载流子浓度和电导率.55页PPT
实验四 霍尔效应法测量半导体的载流子浓度、电导率和迁移

实验四霍尔效应法测量半导体的载流子浓度、电导率和迁移一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS和VH-IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理置于磁场中的半导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。
随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。
了解这一富有实用性的实验,对日后的工作将有益处。
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:(1)其中e为载流子(电子)电量,为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。
(a)(b)图(1) 样品示意图无论载流子是正电荷还是负电荷,Fg的方向均沿Y方向,在此力的作用下,载流子发生便移,则在Y方向即试样A、A´电极两侧就开始聚积异号电荷而在试样A、A´两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH称为霍尔电压,电极A、A´称为霍尔电极。
电导率、迁移率、霍耳效应ppt

② 温度升高到杂质饱和电离区: 杂质已全部电离,本征激发还不显著,载流子浓度基本 不变 晶格振动散射是主要的.随着温度T的升高,迁移率下降,
T↑ → μ↓ → ↑
电阻率随温度升高而增大
③ 进入本征区后 随着温度T的升高,载流子浓度迅速增加,
而迁移率μ下降,但大量本征载流子的产生远远超过迁移 率减小对电阻率的影响。
NI ↑→电离杂质散射渐强→ μ随T 下降的趋势变缓
NI很大时(如1019cm-3),在低温的情况下, T↑,μ ↑(缓慢),说明 杂质电离项作用显著;在高温的情况下, T↑,μ↓,说明晶格散射作 用显著.
总之:低温和重掺杂时,电离杂质散射主要; 高温和低掺杂时,晶格振动散射主要。
室温下迁移率与杂质浓度关系
半导体片置于xy平面内
—— 电流沿x方向
—— 磁场垂直于半导 体片沿z方向
空穴导电的P型半导体, 载流子受到洛伦兹力
半导体片两端形成正负电荷的积累,产生静电场 达到稳恒,满足
电流密度 电场强度
—— 霍耳系数 电子导电的N半导体 电场强度
—— 霍耳系数
—— 霍耳系数
—— 霍耳系数
—— 半导体的霍耳系数与载流子浓度成反比 —— 半导体的霍耳效应比金属强得多 —— 测量霍耳系数可以直接测得载流子浓度 —— 确定载流子的种类
即: E,随着E的增加, E下降,因此,欧姆定律不再
成立.
⒊当E>105V/cm后, vd达到一饱和值,称为饱和漂移
速度.vd
max
107 cm
s
载流子热运动平均速度.
GaAs 电子
lg vd
Ge电子
Ge空穴
实验四 霍尔效应法测量半导体的载流子浓度、电导率和迁移

实验四霍尔效应法测量半导体的载流子浓度、电导率和迁移一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS和VH-IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理置于磁场中的半导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。
随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。
了解这一富有实用性的实验,对日后的工作将有益处。
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:(1)其中e为载流子(电子)电量,为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。
(a)(b)图(1) 样品示意图无论载流子是正电荷还是负电荷,Fg的方向均沿Y方向,在此力的作用下,载流子发生便移,则在Y方向即试样A、A´电极两侧就开始聚积异号电荷而在试样A、A´两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH称为霍尔电压,电极A、A´称为霍尔电极。
电导率电阻率与载流子浓度

