简谐运动
大学物理简谐运动
电磁振荡的简谐运动
总结词
电磁振荡的简谐运动是指电磁场中的电荷或电流在电 场和磁场的作用下做周期性振动。这种振动可以产生 无线电波,是通信技术中的重要应用之一。
详细描述
电磁振荡的简谐运动是指电磁场中的电荷或电流在电场 和磁场的作用下做周期性振动。这种振动可以产生无线 电波,是通信技术中的重要应用之一。电磁振荡的频率 范围很广,从低频的无线电波到高频的X射线,都可以 通过电磁振荡产生。在通信技术中,电磁振荡被广泛应 用于信号传输、广播、电视等领域。电磁振荡的振荡频 率、幅度和相位都可以通过电路元件进行调节和控制, 从而实现信息的传输和接收。
实验器材与步骤
步骤 1. 安装摆球和支架,确保摆球可以自由摆动。
2. 将光电门传感器放置在摆球的平衡位置附近,并与数据采集器连接。
实验器材与步骤
3. 启动数据采集器, 记录摆球摆动的位置 和时间数据。
5. 将实验结果与理论 值进行比较,验证简 谐运动的规律。
4. 分析数据,计算摆 球的速度和加速度。
简谐运动的特点
位移与时间的关系是正弦 或余弦函数。
速度和加速度随时间按正 弦或余弦规律变化。
回复力与位移大小成正比, 方向相反。
简谐运动的能量是守恒的。
简谐运动的分类
01
根据位移和时间的关系,简谐运动可分为正弦简谐 运动和余弦简谐运动。
02
根据振幅和频率是否变化,简谐运动可分为自由简 谐运动和受迫简谐运动。
对未来科技发展的影响与启示
简谐运动的研究不仅对于当前科技发 展具有重要意义,也为未来科技发展 提供了启示和方向。
通过深入探索简谐运动背后的物理规 律和原理,可以启发新的科技思想和 实验方法,推动物理学和其他学科的 交叉融合和创新发展。
《简谐运动》 知识清单
《简谐运动》知识清单一、什么是简谐运动简谐运动是一种理想化的机械运动模型。
它的定义是:如果一个物体所受到的力跟它偏离平衡位置的位移大小成正比,并且力的方向总是指向平衡位置,那么这个物体的运动就叫做简谐运动。
比如常见的弹簧振子,就是一种典型的简谐运动。
当弹簧一端固定,另一端连接一个物体,将物体拉离平衡位置后释放,它就会在平衡位置附近做往复运动,这种运动就是简谐运动。
二、简谐运动的特点1、受力特点物体所受的回复力F 与位移x 大小成正比,方向相反,即F =kx,其中 k 是比例系数,叫做回复力系数。
回复力是使物体回到平衡位置的力。
在弹簧振子中,回复力就是弹簧的弹力;在单摆中,回复力是重力沿圆弧切线方向的分力。
2、运动特点简谐运动是一种周期性运动,具有重复性和对称性。
(1)重复性:物体在相同的时间间隔内,重复相同的运动状态。
(2)对称性:关于平衡位置对称的两点,速度大小相等、方向相反;加速度大小相等、方向相反;位移大小相等、方向相反。
3、能量特点在简谐运动中,系统的机械能守恒。
当物体远离平衡位置时,动能减小,势能增大;当物体靠近平衡位置时,动能增大,势能减小。
但总的机械能保持不变。
三、简谐运动的表达式简谐运动的位移时间关系可以用正弦函数或余弦函数来表示:x =A sin(ωt +φ) 或 x =A cos(ωt +φ)其中,A 表示振幅,是物体离开平衡位置的最大距离;ω 是角频率,ω =2π/T,T 是周期;φ 是初相位,决定了运动的初始状态。
四、简谐运动的周期和频率1、周期完成一次全振动所需要的时间叫做周期,用 T 表示。
周期的大小由振动系统本身的性质决定,与振幅无关。
对于弹簧振子,T =2π√(m/k),其中 m 是振子的质量,k 是弹簧的劲度系数。
对于单摆,T =2π√(L/g),其中 L 是摆长,g 是重力加速度。
2、频率单位时间内完成全振动的次数叫做频率,用 f 表示。
频率与周期互为倒数,即 f = 1/T。
简谐运动
简谐运动定义简谐运动又名简谐振动。
简谐运动﹝原名直译简单和谐运动﹞是最基本也最简单的机械振动。
当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。
它是一种由自身系统性质决定的周期性运动。
(如单摆运动和弹簧振子运动)回复力回复力的定义:振子受迫使它回复平衡位置的力,是合外力平行于速度方向上的分力。
如果用F表示物体受到的回复力,用x表示小球对于平衡位置的位移,根据胡克定律,F和x成正比,它们之间的关系可用下式来表示:F = - kx式中的k是弹簧的劲度系数(回复力系数);负号的意思是:回复力的方向总跟物体位移的方向相反。
周期与频率一般简谐运动周期:T=2π√(m/k). 其中m为振子质量,k为振动系统的回复力系数。
对于单摆运动,其周期T=2π√(L/g)(π为圆周率√为根号)T与振幅(a<10度)和摆球质量无关。
当偏角a<10度时sina≈a=弧(轨迹)/L(半径)≈x/L;F回=-mg/Lx根据牛顿第二定律,F=ma,运动物体的加速度总跟物体所受的合力的大小成正比,并且跟合力的方向相同。
振幅、周期和频率简谐运动的频率(或周期)跟振幅没有关系。
物体的振动频率本身的性质决定,所以又叫固有频率。
机械振动物体在平衡位置附近(钟摆通常在5°的范围内)做往复运动的运动叫做机械振动,简称振动。
我们把振动物体偏离平衡位置后所受到的总是指向平衡位置的力,叫做回复力。
由此看来,物体偏离平衡位置后必须受到回复力作用,这是做机械振动的必要条件。
(1)定义:物体或物体一部分在某一中心位置(平衡位置)两侧沿直线或弧线做往复运动,这样的运动叫做机械振动。
其特征是“往复运动”。
(2)振动物体受到回复力的作用,在平衡位置时所受回复力为零。
(3)回复力是以力的作用的效果来命名的力,它由运动方向上的合力来提供。
钟摆震动周期性周期不会随着质量的变化而变化,周期只与绳子的长度l和当地的重力加速度g 有关而且与振幅也无关(振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。
简谐运动名词解释
简谐运动名词解释摘要:一、简谐运动的定义与特点二、简谐运动中的重要名词解释1.振幅2.周期3.频率4.相位5.角频率6.振子三、简谐运动的应用领域四、如何进行简谐运动的实验研究与分析正文:一、简谐运动的定义与特点简谐运动,是指物体在恢复力作用下,沿着一条直线或曲线做周期性的往复运动。
这种运动具有以下特点:1.物体受到的恢复力与位移成正比,且总是指向平衡位置。
