率是()339D.10B.10C.507,从长度分别为2,3,4,5 的四条线段中任意取出三条,就以这三条线段为边可以构成三角形的概率是【考点七】几何概型(显性,隐性)1 2,01,小波通过做嬉戏的方式来确定周末活动,他随机的往单位圆内投掷一点,如此点到圆心的距离大于14就周末去看电影;如此点到圆心的距离小于,就去打篮球;否就,在家看书. 就小波周末不在家看书的概率为.a, 就时间“3a 10 ”发生的概率为02,利用运算机产生0~1 之间的匀称随机数03,在长为12cm 的线段AB 上任取一点 C.现作一矩形,令边长分别等于线段AC ,CB 的长,就该矩形面32cm2 的概率为积小于1 6132345(A) (B) (C) (D)1x , 使得x 1 x 2 1 成立的概率为3,304,在区间上随机取一个数3 05,如图,在圆心角为直角的扇形OAB 中,分别以OA,OB 为直径作两个半圆. 在扇形A .OAB 内随机取一点,就此点取自阴影部分的概率是B.C. D .2π121π2π1π1RT BAC 中, 06,在 A, AB = 1 , BC = 2211 2D ,就 ΔABD 的面积比 ΔABC 的面积的( 1)在 BC 上取一点 仍大的概率为 211 2BC 交于点 D ,就 ΔABD 的面积比 ΔABC 的面积的( 2)过 A 作射线与 仍大的概率为 314A ,B ,C ,就 ΔABC 为锐角三角形的概率为 07,在一个圆上任取三点答案:有注明讲的题目为下次上课必讲对象 【考点一】 5(讲) 【考点二】 4(讲) 702. 643. B 【考点三】 1. 22. 37, 203. D4. D5. B6. C7. A8. 10 【考点四】1. D 8( 讲)2. C3. D4. D5.6. B7 .D【考点五】 1. C 20 633 10 2 9【考点六】 1. 82.4. C5.7.13 16 2 3【考点七】1. 4 讲 6 讲7 讲2. 5. A。

专题12 概率与统计(文)-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题12 概率与统计(文)-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题12概率与统计(文)考点三年考情(2022-2024)命题趋势考点1:回归分析2022年高考全国乙卷数学(理)真题2023年天津高考数学真题2024年上海夏季高考数学真题2024年天津高考数学真题统计学是“大数据”技术的关键,在互联网时代具有强大的社会价值和经济价值,在高考中受重视程度越来越大,未来在考试中的出题角度会更加与实际生活紧密联系,背景新颢、形式多样.考点2:信息图表处理2024年新课标全国Ⅱ卷数学真题2022年高考全国甲卷数学(理)真题考点3:频率分布直方图与茎叶图2023年新课标全国Ⅱ卷数学真题2022年新高考天津数学高考真题2022年高考全国乙卷数学(文)真题考点4:古典概型与几何概型2024年新课标全国Ⅱ卷数学真题2023年高考全国乙卷数学(理)真题2023年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(理)真题2022年新高考全国I卷数学真题2022年高考全国甲卷数学(文)真题考点5:平均数、中位数、众数、方差、标准差、极差2023年高考全国乙卷数学(理)真题2023年新课标全国Ⅰ卷数学真题考点6:独立性检验2022年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2024年上海夏季高考数学真题考点1:回归分析1.(2022年高考全国乙卷数学(理)真题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910总和根部横截面积i x 0.040.060.040.080.080.050.050.070.070.060.6材积量iy 0.250.400.220.540.510.340.360.460.420.403.9并计算得10101022iii i i=1i=1i=10.038, 1.6158,0.2474x y x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数iii=122iii=1i=1( 1.896 1.377)()()nnnx x y y r x x y y --=≈--∑∑∑.2.(2023年天津高考数学真题)鸢是鹰科的一种鸟,《诗经·大雅·旱麓》曰:“鸢飞戾天,鱼跃余渊”.鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm ),绘制散点图如图所示,计算得样本相关系数为0.8642r =,利用最小二乘法求得相应的经验回归方程为 0.75010.6105y x =+,根据以上信息,如下判断正确的为()A.花瓣长度和花萼长度不存在相关关系B.花瓣长度和花萼长度负相关C.花萼长度为7cm的该品种鸢尾花的花瓣长度的平均值为5.8612cmD.若从样本中抽取一部分,则这部分的相关系数一定是0.86423.(2024年上海夏季高考数学真题)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势4.(2024年天津高考数学真题)下列图中,线性相关性系数最大的是()A.B.考点2:信息图表处理5.(2024年新课标全国Ⅱ卷数学真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表亩产量[900,950)[950,1000)[1000,1050)[1050,1100)[1100,1150)[1150,1200)频数61218302410根据表中数据,下列结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间6.(2022年高考全国甲卷数学(理)真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差考点3:频率分布直方图与茎叶图7.(2023年新课标全国Ⅱ卷数学真题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的解析式,并求()f c 在区间[]95,105的最小值.8.(2022年新高考天津数学高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A .8B .12C .16D .189.(2022年高考全国乙卷数学(文)真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A .