半导体物理与器件
电阻率和杂质浓度的关系
右图所示为 N型和P型硅 单晶材料在 室温(300K) 条件下电阻 率随掺杂浓 度的变化关 系曲线。
半导体物理与器件
右图所示为N型 和P型锗、砷化 镓以及磷化镓单 晶材料在室温 (300K)条件下电 阻率随掺杂浓度 的变化关系曲线。
半导体物理与器件
电阻率(电导率)同时受载流子浓度(杂质浓度)和 迁移率的影响,因而电阻率和杂质浓度不是线性关系。
射起主要作用,随温度升高迁移率下降
本征区,载 流子浓度随 温度升高而 迅速升高,
低温
饱和
本征
T
低温下晶格振动不明显,本征载流子浓度低。 电离中心散射随温度升高而减弱,迁移率增加
半导体物理与器件
载流子的漂移速度饱和效应 前边关于迁移率的讨论一直建立在一个基础之上:弱场
条件。即电场造成的漂移速度和热运动速度相比较小,从而不 显著改变载流子的平均自由时间。但在强场下,载流子从电场 获得的能量较多,从而其速度(动量)有较大的改变,这时, 会造成平均自由时间减小,散射增强,最终导致迁移率下降, 速度饱和。对于热运动的电子:
右图所示为一块N型 半导体材料中,当施 主杂质的掺杂浓度ND 为1E15cm-3时,半导 体材料中的电子浓度 及其电导率随温度的 变化关系曲线。
半导体物理与器件
从图中可见,在非本征激发为主的中等温度区间内(即大约 200K至450K之间),此时杂质完全离化,即电子的浓度基本 保持不变,但是由于在此温度区间内载流子的迁移率随着温度 的升高而下降,因此在此温度区间内半导体材料的电导率也随 着温度的升高而出现了一段下降的情形。
VT Vd
l
VT
em*ຫໍສະໝຸດ 平均漂移速度 : vd E E
载流子浓度和电导率

价带:gV(E)∝-E 1/2
● 载流子浓度:
导带电子浓度:
no Nc e
Ec EF kT
no ni e
价带空穴浓度:
EF Ei kT
EF Ev kT
po Nv e
P o ni (?)
浓度积:
no po n
2 i
● 本征半导体:
no po ni ,
EF Ei
得: 对三块材料分别计算如下:
Ei EF k T ln
p ni
(ⅰ) 即 p 型半导体的费米能级在禁带中线下 0.37eV 处。 10 3 Ei EF 0 n p n 1.5 10 cm (ⅱ) 02 02 i 即费米能级位于禁带中心位置。 (ⅲ)对 n 型材料有
Vdn nq E
单位场强下电子 的平均漂移速度
nq
上式为电导率和迁移率的关系
J n pqn E
dQ Jn nqV dn dsdt
在电场不太强时,漂移电流遵守欧姆定律,即
J E
其中σ为材料的电导率
E nqVdn
Vdn E nq
E 恒定,Vdn 恒定 E , J, Vdn
平均漂移速度的大小与 电场强度成正比,其比 值称为电子迁移率。
因为电子带负电,所以Vdn一般应和 E 反向,习惯上迁移率只取正值,即
二、本征载流子浓度及影响因素
1. 本征载流 子浓度 ni
no p0 N c NV e no po ni N C NV e
2 Eg kT Eg 2 kT Eg 2 kT Eg kT
ni N C NV e
1/ 2
半导体载流子浓度与电导率的关系