2.物体在平衡位置两侧的运动规律相同。
3.物体的速度、加速度与位移之间的关系呈周期性变化。
二、简谐运动中的重要名词解释1.振幅:振动物体从平衡位置偏离的最大距离。
2.周期:振动物体完成一个完整的往复运动所需的时间。
3.频率:单位时间内振动物体完成往复运动的次数。
4.相位:描述简谐运动中物体在某一时刻的位置关系,与时间有关。
5.角频率:物体每秒钟完成的弧度数,与频率互为倒数。
6.振子:进行简谐运动的物体,如弹簧振子、单摆在自由端作的振动等。
三、简谐运动的应用领域简谐运动在科学研究和工程领域具有广泛的应用,如:1.机械振动:如钟摆、弹簧振动等。
2.电磁振动:如电振子、磁振子等。
3.声波振动:如乐器的振动、声波传输等。
4.生物振动:如心脏跳动、肌肉收缩等。
四、如何进行简谐运动的实验研究与分析1.实验设备:根据研究对象选择相应的实验设备,如振动台、示波器、传感器等。
2.数据采集:通过传感器等设备收集实验数据,如位移、速度、加速度等。
3.数据分析:利用数学方法对数据进行处理,如求解频谱、相位差等。
4.模型建立:根据实验数据建立简谐运动的数学模型,如振动系统的力学模型、电路模型等。
5.应用与发展:将研究成果应用于实际问题,如振动控制、信号传输等。
通过以上步骤,我们可以深入了解和分析简谐运动,为实际应用提供理论支持。
总之,简谐运动作为一种基本的物理现象,在科学研究和工程领域具有重要价值。
简谐运动的特征和规律
加速度-时间关系
描述
简谐运动的加速度随时间呈现周期性 变化,其方向与位移方向相反。
公式
a(t) = - A * ω^2 * sin(ωt + φ),其 中ω是角频率。
特性
加速度的最大值和最小值分别为-A * ω^2和A * ω^2,且在两个最大值或
最小值之间变化。
04
简谐运动的能量
振幅与能量的关系
02
简谐运动的特征
周期性
总结词
简谐运动是一种周期性运动,即运动过程中任意相同的时间内,通过的位移、速度和加速度等物理量 都会重复变化。
详细描述
简谐运动的周期是描述其重复运动快慢的物理量,表示运动完成一次所需的时间或长度。在简谐运动 中,位移、速度和加速度等物理量均随时间呈现周期性变化,且每个周期内各物理量的变化趋势相同 。
05
简谐运动的实例和应用
弹簧振荡器
弹簧振荡器是简谐运动的典型实例之一,它由弹簧和振荡器组成,通过弹簧的伸缩 实现振荡运动。
弹簧振荡器的振动周期和振幅等参数可以通过调节弹簧的刚度和质量等参数进行控 制。
弹簧振荡器在物理学、工程学和生物学等领域有广泛应用,如测量仪器、减震器和 生物组织振动等。
波动和干涉现象
详细描述
在理想情况下,没有能量损失或外部 力做功的情况下,简谐运动的能量是 守恒的。这意味着在振动过程中,动 能和势能之间可以相互转换,但总量 保持不变。
能量转换与耗散
总结词
在实际情况下,简谐运动过程中存在能量转换和耗散。
详细描述
在现实世界中,由于各种阻尼效应和外部力的作用,简谐运动过程中存在能量转换和耗散。例如,空气阻力、摩 擦力等会消耗振动体的能量,导致振幅逐渐减小,最终使振动停止。这种能量的损失可以通过阻尼系数来描述。
高中物理:简谐运动
高中物理:简谐运动【知识点的认识】简谐运动1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫简谐运动。
2.简谐运动的描述(1)描述简谐运动的物理量①位移x:由平衡位置指向质点所在位置的有向线段,是矢量。
②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
③周期T和频率f:物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数,它们是表示振动快慢的物理量。
二者互为倒数关系。
(2)简谐运动的表达式x=Asin(ωt+φ)。
(3)简谐运动的图象①物理意义:表示振子的位移随时间变化的规律,为正弦(或余弦)曲线。
②从平衡位置开始计时,函数表达式为x=Asinωt,图象如图1所示。
从最大位移处开始计时,函数表达式为x=Acosωt,图象如图2所示。
3.简谐运动的回复力(1)定义:使物体返回到平衡位置的力。
(2)方向特点:回复力的大小跟偏离平衡位置的位移大小成正比,回复力的方向总指向平衡位置,即F=﹣kx。
4.简谐运动的能量简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与振幅有关,振幅越大,能量越大。
5.简谐运动的两种基本模型弹簧振子(水平)单摆模型示意图条件忽略弹簧质量、无摩擦等阻力细线不可伸长、质量忽略、无空气等阻力、摆角很小平衡位置弹簧处于原长处最低点回复力弹簧的弹力提供摆球重力沿与摆线垂直(即切向)方向的分力周期公式T =2π(不作要求)T =2π能量转化弹性势能与动能的相互转化,机械能守恒重力势能与动能的相互转化,机械能守恒【命题方向】常考题型是考查简谐运动的概念:简谐运动是下列哪一种运动()A .匀变速运动B .匀速直线运动C .变加速运动D .匀加速直线运动分析:根据简谐运动的加速度与位移的关系,分析加速度是否变化,来判断简谐运动的性质,若加速度不变,是匀变速直线运动;若加速度变化,则是变加速运动。
解:根据简谐运动的特征:a =﹣,可知物体的加速度大小和方向随位移的变化而变化,位移作周期性变化,加速度也作周期性变化,所以简谐运动是变加速运动。
简谐运动的描述
简谐运动的描述一、简谐运动的概念和特征简谐运动是一种重要的周期性运动,它可以在自然界和人-made系统中观察到。
简谐运动的特征包括:1.周期性:简谐运动是一个重复的过程,物体会在规律的时间间隔内重复相同的运动。
2.能量守恒:简谐运动中物体的总能量保持不变,由动能和势能相互转化,但总能量始终保持恒定。
3.线性回复:简谐运动中,物体的回复力与它的偏离程度成正比,且方向相反,符合胡克定律。
4.最大回复力和最大速度的时刻不一致:简谐运动中,最大回复力与最大速度不会同时发生,它们的时刻相差1/4个周期。
二、简谐运动的数学描述简谐运动可以使用如下的数学描述:一维简谐运动的位移-时间关系:x=Acos(ωt+ϕ)其中, - A为振幅,表示物体偏离平衡位置的最大距离。