甲同学周课外体育运动时长的样本中位数为7.4B .乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.6考点4:古典概型与几何概型10.(2024年新课标全国Ⅱ卷数学真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.11.(2023年高考全国乙卷数学(理)真题)设O 为平面坐标系的坐标原点,在区域(){}22,14x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A .18B .16C .14D .1212.(2023年高考全国乙卷数学(文)真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .56B .23C .12D .1313.(2023年高考全国甲卷数学(理)真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A .16B .13C .12D .2314.(2022年新高考全国I 卷数学真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A .16B .13C .12D .2315.(2022年高考全国甲卷数学(文)真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A .15B .13C .25D .23考点5:平均数、中位数、众数、方差、标准差、极差16.(2023年高考全国乙卷数学(理)真题)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果2210s z ≥则不认为有显著提高)17.(多选题)(2023年新课标全国Ⅰ卷数学真题)有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A .2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B .2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C .2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D .2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差考点6:独立性检验18.(2022年高考全国甲卷数学(文)真题)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,()2P K k0.1000.0500.010k 2.706 3.841 6.63519.(2024年高考全国甲卷数学(理)真题)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果(1)1.65p p p p n->+150件产品的数据,能否认为生15012.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k≥0.0500.0100.001k3.8416.63510.82820.(2024年上海夏季高考数学真题)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩[)0,0.5[)0.5,1[)1,1.5[)1.5,2[)2,2.5优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d -=++++χ其中n a b c d =+++,()2 3.8410.05P χ≥≈.)。

概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

专题15概率与统计(选择题、填空题)(文科专用)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C4.【2021年甲卷文科】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.5.【2021年甲卷文科】将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.【2021年乙卷文科】在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A .34B .23C .13D .16【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫ ⎪⎝⎭随机取1个数”,对应集合为:102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12,A =“取到的数小于13”,对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13,所以()()()10231302l A P A l -===Ω-.故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.7.【2020年新课标1卷文科】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷文科】设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为()A .0.01B .0.1C .1D .10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C 【点睛】本题考查方差,考查基本分析求解能力,属基础题.9.【2019年新课标1卷文科】某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C 【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.10.【2019年新课标2卷文科】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B .【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11.【2019年新课标3卷文科】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D 【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.12.