半导体材料在电子学和光学器件领域中具有非常重要的地位,而半导体载流子浓度与电导率之间的关系是决定半导体材料性能的重要因素之一。
在本文中,我们将从半导体材料的基本特性和电导率的定义出发,深入探讨半导体载流子浓度与电导率的关系,帮助读者更全面地理解这一重要的物理概念。
一、半导体材料的基本特性半导体是介于导体和绝缘体之间的材料,其电导率介于导体和绝缘体的电导率之间。
半导体材料的电导率受到两种载流子的影响,即自由电子和空穴。
在纯净的半导体晶体中,自由电子和空穴的浓度几乎相等,因此其电导率较低。
然而,通过掺杂或施加外加电压,可以改变半导体材料中的载流子浓度,从而改变其电导率。
二、载流子浓度与电导率的关系1. 载流子浓度对电导率的影响载流子浓度是半导体材料中自由电子和空穴的数量,它直接影响着半导体材料的电导率。
当半导体材料中的载流子浓度较低时,由于自由电子和空穴的数量有限,它们在外加电场的作用下移动的速度较慢,因此半导体材料的电导率较低。
当半导体材料中的载流子浓度较高时,自由电子和空穴的数量增多,它们在外加电场的作用下移动的速度加快,因此半导体材料的电导率也随之增大。
2. 掺杂对载流子浓度的影响通过向半导体材料中引入掺杂物,可以有效地改变半导体材料中的载流子浓度。
N型半导体是指在半导体晶体中掺杂了大量的施主杂质,使得半导体材料中的自由电子浓度远远大于空穴浓度。
相反,P型半导体是指在半导体晶体中掺杂了大量的受主杂质,使得半导体材料中的空穴浓度远远大于自由电子浓度。
三、个人观点和理解从上述分析可以看出,半导体载流子浓度与电导率之间存在着密切的关系。
在实际的半导体器件中,通过精确控制半导体材料中的载流子浓度,可以实现对器件电性能的精确调控,从而满足不同应用场景的需求。
深入理解半导体载流子浓度与电导率的关系对于半导体器件的设计和制造具有重要的意义。
四、总结与回顾在本文中,我们从半导体材料的基本特性出发,探讨了半导体载流子浓度与电导率的关系。
载流子浓度和电导率

n3
ni 2 p3
(1.51010 )2 2.25104
11016 cm3
(2) 即 p01 n01 2.251016 1104cm3 ,故为 p 型半导体. , p02 n02 即 ni n01 p01 1.51010 cm3 ,故为本征半导体. ,即 p01 n02 2.25104 11016 cm3 ,故为 n 型半导体.
J E
其中σ为材料的电导率
E nqVdn
E 恒定,Vdn 恒定 E , J, Vdn
Vdn
E nq
平均漂移速度的大小与 电场强度成正比,其比 值称为电子迁移率。
因为电子带负电,所以Vdn一般应和 E 反向,习惯上迁移率只取正值,即
Vdn
E nq
(3).当 T=300k 时, k T 0.026eV
由
p
ni
e
x
pE(i EF kT
)
得:
Ei
EF
kT
ln
p ni
对三块材料分别计算如下:
p
2.251016
(ⅰ)
Ei EF
k T ln ni
0.026ln
1.51010
0.37(eV )
即 p 型半导体的费米能级在禁带中线下 0.37eV 处。
(ⅲ)对 n 型材料有
n
ni e x
pE(F Ei kT
)
EF
Ei
k T ln n ni
0.026
ln
1016 1.51010
0.35(eV )
即对 n 型材料,费米能级在禁带中心线上 0.35eV 处。
载流子浓度和电导率.57页PPT

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
优选电导率和载流子迁移率Ppt

为了改变半导体的性质,常常进行 人工掺杂。不同的掺杂将会改变半 导体中电子或空穴的浓度。
第十七页,共55页。
若所掺杂质的价态大于基质的价态,在和基 质原子键合时就会多余出电子,这种电子很 容易在外界能量(热、电、光能等)的作用 下脱离原子的束缚成为自由运动的电子(导 带电子),所以它的能级处在禁带中靠近导 带底的位置(施主能级),这种杂质称为施 主杂质。
第六页,共55页。
在绝对零度条件下,半导体的电子全部束缚 在原子上,能量低,处于价带。温度升高时, 部分电子由于热运动,脱离原子的束缚,进 入导带。所以温度升高,半导体的电导率升 高。
而金属温度升高导致电子与原子以及电子与 电子的碰撞加剧,电导降低,电阻增加。
第七页,共55页。
根据霍尔效应原理制成的霍尔器件, 可用于磁场和功率测量,也可制成 开关元件,在自动控制和信息处理 等方面有着广泛的应用。
第十八页,共55页。
施主杂质中的电子进入导带的过程称为电离 过程,离化后的施主杂质形成正电中心,它 所放出的电子进入导带,使导带中的电子浓 度远大于价带中空穴的浓度,因此,掺施主 杂质的半导体呈现电子导电的性质,称为n 型半导体。
第十九页,共55页。
若所掺杂质的价态小于基质的价态,这种杂 质是受主杂质,它的能级处在禁带中靠近价 带顶的位置(受主能级),受主杂质很容易 被离化,离化时从价带中吸引电子,变为负 电中心,使价带中出现空穴,呈空穴导电性 质,这样的半导体为p 型半导体。
第十五页,共55页。
半导体的导电性质就是由导带中带负电荷的 电子和价带中带正电荷的空穴的运动所形成 的。这两种粒子统称载流子。本征半导体中 的载流子称为本征载流子,它主要是由于从 外界吸收热量后,将电子从价带激发到导带, 其结果是导带中增加了一个电子而在价带出 现了一个空穴,这一过程成为本征激发 。
实验三-霍尔效应法测量半导体的载流子浓度、-电导率和迁移