- ω为角频率,表示单位时间内的相位变化量。
- t为时间。
- φ为初相位,表示在t=0时刻的位相。
一维简谐运动的速度-时间关系:v=−ωAsin(ωt+ϕ)一维简谐运动的加速度-时间关系:a=−ω2Acos(ωt+ϕ)三、简谐运动的力学模型简谐运动可以通过一维弹簧振子来进行力学建模。
弹簧振子由一个弹簧和一个质量块组成。
当质量块受到外力扰动后,它会围绕平衡位置做简谐振动。
1.弹簧的自由长度为L,当质量块偏离平衡位置时,弹簧受到回复力,使得质量块回到平衡位置。
2.弹簧回复力与质量块的偏离程度成正比,符合胡克定律:F=−kx其中, - F为回复力的大小。
- k为弹簧的劲度系数,描述了弹簧的刚度和回复力的大小。
- x为质量块偏离平衡位置的距离。
四、简谐运动的频率和周期简谐运动的频率和周期和与力学模型中的角频率相关。
频率:简谐运动的频率表示单位时间内完成一个完整周期的次数,用hertz(Hz)作为单位,频率等于角频率除以2π。
周期:简谐运动的周期表示完成一个完整周期所需要的时间,用秒(s)作为单位,周期等于角频率的倒数。
五、简谐运动的实际应用简谐运动是自然界和人-made系统中普遍存在的一种运动形式,其应用十分广泛。
简谐运动的公式和定义
简谐运动的公式和定义简谐运动是物理学中非常重要的一类运动,它是指一个物体在受到恢复力作用下,沿着直线或曲线来回振动的运动。
简谐运动在自然界中广泛存在,例如摆钟的摆动、弹簧的振动等。
简谐运动有以下几个基本特点:1.平衡位置:简谐运动的物体有一个平衡位置,当外力消失时会保持在该位置上不动。
2.恢复力:简谐运动的物体受到一个与位移方向相反,与位移大小成正比的恢复力作用,它的作用是使物体回到平衡位置。
3.振幅:简谐运动的物体从平衡位置开始向任意一侧运动,到达最远的位置后即返回,这个最远的位置称为振幅,用A表示。
4.周期:简谐运动的物体从一个最大位移到下一个最大位移所需的时间称为周期,用T表示。
5.频率:简谐运动的物体每秒钟完成的周期数称为频率,用f表示,它与周期的倒数成正比关系。
x(t) = A * cos(ω * t + φ)其中,x(t)表示位移的大小,A为振幅,cos为余弦函数,ω为角速度,t表示时间,φ为初相位。
根据位移方程的形式,对简谐运动的定义可以有以下几种:1. 物理定义:简谐运动是指在恢复力作用下,物体的位移与时间的关系满足x(t) = A * cos(ω * t + φ)的运动。
2.数学定义:简谐运动是一种二次函数,其图象为一条余弦曲线或正弦曲线,其周期性是函数x(t)的基本特征。
3.力学定义:简谐运动是指恢复力与位移成正比,且恢复力的方向与位移相反的运动。
这里的恢复力可以是弹簧的弹力、引力、电磁力等。
f=1/T其中,f为频率,T为周期。
频率的单位是赫兹(Hz),周期的单位是秒(s)。
ω=2πf其中,ω为角速度,f为频率。
角速度的单位是弧度/秒(rad/s)。
简谐运动对于许多物理现象的研究都有着重要的应用。
例如,简谐运动可以用来描述弹簧振子的振动、声音的传播、电磁波的传播等等。
在实际应用中,很多系统的运动都可以近似地看作简谐运动,例如机械振动、电路的交流电信号等等。
总结起来,简谐运动是一种很重要的物理运动,具有平衡位置、恢复力、振幅、周期和频率等基本特征。
简谐运动知识点总结公式
简谐运动知识点总结公式简谐运动有许多相应的重要知识点,包括运动的基本概念和公式、振动能量的变化、图示、力的解析和叠加、波的运动、受阻简谐振动等。
下面是这些知识点的总结:一、运动的基本概念和公式1. 简谐运动的特征简谐运动有几个基本特征,包括周期、频率、振幅和相位等。
其中,周期是指物体完成一次完整的往复振动所需要的时间;频率是指单位时间内完成振动的次数;振幅是指简谐振动最大偏离平衡位置的距离;相位是指在一定时间内,振动物体所处的位置。
这些特征可以用公式表示:T=1/f,f=1/T,A表示振幅,ω表示角频率,θ表示相位。
这些特征对于描述简谐振动的特性非常重要。
2. 运动的方程简谐运动的方程可以用不同的形式表示。
对于弹簧振子,其运动方程为x=Acos(ωt+φ),其中x表示振动物体的位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
这个方程描述了振动物体的位置随时间的变化。
对于单摆,其运动方程为θ=Asin(ωt+φ),其中θ表示单摆的偏角,A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
这个方程描述了单摆的偏角随时间的变化。
这些方程对于分析简谐振动的运动规律非常重要。
二、振动能量的变化1. 动能和势能在简谐振动中,振动物体的能量包括动能和势能两部分。
动能是由于振动物体的运动而产生的能量,可以用公式K=(1/2)mv^2表示;势能是由于振动物体的位置而产生的能量,可以用公式U=(1/2)kx^2表示。
在振动过程中,动能和势能之间会相互转化,它们之和始终保持不变。
这些概念对于分析简谐振动的能量变化非常重要。
2. 振动能量的变化在简谐振动中,振动物体的能量会随着时间变化。
当振动物体在平衡位置附近往返运动时,动能和势能会交替增加和减小;当振动物体达到最大偏离位置时,动能最大而势能最小;当振动物体通过平衡位置时,动能最小而势能最大。
这些变化可以用图示表示,对于理解简谐振动的能量变化有很大帮助。
三、力的解析和叠加1. 恢复力简谐运动的物体受到恢复力的作用,恢复力的大小与物体偏离平衡位置的距离成正比,方向与偏离方向相反。
简谐运动重要知识点总结
简谐运动重要知识点总结一、简谐运动的定义简谐运动是一种特殊的振动运动,它的加速度与位移成正比,且方向相反。
在简谐运动中,物体在某一平衡位置附近作往复运动,它的加速度是恒定的,且与位移成正比。
二、简谐运动的特点1.周期性:简谐运动是周期性的,即物体围绕平衡位置作往复运动。
2.等加速度:简谐运动中,物体的加速度是恒定的。
3.位移与加速度成正比:简谐运动中,物体的加速度与位移成正比,且方向相反。
4.频率相同:简谐运动中同一个系统的所有物体的频率相同。
5.反向相位:简谐运动中相邻两个物体之间的位移和速度的变化是反向相位的。