【2018年新课标2卷文科】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3【答案】D 【解析】【详解】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率.13.【2018年新课标3卷文科】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.7【答案】B 【解析】【详解】分析:由公式()()()()P A B P A P B P AB ⋃=++计算可得详解:设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB 1⋃=++=因为()()P A 0.45,P AB 0.15==所以()P B 0.4=,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.14.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C 53=10甲、乙都入选的方法数为C 31=3,所以甲、乙都入选的概率=310故答案为:31015.【2018年新课标3卷文科】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样.【解析】【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.。

高考真题文科数学分项汇编概率与统计(解析版)

高考真题文科数学分项汇编概率与统计(解析版)

专题 15 概率与统计(解答题)1. 【2020 年高考全国Ⅰ卷文数】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A ,B , C ,D 四个等级.加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元, 20 元;对于 D 级品,厂家每件要赔偿原料损失费 50 元.该厂有甲、乙两个分厂可承接加工业务.甲分厂 加工成本费为 25 元/件,乙分厂加工成本费为 20 元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了 100 件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1) 分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率;(2) 分别求甲、乙两分厂加工出来的 100 件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【解析】(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为 A 级品的概率的估计值为 40100 乙分厂加工出来的一件产品为 A 级品的概率的估计值为 28 100= 0.4 ;= 0.28 . (2)由数据知甲分厂加工出来的 100 件产品利润的频数分布表为因此甲分厂加工出来的 100 件产品的平均利润为65 ⨯ 40 + 25 ⨯ 20 - 5 ⨯ 20 - 75 ⨯ 20 = 15 .100由数据知乙分厂加工出来的 100 件产品利润的频数分布表为因此乙分厂加工出来的100 件产品的平均利润为∑ i =1n(x - x ) ( y - y )2∑ n2iii =1∑ i20 (x - x ) (y - y )2i =1∑ i202i =180 ⨯ 90002 2 ∑ ∑ ∑ - x ) = 80 ,∑(y - y ) = 9000 , ∑(x 20∑ 70 ⨯ 28 + 30 ⨯17 + 0 ⨯ 34 - 70 ⨯ 21 = 10 .100比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属 于基础题.2. 【2020 年高考全国Ⅱ卷文数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加. 为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中 x i 和 y i 分别表示第 i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20xii =120 = 60 , y i i =120 = 1200 , (x i i =120 2i i =1202i i =1- x () y i - y ) = 800 .(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到 0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野 生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.∑(x i - x )( yi- y )附:相关系数 r =i =1,≈1.414.1 20【解析】(1)由己知得样本平均数 y = ∑ y i= 60 ,从而该地区这种野生动物数量的估计值为 60×i =1200=12000.(2)样本(x i , y i ) (i = 1, 2, , 20) 的相关系数20(x i- x () y i- y ) 80r =i =1== ≈ 0.94 .3 (3)分层抽样:根据植物覆盖面积的大小对地块分层,再对 200 个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物 覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了n 2样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能 力,是一道容易题.3. 【2020 年高考全国Ⅲ卷文数】某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1) 分别估计该市一天的空气质量等级为 1,2,3,4 的概率;(2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3) 若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的空气质量等级为 3 或 4,则称这天“空气质量不好”.