实验三霍尔效应法测量半导体的载流子浓度、电导率和迁移率一、实验目的1.了解霍尔效应实验原理以与有关霍尔元件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的 VH-IS 和VH-IM 曲线。
3.确定试样的导电类型、载流子浓度以与迁移率。
二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图(1)(a)所示的 N 型半导体试样,若在 X 方向的电极 D、E 上通以电流 Is,在 Z 方向加磁场 B,试样中载流子(电子)将受洛仑兹力:其中 e 为载流子(电子)电量, V为载流子在电流方向上的平均定向漂移速率,B 为磁感应强度。
无论载流子是正电荷还是负电荷,Fg 的方向均沿 Y 方向,在此力的作用下,载流子发生便移,则在 Y 方向即试样 A、A´电极两侧就开始聚积异号电荷而在试样 A、A´两侧产生一个电位差 VH,形成相应的附加电场 E—霍尔电场,相应的电压 VH 称为霍尔电压,电极 A、A´称为霍尔电极。
电场的指向取决于试样的导电类型。
N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。
对 N 型试样,霍尔电场逆 Y 方向,P 型试样则沿Y 方向,有显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与 Fg方向相反的横向电场力:其中 EH 为霍尔电场强度。
FE 随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力 e EH 与洛仑兹力eVB相等,样品两侧电荷的积累就达到平衡,故有设试样的宽度为 b,厚度为 d,载流子浓度为 n,则电流强度V Is 与的关系为由(3)、(4)两式可得即霍尔电压 VH(A、A´电极之间的电压)与 IsB 乘积成正比与试样厚度 d成反比。
3.3 本征半导体的载流子浓度(雨课堂课件)

gc ( E) f B E
B
gc ( E) f B E dE
C
Ec
Ec
Ec
D
Ec
gc ( E )dE
gc ( E) f B E dE
提交
单选题
1分
价带顶附近的状态密度为gv(E),电子占据能级E 的几
率为fB(E) ,则价带空穴数为( )。
A
B
1 −
4
m
m
3
Eg
p n
15
2
讨论:ni 4.82 10
T exp
(3.33)
2
m
2k0T
0
dE g
, 代入(3.33)
设 E g E g (0) T ,
dT
m m
15
ni 4.82 10
m2
0
p
1分
本征半导体中的电子浓度( )空穴浓度。
A
大于
B
等于
C
小于
D
无关于
提交
单选题
1分
热平衡状态下,半导体中的载流子浓度乘积n0p0 = ni2
仅仅适用于( )。
A
n型半导体
B
p型半导体
C
本征半导体
D
非简并半导体
提交
单选题
1分
导带底附近的状态密度为gc(E),电子占据能级E
的几率为fB(E) ,则导带电子数为( )。
即,只要知道本征载流子浓度和温度的关系,就可以根据这
一理论公式得出0 K时的带隙宽度。本征载流子浓度和温度