三、简谐运动的运动规律1.位移、速度和加速度之间的关系:在简谐运动中,位移、速度和加速度之间存在固定的相位关系。
2.位移与加速度的关系:简谐运动中,物体的加速度与位移成正比,且方向相反。
3.位移、速度和加速度的表示:简谐运动中,物体的位移、速度和加速度可以通过正弦或余弦函数表示。
四、简谐运动的能量变化1.动能和势能的变化:在简谐运动中,物体的动能和势能随着时间不断变化,但它们的和是恒定的。
2.最大位移处的能量变化:在简谐运动中,物体在最大位移处的动能和势能之和是最大值。
3.零位移处的能量变化:在简谐运动中,物体在零位移处的动能和势能之和是最小值。
五、简谐运动的应用1.机械振动:简谐运动在机械振动、弹簧振子、单摆等系统中有着重要的应用。
2.光学振动:简谐运动在光学振动中也有着重要的应用,例如谐振子、声波等。
3.交流电路:简谐运动在交流电路中也有着重要的应用,例如交流电路的振荡等。
以上是简谐运动的重要知识点的总结,简谐运动是物理学中的重要概念,对于理解振动现象和应用振动理论具有重要意义。
希望以上内容对于大家的学习有所帮助。
简谐运动简谐运动的振幅周期频率和相位
相位的影响因素
初始位置
相位与振动物体的初始位置有关,如果物体在平衡位置的左侧或右侧开始振动, 其相位会有所不同。
初始速度
相位也会受到振动物体初始速度的影响,如果物体以不同的速度开始振动,其 相位也会有所差异。
相位与简谐运动的关系
相位决定了简谐运动的周期性变化,例如,当相位增加时,振动物体的位置和速 度也会随之变化,表现出周期性的振动模式。
通过调整相位,可以控制简谐运动的振幅、频率和方向等参数,从而实现不同的 运动效果。
THANKS
感谢观看
振幅与能量的关系
振幅与能量之间存在一定的关系,根据简谐运 动的能量公式,系统的总能量等于动能和势能 之和。
当振幅增大时,质点的动能和势能也随之增大, 但动能和势能之间存在相互转化的关系,因此 总能量保持不变。
在无阻尼的理想情况下,振幅将一直保持不变; 而在实际情况下,由于阻尼的存在,振幅会逐 渐减小,直到系统达到稳定状态。
简谐运动
目录
• 简谐运动的定义 • 振幅 • 周期 • 频率 • 相位
01
简谐运动的定义
简谐运动的描述
01
02
03
简谐运动是一种周期性 运动,其运动轨迹是正
弦或余复运动的物
理过程。
简谐运动可以用数学公式 表示为:y=Asin(ωt+φ), 其中A是振幅,ω是角频 率,t是时间,φ是初相角。
频率与周期的关系
01
频率和周期互为倒数关系,即f=1/T或T=1/f。
02
频率和周期是描述简谐运动的重要参数,它们共同决定了振动
的性质。
数学简谐运动知识点总结
数学简谐运动知识点总结一、简谐运动的定义简谐运动是指物体在恢复力的作用下,做的振幅恒定,周期恒定的往复运动。
所谓恢复力,是指当物体偏离平衡位置时,作用于物体上的力与物体位移的方向相反,且与位移成正比的力。
简谐运动的典型例子是弹簧振子和单摆。
二、简谐运动的公式1. 位移公式设物体做简谐运动的位移为x,位移的频率为f,位移的相位为φ,则位移x随时间t的变化规律可以表示为:x = A*cos(2πft + φ)其中A为振幅,f为频率,φ为相位。
2. 速度公式简谐运动的速度可以表示为位移对时间的导数,即:v = -2πfA*sin(2πft + φ)其中v为速度。
3. 加速度公式简谐运动的加速度可以表示为速度对时间的导数,即:a = -4π²f²A*cos(2πft + φ)其中a为加速度。
三、简谐振动的特性1. 振幅恒定在简谐振动中,物体的振动幅度是恒定不变的,即物体在振动过程中的最大位移保持不变。
2. 周期恒定在简谐振动中,物体完成一个完整的振动往复运动所需要的时间是恒定的,即物体的振动周期是固定不变的。
3. 运动规律非常规整简谐振动的运动规律非常规整,其位移、速度和加速度随时间的变化都可以用简明的数学函数来描述。
四、简谐振动的能量1. 动能和势能在简谐振动中,物体具有动能和势能。
其动能可表示为:T = 0.5mv²其中m为物体的质量,v为物体的速度。
其势能可表示为:U = 0.5kx²其中k为恢复力系数,x为物体的位移。
2. 总能量在简谐振动中,物体的总能量可表示为动能和势能的和,即:E = T + U当物体在振动过程中,其总能量是恒定的。
3. 能量转换在简谐振动过程中,物体的动能和势能会不断地相互转换,但总能量保持不变。
五、简谐振动的参数简谐振动有许多重要的参数,其中包括振幅、周期、频率、角频率、相位等。
1. 振幅简谐振动的振幅是物体在振动过程中位移的最大值,代表了物体振动的幅度大小。
简谐运动的描述
简谐运动的描述简谐运动的描述简谐运动是指一个物体在一个恒定的力场中做周期性的振动。
它是一种特殊的振动,具有周期性、稳定性和可预测性等特点。
简谐运动在自然界和工业生产中都有广泛应用,如弹簧振子、钟摆、电磁波等。
一、简谐运动的基本概念1.1 振幅振幅是指简谐运动中物体从平衡位置最大偏离距离。
通常用字母A表示,单位为米(m)。
1.2 周期周期是指简谐运动中物体完成一次完整振动所需要的时间。
通常用字母T表示,单位为秒(s)。
1.3 频率频率是指单位时间内完成的振动次数。
通常用字母f表示,单位为赫兹(Hz)。
1.4 相位相位是指在同一时刻内处于不同状态的两个物体之间的时间差。
相位差可以用角度来表示,通常用字母Φ表示。
二、简谐运动的数学描述2.1 速度与加速度公式对于简谐运动而言,速度和加速度分别可以用以下公式来计算:v = Aωcos(ωt + Φ)a = -Aω^2sin(ωt + Φ)其中,ω为角速度,可以用以下公式计算:ω = 2πf2.2 位移公式对于简谐运动而言,物体的位移可以用以下公式来计算:x = Acos(ωt + Φ)其中,A为振幅,Φ为相位差。
三、简谐运动的特点3.1 周期性简谐运动具有周期性,即物体在恒定的力场中做周期性的振动。
物体完成一次完整振动所需要的时间是固定的。
3.2 稳定性简谐运动具有稳定性,即物体在恒定的力场中做周期性的振动时,其运动状态是稳定并可预测的。
3.3 可预测性由于简谐运动具有稳定性和周期性,因此可以精确地预测物体在未来某一时刻所处的位置、速度和加速度等状态。
四、简谐运动的应用4.1 弹簧振子弹簧振子是一种常见的简谐振动系统。
它由一个质量和一个弹簧组成,在重力作用下进行周期性振动。