根据所给数据,完成下面的 2×2 列联表,并根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附: K 2 n (ad - bc )2, (a + b )(c + d )(a + c )(b + d )【解析】(1)由所给数据,该市一天的空气质量等级为 1,2,3,4 的概率的估计值如下表:(2) 一天中到该公园锻炼的平均人次的估计值为1(100 ⨯ 20 + 300 ⨯ 35 + 500 ⨯ 45) = 350 . 100==2 (3) 根据所给数据,可得 2 ⨯ 2 列联表:根据列联表得2100 ⨯ (33 ⨯ 8 - 22 ⨯ 37) 2K 55 ⨯ 45 ⨯ 70 ⨯ 30 由于5.820 > 3.841 ,故有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处 理能力,属于基础题.4. 【2020 年新高考全国Ⅰ卷】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100 天空气中的PM 2.5 和SO 浓度(单位:μg/m 3 ),得下表:(1) 估计事件“该市一天空气中PM 2.5 浓度不超过75 ,且SO 2 浓度不超过150 ”的概率;(2) 根据所给数据,完成下面的 2 ⨯ 2 列联表:(3) 根据(2)中的列联表,判断是否有99% 的把握认为该市一天空气中PM 2.5 浓度与SO 2 浓度有关?附: K 2 n (ad - bc )2,(a + b )(c + d )(a + c )(b + d )=2 = ≈【解析】(1)根据抽查数据,该市 100 天的空气中 PM2.5 浓度不超过 75,且SO 2 浓度不超过 150 的天数为32 + 18 + 6 + 8 = 64 ,因此,该市一天空气中 PM2.5 浓度不超过 75,且SO 2 浓度不超过 150 的概率的估64计值为 100= 0.64 .(2) 根据抽查数据,可得 2 ⨯ 2 列联表:(3) 根据(2)的列联表得 K 7.484 .80 ⨯ 20 ⨯ 74 ⨯ 26由于7.484 > 6.635 ,故有99% 的把握认为该市一天空气中PM 2.5 浓度与SO 2 浓度有关.5. 【2019 年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了 50 名男顾客和 50 名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1) 分别估计男、女顾客对该商场服务满意的概率;(2) 能否有 95%的把握认为男、女顾客对该商场服务的评价有差异?附: K 2 n (ad - bc )2.(a + b )(c + d )(a + c )(b + d )【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8 ,0.6 ;(2)有 95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为 40= 0.8 ,50因此男顾客对该商场服务满意的概率的估计值为0.8 .P (K 2 ≥ k )0.050 0.010 0.001 k3.8416.63510.828=女顾客中对该商场服务满意的比率为30= 0.6 , 50因此女顾客对该商场服务满意的概率的估计值为0.6 .2100 ⨯(40 ⨯ 20 - 30 ⨯10) 2(2)由题可得 K =≈ 4.762 . 50 ⨯ 50 ⨯ 70 ⨯ 30由于 4.762 > 3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.6. 【2019 年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 y 的频数分布表.(1) 分别估计这类企业中产值增长率不低于 40%的企业比例、产值负增长的企业比例;(2) 求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到 0.01) ≈ 8.602 .【答案】(1)产值增长率不低于 40%的企业比例为 21%,产值负增长的企业比例为 2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为 30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的 100 个企业中产值增长率不低于 40%的企业频率为14 + 7 = 0.21 .1002产值负增长的企业频率为100= 0.02 .用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2) y = 1(-0.10 ⨯ 2 + 0.10 ⨯ 24 + 0.30 ⨯ 53 + 0.50 ⨯14 + 0.70 ⨯ 7) = 0.30 ,100s 2= 1 ∑ n ( y - y )2=1 i ii =1⎡⎣(-0.40)2 ⨯ 2 + (-0.20)2 ⨯ 24 + 02 ⨯ 53 + 0.202 ⨯14 + 0.402 ⨯ 7⎤⎦100=0.0296 ,s == 0.02⨯ 0.17 ,5 100所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.7.【2019 年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100 只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记 C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a = 0.35 ,b = 0.10 ;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05 ,6.00 .【解析】(1)由已知得0.70 =a + 0.20 + 0.15 ,故a = 0.35 .b = 1- 0.05 - 0.15 - 0.70 = 0.10 .(2)甲离子残留百分比的平均值的估计值为2⨯ 0.15 + 3⨯ 0.20 + 4⨯ 0.30 + 5⨯ 0.20 + 6⨯ 0.10 + 7 ⨯ 0.05 = 4.05 .乙离子残留百分比的平均值的估计值为3⨯ 0.05 + 4⨯ 0.10 + 5⨯ 0.15 + 6⨯ 0.35 + 7 ⨯ 0.20 + 8⨯ 0.15 = 6.00 .8.【2019 年高考天津卷文数】2019 年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120 人,现采用分层抽样的方法,从该单位上述员工中抽取25 人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25 人中,享受至少两项专项附加扣除的员工有6 人,分别记为A, B, C, D, E, F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6 人中随机抽取2 人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2 人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.11【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii).15【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10 ,由于采用分层抽样的方法从中抽取25 位员工,因此应从老、中、青员工中分别抽取6 人,9 人,10 人.( 2 )(i )从已知的 6 人中随机抽取 2 人的所有可能结果为{A, B},{A, C},{A, D},{A, E},{A, F},{B, C}, {B, D},{B, E},{B, F},{C, D},{C, E}, {C, F}, {D, E},{D, F},{E, F} ,共15 种.(ii)由表格知,符合题意的所有可能结果为{A, B},{A, D},{A, E},{A, F},{B, D},{B,E },{B ,F},{C, E},{C, F},{D, F},{E, F} ,共11 种.所以,事件M 发生的概率P(M ) 11.159.【2019 年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校所有的1000 名学生中随机抽取了100 人,发现样本中A,B 两种支付方式都不使用的有5 人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1 人,求该学生上个月支付金额大于2 000 元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1 人,发现他本月的支付金额大于2 000 元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于 2 000 元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400 ;(2)0.04 ;(3)见解析.【解析】(1)由题知,样本中仅使用A 的学生有27+3=30 人,仅使用B 的学生有24+1=25 人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为40⨯1000 = 400 .100(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C) = 1= 0.04 .25(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E) = 0.04 .答案示例1:可以认为有变化.理由如下:P(E) 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E) 比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.10.【2018 年高考全国Ⅱ卷文数】下图是某地区2000 年至2016 年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018 年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000 年至2016 年的数据(时间变量t 的值依次为1, 2, , 17 )建立模型①:yˆ=-30.4 + 13.5t ;根据2010 年至2016 年的数据(时间变量t 的值依次为1, 2, , 7 )建立模型②:yˆ= 99 + 17.5t .(1)分别利用这两个模型,求该地区2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018 年的环境基础设施投资额的预测值为$y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018 年的环境基础设施投资额的预测值为$y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000 年至2016 年的数据对应的点没有随机散布在直线y=–30.4+13.5t 上下,这说明利用2000 年至2016 年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010 年相对2009 年的环境基础设施投资额有明显增加,2010 年至2016 年的数据对应的点位于一条直线的附近,这说明从2010 年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010 年至2016 年的数据建立的线性模型$y=99+17.5t 可以较好地描述2010 年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016 年的环境基础设施投资额220 亿元,由模型①得到的预测值226.1 亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2 种理由,考生答出其中任意一种或其他合理理由均可得分.1.【2018 年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50 天的日用水量数据(单位:m3)和使用了节水龙头50 天的日用水量数据,得到频数分布表如下:未使用节水龙头50 天的日用水量频数分布表日用水量[0 ,0.1) [0.1,0.2) [0.2 ,0.3) [0.3,0.4) [0.4 ,0.5) [0.5,0.6) [0.6 ,0.7) 频数1324926 5使用了节水龙头50 天的日用水量频数分布表日用水量[0 ,0.1) [0.1,0.2) [0.2 ,0.3) [0.3,0.4) [0.4 ,0.5) [0.5,0.6) 频数1513 10 16 5(1)在答题卡上作出使用了节水龙头50 天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)见解析;(2)0.48;(3)47.45m3.