弹簧振子广泛应用于工业生产中的测量和控制系统中。
4.2 钟摆钟摆是一种通过重力驱动的简谐振动系统。
它由一个重物和一个支架组成,在重力作用下进行周期性振动。
钟摆广泛应用于时间测量、科学研究和导航等领域。
简谐运动的名词解释
简谐运动的名词解释1.引言1.1 概述简谐运动是物理学中一个重要而基础的概念。
它描述了一个物体相对于某个平衡位置作周期性的往复运动。
这种往复运动的特点是运动物体沿着固定的轨迹,不断地交替地通过平衡位置,并且运动物体的加速度与其位置的变化成正比。
简谐运动是一种理想化的运动形式,在现实世界中广泛存在。
其应用领域涉及到物体的振动、波动以及许多其他与周期性运动相关的现象。
例如,摆钟的摆动、弹簧的振动、音乐乐器的演奏等都可以通过简谐运动来描述。
简谐运动具有许多独特的特点。
首先,简谐运动的周期是固定的,也就是说,运动物体完成一次往复运动所需的时间是恒定的。
其次,简谐运动的运动物体的速度和加速度的变化是符合正弦函数的规律的,这就意味着运动物体在运动过程中不会出现速度或加速度突然变化的情况。
最后,简谐运动是一个平稳且稳定的运动形式,运动物体始终围绕平衡位置做往复运动,不会偏离或漂浮到其他位置。
简谐运动的研究对于深入理解物体的振动和波动现象具有重要意义。
通过研究简谐运动的定义和特点,我们可以更加准确地描述和解释各种物理现象,并且能够应用简谐运动的原理来解决一些实际问题。
在接下来的文中,我们将详细阐述简谐运动的定义和特点,并介绍简谐运动在不同领域中的应用以及其所具有的重要意义。
希望通过这篇长文的阐述,读者们能够对简谐运动有更加深刻的理解,并且能够将其运用到实际问题中,为我们的生活和科学研究带来更多的价值。
1.2文章结构文章结构部分可以包括以下内容:在本篇文章中,我们将探讨简谐运动的名词解释。
为了清晰地呈现这一主题,文章将按照以下结构展开:1. 引言:首先,我们将简要介绍简谐运动的背景和相关概念,为读者提供必要的背景知识。
1.1 概述:概述简谐运动的基本含义和定义,介绍它在自然界和物理学中的广泛应用。
1.2 文章结构:详细介绍本文的整体结构和各个部分的内容安排,以便读者对全文有个整体的认识。
1.3 目的:说明本文的写作目的,即为读者提供关于简谐运动的深入了解和认识。
(完整版)简谐运动
简谐运动一、弹簧振子1.弹簧振子图 11-1-1如图 11-1-1 所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。
2.平衡位置振子原来静止时的位置。
3.机械振动振子在平衡位置附近所做的往复运动,简称振动。
二、弹簧振子的位移—时间图像1.振动位移从平衡位置指向振子某时刻所在位置的有向线段。
2.建立坐标系的方法以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。
一般规定小球在平衡位置右边(或上边)时,位移为正,在平衡位置左边 (或下边)时,位移为负。
3.图像绘制用频闪照相的方法来显示振子在不同时刻的位置。
三、简谐运动及其图像1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t 图像)是一条正弦曲线,这样的振动叫做简谐运动。
2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。
弹簧振子的运动就是简谐运动。
3.简谐运动的图像(1)形状:正弦曲线,凡是能写成 x=Asin(ωt+p)的曲线均为正弦曲线。
(2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。
当堂达标1. (多选)下列运动中属于机械振动的是( )A.树枝在风的作用下运动B.竖直向上抛出的物体的运动C.说话时声带的运动D.爆炸声引起窗扇的运动2. (多选)关于简谐运动的图像,下列说法中正确的是 ( )A.表示质点振动的轨迹,是正弦或余弦曲线B.由图像可判断任一时刻质点相对平衡位置的位移方向C.表示质点的位移随时间变化的规律D.由图像可判断任一时刻质点的速度方向3. (多选)如图 1 所示,弹簧振子在 a、b 两点间做简谐运动,当振子从最大位移处 a 向平衡位置 O 运动过程中( )A.加速度方向向左,速度方向向右B.位移方向向左,速度方向向右C.加速度不断增大,速度不断减小D.位移不断减小,速度不断增大4.卡车在水平道路上行驶,货物随车厢上下做简谐运动而不脱离底板,设向下为正方向,其振动图像如图 2 所示,则货物对底板压力小于货物重力的时刻是( )A.时刻 t1 B.时刻 t2C.时刻 t4D.无法确定5.一简谐运动的图像如图 4 所示,在 0.1~0.15 s 这段时间内( )(图 4A.加速度增大,速度变小,加速度和速度的方向相同B.加速度增大,速度变小,加速度和速度方向相反C.加速度减小,速度变大,加速度和速度方向相同D.加速度减小,速度变大,加速度和速度方向相反6 (1)(多选)弹簧振子做简谐运动,振动图像如图 5 所示,则下列说法正确的是)图 5A. t1 、t2 时刻振子的速度大小相等,方向相反B. t1 、t2 时刻振子的位移大小相等,方向相反C. t2 、t3 时刻振子的速度大小相等,方向相反D. t2 、t4 时刻振子的位移大小相等,方向相反(2)如图 6 所示,简谐运动的图像上有 a、b、c、d、e、f 六个点,其中:图 6①与 a 点位移相同的点有哪些?②与 a 点速度相同的点有哪些?③图像上从 a 点到 c 点,质点经过的路程为多少?7. (1) (多选)弹簧振子以 O 点为平衡位置,在水平方向上的 A 、B 两点间做简谐运动,以下说法正确的是( )图 7A.振子在 A、B 两点时的速度为零位移不为零B.振子在通过 O 点时速度的方向将发生改变C.振子所受的弹力方向总跟速度方向相反D.振子离开 O 点的运动总是减速运动,靠近 O 点的运动总是加速运动E.振子在 A 、B 两点时加速度不相同(2)如图 8 所示,一轻质弹簧上端系于天花板上,一端挂一质量为 m 的小球,弹簧的劲度系数为 k,将小球从弹簧为自由长度时的竖直位置放手后,小球做简谐运动,则:①小球从放手运动到最低点,下降的高度为多少?②小球运动到最低点时的加速度大小为多少?8、多选)如图 11-1-10 所示为某质点做简谐运动的图像,若 t=0 时,质点正经过 O 点向 b 点运动,则下列说法正确的是( )图 11-1-10A.质点在 0.7 s 时,正在背离平衡位置运动B.质点在 1.5 s 时的位移最大C. 1.2~1.4s 时间内,质点的位移在增大D. 1.6~1.8s 时间内,质点的位移在增大。