【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50 天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50 天日用水量的平均数为x1 = 1(0.05⨯1+ 0.15⨯ 3 + 0.25⨯ 2 + 0.35⨯ 4 + 0.45⨯ 9 + 0.55⨯ 26 + 0.65⨯ 5) = 0.48 .50该家庭使用了节水龙头后50 天日用水量的平均数为x2 = 1(0.05⨯1+ 0.15⨯ 5 + 0.25⨯13 + 0.35⨯10 + 0.45⨯16 + 0.55⨯ 5) = 0.35 .50估计使用节水龙头后,一年可节省水(0.48 - 0.35) ⨯365 = 47.45(m 3) .12.【2018 年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40 名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:P (K 2 ≥ k ) 0.050 0.010 0.001 k 3.841 6.635 10.828 (1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2) 求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过m 的工人数填入下面的列联表:(3) 根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?附: K 2n (ad - bc )2, . (a + b )(c + d )(a + c )(b + d )【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有 99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i ) 由茎叶图可知:用第一种生产方式的工人中,有 75%的工人完成生产任务所需时间至少 80 分钟,用第二种生产方式的工人中,有 75%的工人完成生产任务所需时间至多 79 分钟. 因此第二种生产方式的效率更高.(ii ) 由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5 分钟.因此第二种生产方式的效率更高.(iii ) 由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80 分钟;用第二种生产方式的工人完成生产任务平均所需时间低于 80 分钟,因此第二种生产方式的效率更高.(iv ) 由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 8 上的最多,关于茎 8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎 7 上的最多,关于茎 7 大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知 m = 79 + 81 = 80 .2列联表如下:=2 40(15 15 5 5)(3)由于K⨯-⨯2== 10 > 6.635 ,所以有99%的把握认为两种生产方式的效率有差异.20 ⨯ 20 ⨯ 20 ⨯ 2013.【2018 年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1 部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1 部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025 ;(2)0.814 ;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,50故所求概率为2000= 0.025 .(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-3722000= 0.814 .方法2:设“随机选取 1 部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628 部.由古典概型概率公式得P(B) =1628= 0.814 .2000(3)增加第五类电影的好评率,减少第二类电影的好评率.14.【2018 年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7 名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7 名同学分别用A,B,C,D,E,F,G 表示,现从中随机抽取2 名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.5【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii).21【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7 名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取 3 人,2 人,2 人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21 种.(ii)由(1),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7 名同学中随机抽取的 2 名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5 种.5所以,事件M 发生的概率为P(M)=.21。

完整word版本统计与概率高中高考题文科

完整word版本统计与概率高中高考题文科

统计与概率【小】1.(2018 全国卷Ⅰ, T3)某地域一年的新村建,村的收入增添了一倍.翻番.更好地认识地域村的收入化状况,了地域新村建前后村的收入组成比率.获得以下:下边中不正确的选项是A.新村建后,栽种收入减少B.新村建后,其余收入增添了一倍以上C.新村建后,养殖收入增添了一倍D.新村建后,养殖收入与第三收入的和超了收入的一半2.(2018 全国卷Ⅱ, T5)从 2 名男同学和 3 名女同学中任 2 人参加社区服,中的2 人都是女同学的概率A. 0.6B. 0.5 C. 0.4 D. 0.33. (2018全国卷Ⅲ,T5)某集体中的成只用金支付的概率0.45,既用金支付也用非金支付的概率0.15,不用金支付的概率A .0.3B.0.4 C. 0.6 D .0.74.( 2017新Ⅰ,T2)估一种作物的栽种成效,了n 地作田.n 地的量 (位: kg) 分x1,x2,⋯,x n,下边出的指中能够用来估种作物量定程度的是A .x1,x2,⋯, x n的均匀数B.x1,x2,⋯, x n的准差C.x1,x2,⋯, x n的最大 D .x1,x2,⋯, x n的中位数5.( 2017 新Ⅰ,T4)如,正方形ABCD 内的形来自中国古代的太极,正方形内切中的黑色部分和白色部分对于正方形的中心成中心称.在正方形内随机取一点,此点取自黑色部分的概率是A.1B.C.1D.48246.( 2017 新课标Ⅱ, T11)从分别写有1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为1132A.B.C.D.1051057.( 2017 新课标Ⅲ, T3)某城市为认识旅客人数的变化规律,提升旅行服务质量,采集并整理了 2014 年 1 月至 2016 年 12 月时期月招待旅客量(单位:万人 )的数据,绘制了下边的折线图.依据该折线图,以下结论错误的选项是A.月招待旅客逐月增添B.年招待旅客量逐年增添C.各年的月招待旅客量顶峰期大概在7,8 月D.各年 1 月至 6 月的月招待旅客量相对于7 月至 12 月,颠簸性更小,变化比较安稳8.( 2016 全国 I 卷, T3)为美化环境,从红、黄、白、紫4 种颜色的花中任选 2 栽花种在一个花坛中,余下的2 栽花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是1125A.B.C.D.32369.( 2016 全国 II 卷, T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯连续时间为 40 秒.若一名行人到达该路口碰到红灯,则起码需要等候15 秒才出现绿灯的概率为7533A.B.C.D.10881010.( 2016 年全国 III 卷, T4)某旅行城市为向旅客介绍当地的气温状况,绘制了一年中各月均匀最高气平和均匀最低气温的雷达图.图中A 点表示十月的均匀最高气温约为 15℃, B 点表示四月的均匀最低气温约为5℃.下边表达不正确的选项是 A .各月的均匀最低气温都在0℃以上 B .七月的均匀温差比一月的均匀温差大 C .三月和十一月的均匀最高气温基真同样 D .均匀最高气温高于 20℃的月份有 5 个11.(2016 全国 III 卷, T5 )小敏翻开计算机时,忘掉了开机密码的前两位,只记得第一位是 M , I , N 中的一个字母,第二位是1,2, 3, 4, 5 中的一个数字,则小敏输入一 次密码能够成功开机的概率是81C .1D .1A .B .153015812.( 2016 年北京, T6 )从甲、乙等 5 名学生中随机选出 2 人,则甲被选中的概率为A .1B .2C .8D .955252513.( 2016 年北京, T8 )某学校运动会的立定跳远和 30 秒跳绳两个单项竞赛分红初赛和决赛两个阶段 .下表为 10 名学生的初赛成绩,此中有三个数据模糊.学生序号12345 6 7 8 9 10立定跳远 (单位: 米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30 秒跳绳(单位:次) 63a7560637270a- 1b65 在这 10 名学生中,进入立定跳远决赛的有 8 人,同时进入立定跳远决赛和30 秒跳绳决赛的有 6 人,则A . 2 号学生进入 30 秒跳绳决赛B . 5 号学生进入 30 秒跳绳决赛C .8 号学生进入 30 秒跳绳决赛D . 9 号学生进入 30 秒跳绳决赛14.( 2015 新课标 1,T4 )假如 3 个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数, 从 1,2,3,4,5 中任取 3 个不一样的数, 则这 3 个数组成一组勾股数的概 率为31C . 11A .B .D .105102015.( 2015 新课标 2,T3)依据下边给出的2004 年至 2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的选项是A .逐年比较,2008 年减少二氧化硫排放量的成效最明显B. 2007 年我国治理二氧化硫排放展现收效C. 2006 年以来我国二氧化硫年排放量呈减少趋向D. 2006 年以来我国二氧化硫年排放量与年份正有关16.( 2015 北京, T4)某校老年,中年和青年教师的人数见下表,采纳分层抽样的方法检查教师的身体状况,在抽取的样本中,青年教师有320 人,则该样本的老年教师人数为A .90B .100 C.180 D. 300类型人数老年教师900中年教师1800青年教师1600共计430017.(2018 全国卷Ⅲ,T14)某企业有大批客户,且不一样龄段客户对其服务的评论有较大差别.为认识客户的评论,该企业准备进行抽样检查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最适合的抽样方法是________.18、为认识某社区居民的家庭年收入与年支出的关系,随机检查了该社区户家庭,获得以下统计数据表:收入(万元)支出(万元)依据上表可得回归直线方程,据此预计,该社区一户收入为万元家庭年支出为()A.万元B.万元C.万元D.万元大题题型题型一:回归剖析1、社会在对整日制高中的教课水平进行评论时, 经常将被清华北大录取的学生人数作为权衡的标准之一 . 重庆市教委调研了某中学近五年(年-年)高考被清华北大录取的学生人数, 制作了以下所示的表格 ( 设年为第一年).年份(第年)人数(人)(1) 试求人数对于年份的回归直线方程;(2) 在知足 (1) 的前提之下,预计年该中学被清华北大录取的人数( 精准到个位 );(3)教委准备在这五年的数据中随意选用两年作进一步研究, 求被选用的两年恰巧不相邻的概率. 参照公式:.题型二统计图1、某服饰店对过去天其实体店和网店的销售量( 单位 : 件 ) 进行了统计 , 制成频次散布直方图如下 :(1) 若将上述频次视为概率 , 已知该服饰店过去天的销售中,实体店和网店销售量都不低于件的概率为, 求过去天的销售中,实体店和网店起码有一边销售量不低于件的天数 ;(2) 若将上述频次视为概率 , 已知该服饰店实体店每日的人工成本为元, 门市成本为元,每售出一件收益为元,求该门市一天获利不低于元的概率 ;(3) 依据销售量的频次散布直方图, 求该服饰店网店销售量中位数的预计值 ( 精准到).2、某工厂有工人名,记岁以上(含岁)的为类工人,不足工人,为检查该厂工人的个人文化素质状况,现用分层抽样的方法从人中分别抽取了人、人进行测试. 