简谐运动的知识点总结
简谐运动的知识点总结下面是简谐运动的几个重要知识点总结:1. 简谐运动的定义简谐运动是指一个物体在恢复力的作用下,沿着直线或围绕固定轴线做周期性往复运动的一种特殊形式。
在简谐运动中,物体的加速度与位移呈线性关系,且恢复力与位移成正比。
2. 简谐运动的特征简谐运动有两个主要特征:周期性和振幅。
周期性指的是物体完成一次往复运动所需的时间,而振幅则是指往复运动的最大位移。
3. 简谐运动的数学描述简谐运动可以用正弦函数或余弦函数进行数学描述。
如果物体的位移沿着x轴方向变化,则其数学描述可以写为:x(t) = A * cos(ωt + φ),其中A是振幅,ω是角频率,t是时间,φ是初相位。
4. 弹簧振子的简谐运动弹簧振子是最典型的简谐运动系统之一。
当物体沿着弹簧的轴线上下振动时,其运动符合简谐运动的规律。
弹簧振子的周期T和角频率ω与弹簧的劲度系数k和质量m有密切关系。
5. 摆动的简谐运动摆动是另一个常见的简谐运动系统。
在重力的作用下,摆锤沿着一定的轨迹做周期性摆动,其运动也符合简谐运动的规律。
摆动的周期T和角频率ω与摆锤的长度l有密切关系。
6. 简谐运动的能量在简谐运动过程中,物体具有动能和势能,并且二者之和保持不变。
当物体位于最大位移处时,动能最大,势能最小;当位于最大位移的相反方向时,势能最大,动能最小。
7. 简谐运动的受力分析在简谐运动中,物体所受的恢复力与位移成正比,且与速度成反比。
这种受力形式被称为胡克定律,可以用F = -kx来描述,其中F是恢复力,k是弹簧或系统的劲度系数,x是位移。
8. 简谐运动的阻尼和受迫振动在实际情况下,简谐运动可能会受到阻尼和外力的影响,这时的简谐运动被称为阻尼振动和受迫振动。
阻尼振动是指系统中存在摩擦力或阻尼元件的情况,会使振动逐渐减弱直至停止;受迫振动是指系统受到外力驱动振动,外力的频率与系统的固有频率相近时,会出现共振现象。
9. 简谐运动的应用简谐运动在物理学和工程学中有广泛的应用,例如弹簧减震器、机械振动系统、音叉和声波振动等。
简谐运动课件ppt
单摆的简谐运动
总结词
单摆的简谐运动是指一个质点在重力作用下做周期性振 动。
详细描述
单摆的简谐运动是指一个质点在重力作用下绕固定点做 周期性振动。当质点从平衡位置出发,受到重力的作用 向下加速运动,到达最低点时速度达到最大值,然后受 到回复力的作用开始向上减速运动,到达最高点时速度 为零。在摆动过程中,回复力与质点的位移成正比,当 质点回到平衡位置时,回复力为零,质点的速度达到最 大值。
结果
通过实验,可以观察到弹簧振子 的振动轨迹呈正弦波形,并记录
下振幅、周期等数据。
分析
根据记录的数据,可以计算出弹 簧振子的振动频率和相位差,进
一步分析简谐运动的特性。
讨论
简谐运动在现实生活中有着广泛 的应用,如钟摆、乐器振动等。 通过实验,可以深入理解简谐运 动的原理,为后续的学习和实际
应用打下基础。
简谐运动的平衡位置是指 物体受到的回复力为零的 位置,通常也是振动的中 心点。
回复力
回复力是指使物体返回平 衡位置并指向平衡位置的 力,它是使物体做简谐运 动的力。
简谐运动的特点
往复性
简谐运动是一种往复运动 ,物体在运动过程中会不 断重复往返于平衡位置和 最大位移处。
周期性
简谐运动是一种周期性运 动,其运动周期是固定的 ,与振幅和角频率有关。
实验器材与步骤
器材:弹簧振子、示波器、数据采集器、电脑 等。
011. 准备实验器材,源自弹簧振子连接到数据 采集器上。03
02
步骤
04
2. 启动实验,观察弹簧振子的振动情况, 记录振幅、周期等数据。
3. 使用示波器观察振动的波形,了解相位 的概念。
05
06
4. 分析实验数据,得出结论。
简谐运动的公式和定义
简谐运动的公式和定义一、简谐运动的公式和定义1、公式:$x=A\sin(ωt+φ)$2、公式中的参数:(1)式中$x$表示振动质点相对于平衡位置的位移,t表示振动的时间。
(2)A表示振动质点偏离平衡位置的最大距离,即振幅。
(3)ω称为简谐运动的圆频率,它也表示简谐运动物体振动的快慢。
3、定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
4、特点:(1)简谐运动是最基本、最简单的振动。
(2)简谐运动的位移随时间按正弦规律变化,所以它不是匀变速运动,应为变力作用下的变加速运动。
5、特征:(1)受力特征:回复力$F=-kx$,$F$(或$a$)的大小与$x$的大小成正比,方向相反。
(2)运动特征:靠近平衡位置时,$a、F、x$都减小,$v$增大;远离平衡位置时,$a、F、x$都增大,$v$减小。
(3)能量特征:振幅越大,能量越大。
在运动过程中,动能和势能相互转化,系统的机械能守恒。
(4)周期性特征:质点的位移、回复力、加速度和速度均随时间做周期性变化,变化周期就是简谐运动的周期$T$;动能和势能也随时间做周期性变化,其变化周期为$\frac{T}{2}$。
(5)对称性特征:关于平衡位置$O$对称的两点,加速度的大小、速度的大小、动能、势能相等,相对平衡位置的位移大小相等。
6、平衡位置:物体在振动过程中回复力为零的位置。
7、回复力的定义:使物体返回到平衡位置的力。
8、回复力的方向:总是指向平衡位置。
9、回复力的来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。