岁的为类两类工( 1)求该工厂两类工人各有多少人?( 2)经过测试,获得以下三个数据图表:图一:分以上两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字)①先填写频次散布表(表一)中的六个空格,而后将频次散布直方图(图二)补充完好;②该厂制定从参加考试的分以上(含分)的类工人中随机抽取人参加高级技工培训班,求抽到的人分数都在分以上的概率.题型三独立性剖析年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会讲和中国人民政治磋商会议第十二届全国委员会第四次会议,分别于年月日和月日在北京开幕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计与概率高考题1(文科)
一、选择题
1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现
翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A .新农村建设后,种植收入减少
B .新农村建设后,其他收入增加了一倍以上
C .新农村建设后,养殖收入增加了一倍
D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2
人都是女同学的概率为
A .0.6
B .0.5
C .0.4
D .0.3
3.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非
现金支付的概率为0.15,则不用现金支付的概率为
A .0.3
B .0.4
C .0.6
D .0.7
4.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地
的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A .1x ,2x ,…,n x 的平均数
B .1x ,2x ,…,n x 的标准差
C .1x ,2x ,…,n x 的最大值
D .1x ,2x ,…,n x 的中位数
5.(2017新课标Ⅰ,T4)如图,正方形ABCD 的图形来自中国古代的太极图,正方形切圆
中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形随机取一点,则此点取自黑色部分的概率是
A .14
B .8π
C .12
D .4
π 6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5卡片中随机抽取1,放回后再随
机抽取1,则抽得的第一卡片上的数大于第二卡片上的数的概率为
A .110
B .15
C .310
D .25
7.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A .月接待游客逐月增加
B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8.(2016全国I卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
A.1
3
B.
1
2
C.
2
3
D.
5
6
9.(2016全国II卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为
A.
7
10
B.
5
8
C.
3
8
D.
3
10
10.(2016年全国III卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各
月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
11.(2016全国III卷,T5)小敏打开计算机时,忘记了开码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是
A.
8
15
B.
1
8
C.
1
15
D.
1
30
12.(2016年,T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为
A.1
5
B.
2
5
C.
8
25
D.
9
25
13.(2016年,T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则
A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛
C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛14.(2015新课标1,T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为
A.
3
10
B.
1
5
C.
1
10
D.
1
20
15.(2015新课标2,T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
16.(2015,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为
A.90 B.100 C.180 D.300
类别人数
老年教师900
中年教师1800
青年教师1600
合计4300
二、填空题
17.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
18.(2016年全国II卷,T16)有三卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.
19.(2016年,T14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
②第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
20.(2015,T14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成
绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.。

相关文档
最新文档