二、简谐运动的相关例题(多选)关于简谐运动以及做简谐运动的物体完成一次全振动的意义,以下说法正确的是____A.位移减小时,加速度减小,速度增大B.位移的方向总跟加速度的方向相反,跟速度的方向相同C.动能或势能第一次恢复为原来的大小所经历的过程D.速度和加速度第一次同时恢复为原来的大小和方向所经历的过程E.物体运动方向指向平衡位置时,速度的方向与位移的方向相反;背离平衡位置时,速度方向与位移方向相同答案:ADE解析:当位移减小时,回复力减小,则加速度减小,物体向平衡位置运动,速度增大,故A正确;回复力与位移方向相反,故加速度和位移方向相反,但速度与位移方向可以相同,也可以相反;物体运动方向指向平衡位置时,速度的方向与位移的方向相反;背离平衡位置时,速度方向与位移方向相同,故B错误,E正确;一次全振动,动能和势能可以多次恢复为原来的大小,故C错误;速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动,故D正确。
简谐运动的运动方程
简谐运动的运动方程1. 简谐运动的概念简谐运动是指一个物体在恢复力作用下,在一个固定轴线上进行往复运动的运动形式。
在简谐运动中,物体的加速度与其位移成正比,且方向相反,符合以下的运动规律:1.加速度与位移成正比:a ∝ x2.加速度与位移的符号相反:a = -ω²x3.加速度与时间的关系:a = -ω²A sin(ωt)其中,a表示物体的加速度,x表示物体的位移,A表示运动的幅度(即最大位移),ω表示角频率,t表示时间。
简谐运动可以描述许多真实世界中的现象,如弹簧振子的运动、钟摆的摆动、音叉的振动等。
2. 简谐运动的运动方程简谐运动的运动方程描述了物体在简谐运动中的时间变化规律。
对于简谐运动,其运动方程一般可以表示为:x(t) = A sin(ωt + ϕ)其中,x(t)表示时间t时刻物体的位移,A表示运动的幅度(即最大位移),ω表示角频率,ϕ表示相位角。
•位移:位移x(t)表示物体从平衡位置开始的偏离程度。
•幅度:幅度A表示物体在简谐运动中的最大位移。
•角频率:角频率ω表示单位时间内物体通过一个完整振动周期的次数。
•相位角:相位角ϕ表示物体在t = 0时刻的位移相位。
3. 简谐运动的基本特点简谐运动具有以下的基本特点:3.1 周期性简谐运动是周期性的,物体的位移和速度随时间循环变化,周期T表示物体完成一个完整振动的所需时间。
3.2 能量守恒在简谐运动中,物体的动能和势能之和保持不变,即总机械能守恒。
3.3 相位关系简谐运动中,不同物体的位移之间存在相位差,相位差决定了物体之间的相对位置关系。
4. 简谐运动的重要应用简谐运动有许多重要的应用,下面介绍其中几个应用:4.1 时钟时钟中的摆锤进行来回振荡的运动就是简谐运动。
通过控制摆锤的长度,可以调整时钟的时间精准度。
4.2 天体运动天体运动中的一些周期性现象,如行星的公转运动、恒星的振动等,都可以使用简谐运动来描述。
4.3 电磁波电磁波是一种振动,可以用简谐运动来描述。
简谐运动知识点总结
引言概述:简谐运动是物理学中的一个重要概念,它在生活中随处可见。
本文将对简谐运动的知识进行总结,以帮助读者全面理解和掌握简谐运动的相关概念和特性。
正文内容:一、简谐运动的定义与描述1.简谐运动的定义:简谐运动是指物体在一个恢复力作用下沿直线或者围绕固定轴线进行的运动,其加速度与位移成正比且反向相同。
2.简谐运动的描述:简谐运动可以用位移、速度、加速度等物理量对其进行描述,其中位移随时间的变化呈正弦函数。
二、简谐运动的特性1.周期性:简谐运动具有周期性,即物体在一次完整运动中所经历的时间是一定的。
2.频率:简谐运动的频率是指单位时间内完成的运动周期数,其与周期有倒数关系。
3.振幅:简谐运动的振幅是指物体在运动过程中离开平衡位置的最大位移。
4.相位:简谐运动的相位是指物体在简谐运动中的位置关系,可以通过相位角来描述。
5.能量守恒:简谐运动中,机械能守恒,包括动能和势能的转化。
三、简谐振动的数学表达1.位移方程:简谐运动可以通过位移方程进行数学表达,一般形式为x(t)=Asin(ωt+φ),其中A为振幅,ω为角频率,φ为初相位。
2.速度和加速度方程:简谐运动的速度和加速度可以通过对位移方程分别进行一次和两次时间导数得到。
四、简谐振动的应用1.机械振动:简谐振动在机械工程中有广泛应用,如弹簧振子、钟摆等。
2.电磁振动:简谐振动在电磁学中的应用包括交流电路中的振荡器、天线振动等。
3.光学振动:简谐振动在光学中的应用包括光的偏振、干涉等现象。
4.生物振动:简谐振动在生物学中有许多应用,如心脏的收缩与舒张、呼吸等。
5.音乐演奏:音乐演奏中的乐器振动可以用简谐振动进行描述,如弦乐器、风笛等。
五、简谐振动的干扰和共振1.干扰:两个简谐振动相互作用可以产生干扰,如合成振动和干涉现象。
2.共振:当外界周期性力与物体的固有振动频率相同或接近时,会发生共振现象,产生巨大振幅。
总结:通过对简谐运动的定义与描述、特性、数学表达、应用以及干扰和共振的介绍,我们可以更全面地理解和掌握简谐运动的相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考与讨论
3、做简谐运动的物体,当位移为负值时,以下 说法正确的是( ) A、速度一定为正值,加速度一定为正值。 BB、速度不一定为正值,但加速度一定为正值。 C、速度一定为负值,加速度一定为正值。 D、速度不一定为负值,加速度一定为负值。
思考与讨论
例3. 右图为甲、乙两个物体的振 动图象,则: ( A) D A. 甲、乙两振动的振幅分别是 2m ,1m ; B. 甲、乙的振动频率之比为 1:2 ; C.前四秒内甲,乙两物体的加速 度均为负值; D. 第二秒末甲的速度最大,乙的 加速度最大。
思考与讨论
6、一弹簧振子作简谐振动 ,周期为T,( C) A. 若t时刻和(t+Δt)时刻振子运动位移的大小相 等、方向相同 ,则Δt一定等于 T的整数倍; B. 若t时刻和(t+Δt)时刻振子运动速度的大小相 等、方向相反 ,则Δt一定等于 T/2 的整数倍; C.若Δt =T,则在 t时刻和(t+Δt)时刻振子运动 动能一定相等; D. 若Δt=T/2,则在 t时刻和(t+Δt)时刻弹簧的 长度一定相等 .
简谐运动的特点:
1 、简谐振动是最简单、最基本的运动,简谐 振动是理想化的振动。
2、回复力与位移成正比而方向相反,总是指 向平衡位置。
3 、简谐运动是一种理想化的运动,振动过程 中无阻力,所以振动系统机械能守恒。
4、简谐运动是一种非匀变速运动。 5、位移随时间变化关系图是 正弦或余弦曲线 .
机 1、定义
速度方向___加速度方向______.
三、描述简谐运动特征的物理量
1 、全振动: 振动物体往返一次(以后完全重 复原来的运动)的运动,叫做一次全振动。
2 、振幅( A ): 振动物体离开平衡位置的最大 距离,叫做振幅,用 A表示,单位为长度单位 单位,在国际单位制中为米( m) ,振幅是描 述振动强弱的物理量,振幅大表示振动强,振 幅小表示振动弱。 振幅的大小反映了振动系统 能量的大小。
向左 向左 增大 减小
向左 减小 向左 增大
向右 增大
向左 减小
向右 减小 向右 增大
增大 减小 增大 减小 增大 减小
OB
向右 增大 向左 增大 向右 减小 减小 增大
C
O
B
例1、图所示为一弹簧振子,O为平衡 位置,设向右为正方向,振子在B、C 之间振动时(C ) A.B至O位移为负、速度为正 B.O至C位移为正、加速度为负 C.C至O位移为负、加速度为正 D.O至B位移为负、速度为负
几点注意事项
4、振幅与振动的能量有关,振幅越 大,能量越大。 5、周期与频率的关系:T=1/f 6、物体的振动周期与频率,由振动 系统本身的性质决定,与振幅无关, 所以其振动周期称为固有周期。振动 频率称为固有频率。
思考与讨论
例2、一个弹簧振子的振动周期是0.25s , 当振子从平衡位置开始向右运动,经过 1.7s 时,振子的运动情况是( B ) A. 正在向右做减速运动; B. 正在向右做加速运动; C.正在向左做减速运动; D. 正在向左做加速运动;
开10cm ,无初速释放,已知振子频率为 5Hz ,振子
在0.1s 到0.15s 内向 (左、右)做 (加、减)
速运动;在 0.4s 内一共通过的路程为 ,位移
为 ; 振子0.65s 末速度向 (左、右);当振
子的位移为 2cm 时,它的加速度大小为 4m/s2 。则
振子在振动过程中的最大加速度为 ;请在右图中作
这个关系在物理学中叫做胡克定律
式中k是弹簧的劲度系数。负号 表示回复力的方向跟振子离开平 衡位置的位移方向相反。
定义:物体在跟位移大小成正比, 并且总是指向平衡位置的力作用 下的振动,叫做简谐运动。
说明:判断是否作简谐振动的依据是
F ? ? kx
简谐运动中位移、加速度、速度、动 量、动能、势能的变化规律
t
简谐运动中位移、加速度、速度、动量、 动能、势能的变化规律
(5)能量变化:机械能守恒,动能和 势能是互余的。
(6 )在简谐运动中,完成P6 的表格
物理量
位移(X)
方向 大小
回复力(F) 加速度(a)
方向 大小
速度(V) 方向
大小
动能大小
势能大小
B'
O
B
变化过程
B O
向右 减小
O B' B' O
C. 小球由 O到B 运动的过程中,要克服弹力做功 D. 小球由D点运动到C再返回D,所用的时间是 1/4 周期
思考与讨论
11.如图所示,轻质弹簧下端挂重为20N 的物体A,弹簧伸长了3cm,再挂重为20N 的物体B时又伸长2cm,若将连接A和B的连 线剪断,使A在竖直面内振动时,下面结
论正确的是( ) A.振幅是2cm B.振幅是3cm
思考与讨论
4.做简谐振动的弹簧振子受到的回复力与 位移的关系可用图中哪个图正确表示出来?
( C)
s/cm
a
e
2
bd 0 1 2 34
-2
c
思考与讨论
5、根据振子的运动图象回答:
a、图中各点表示平衡位置的有___
b、开始振动时,振子的所处的位
置是_____(平衡位置,最大位移)
c、振子的周期____,频率是____.
弹簧振子
定义:指理想化处理后的弹簧与小球组 成的系统。
弹簧振子的理想化条件
(1)弹簧的质量比小球的质量小得多, 可以认为质量集中于振子(小球)。
(2)小球需体积很小,可当做质点处理。 (3)忽略一切摩擦及阻力作用。
(4)小球从平衡位置拉开的位移在弹 性限度内。
常见简谐运动:
常见简谐运动:
回复力
C.最大回复力是30N D.最大回复力是20N
思考与讨论
12 .一平台沿竖直方向作简谐振动,一物体 置于平台上随平台一起振动,物体对平台的 压力最大的时刻是( ) A.平台向下运动经过振动的平衡位置时 B.平台向上运动经过振动的平衡位置时 C.平台运动到最高点时 D.平台运动到最低点时
(2)加速度a在两个“端点”最大,在 平衡位置为零,方向总指向平衡位置。
a=-kx/m
(3)速度大小v与加速度a的变化恰好 相反,在两个“端点”为零,在平衡位 置最大,除两个“端点”外任何一个位 置的速度方向都有两种可能。
能量随空间变化 能量随时间变化
E
x
E
E
E p Ek
?A
Ep
xA
X
E p Ek
频率是表示振动快慢的物理量,频率越大表示 振动越快,频率越小表示振动越慢。
几点注意事项
1、振幅是一个标量,是指物体偏离平衡位 置的最大距离。它没有负值,也无方向, 所以振幅不同于最大位移。
2、在简谐运动中, 振幅跟频率或周期无关 。 在一个稳定的振动中,物体的振幅是不变 的。
3、振动物体在一 个全振动过程中通过的路 程等于 4 个振幅, 在半个周期内通过的路 程等于两个振幅,但在四分之一周期内通 过的路程不一定等于一个振幅,与振动的 起始时刻有关。
三、描述简谐运动特征的物理量
3 、周期: 做简谐运动的物体完成一次全振动 所需要的时间,叫做振动的周期用 T表示,单 位为时间单位,在国际单位制中为秒( s)。
振动周期是描述振动快慢的物理量,周期越 长表示振动越慢,周期越小表示振动越快。
4 、频率: 单位时间内完成全振动的次数,叫 做振动的频率。用 f表示,在国际单位制中, 频率的单位是赫兹( Hz),
平衡位置:振动物体能够静止时的位置。
(1)振动中的位移 x 都是以平衡位置为起点 的,因此,方向就是从平衡位置指向末位置的 方向,大小就是这两位置间的距离,两个“端 点”位移最大,在平衡位置位移为零。
思考:怎样才能描绘位 移随时间变化图线 ?
位移随时间变化 关系图是正弦或 余弦曲线.
简谐运动中位移、加速度、速度、动 量、动能、势能的变化规律
振子在振动过程中,所受重力与支持力 平衡,振子在离开平衡位置 O 点后,只受 到弹簧的弹力作用,这个力的方向跟振子 离开平衡位置的位移方向相反,总是指向 平衡位置,所以称为 回复力。
胡克定律
在弹簧发生弹性形变时,弹簧振子
的回复力F与振子偏离平衡位置的位 移x大小成正比,且方向总是相反,
即:
F ? ?kx
与时间 T 的关系曲线图,由图可 知: ( A ) A. 由0时刻开始计时,质点的轨
x/cm 2
迹是一条正弦曲线
B. 质点振动的频率为 2Hz
0
2
4
6 t/s
C.在 t=3 秒末,质点的加速度负 -2
向最大
D.在t=4 秒末,质点的速度负向
最大
思考与讨论
9. 将一个水平方向的弹簧振子从它的平衡位置向右拉
机械振动
第一、二节 简谐运动
想一想——
进入高中以来,我们主要学习了哪几种形式 的运动? 请说出各运动的名称及每种运动所对 应的受力情况。
1. 匀速直线运动 2. 匀变速直线运动 3. 平抛运动
4. 匀速圆周运动
机械振动是生活中常见的运动形式
一、机械振动
1、定义: 物体(或物 体的一部分) 在某一中心 位置两侧所 做的往复运 动,就叫做 机械振动 (振动)
出振子的振动图象(以向右为正,至少一个全振
动)。
x/cm
0
t/s
思考与讨论
10 .如图所示的弹簧振子,振球在光滑杆上做简谐
振动,往返于 BOC 之间,O是平衡位置, D是OC的中
点则
BC
A. 小球由O向C运动的过程中,加速度越来越大,速度 越来越大
B. 小球由C到O运动的过程中,加速度越来越小, 速度越来越大