方波三角波正弦波锯齿波发生器

合集下载

方波-三角波-正弦波-锯齿波发生器

方波-三角波-正弦波-锯齿波发生器

方波-三角波-正弦波-锯齿波发生器电子工程设计报告目录设计要求1.前言 (1)2方波、三角波、正弦波发生器方案 (2)2.1原理框图 (2)3.各组成部分的工作原理 (3)3.1方波发生电路的工作原理 (3)3.2方波--三角波转换电路的工作原理 (4)3.3三角波--正弦波转换电路的工作原理 (6)3.4方波—锯齿波转换电路的工作原理 (7)3.5总电路图 (8)方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。

函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。

除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。

设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。

然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。

其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。

函数(波形)信号发生器。

能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。

关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。

2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

多种波形发生器实验分析报告

多种波形发生器实验分析报告

多种波形发生器实验分析报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (3)3. 实验原理 (4)二、实验内容与步骤 (5)1. 波形发生器设计与搭建 (6)1.1 设计要求与方案选择 (7)1.2 波形发生器硬件搭建 (9)1.3 波形发生器软件编程 (10)2. 多种波形合成与输出 (12)2.1 合成波形的设计与实现 (12)2.2 波形输出设置与调整 (13)2.3 实时监控与数据分析 (15)3. 实验测试与结果分析 (16)3.1 测试环境搭建与准备 (17)3.2 实验数据采集与处理 (18)3.3 结果分析与讨论 (19)三、实验结果与讨论 (20)1. 实验结果展示 (21)2. 结果分析 (22)2.1 各波形参数对比分析 (23)2.2 性能评估与优化建议 (24)3. 问题与改进措施 (25)四、实验总结与展望 (26)1. 实验成果总结 (27)2. 存在问题与不足 (28)3. 后续研究方向与展望 (29)一、实验概述本次实验旨在研究和分析多种波形发生器的性能特点,包括产生信号的频率、幅度、波形稳定性等方面。

实验中采用了多种类型的波形发生器,如正弦波、方波、三角波、梯形波等,并对其输出波形进行了详细的测量和分析。

实验过程中,我们首先对各种波形发生器的基本功能进行了测试,确保其能够正常工作。

我们对不同波形发生器产生的波形进行了对比分析,重点关注了波形的频率、幅度和波形稳定性等关键指标。

我们还对波形发生器的输出信号进行了频谱分析和噪声测试,以评估其性能表现。

通过本次实验,我们获得了丰富的实验数据和经验,为进一步优化波形发生器的设计提供了有力支持。

实验结果也为我们了解各种波形发生器在实际应用中的性能表现提供了重要参考。

1. 实验目的本次实验的主要目的是深入研究和理解多种波形发生器的原理及其在实际应用中的表现。

通过搭建实验平台,我们能够模拟和观察不同波形(如正弦波、方波、三角波等)的产生与特性,进而探究其各自的优缺点以及在不同场景下的适用性。

基于LM324的方波、三角波、正弦波发生器(含原理图)讲解

基于LM324的方波、三角波、正弦波发生器(含原理图)讲解

课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。

将其接入电源,并通过在显示器上观察波形及数据,得到结果。

电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。

NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。

凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。

本设计就是利用Multisim软件进行电路图的绘制并进行仿真。

关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。

信号发生器 (正弦波,方波,三角波)51单片机 C语言代码

信号发生器 (正弦波,方波,三角波)51单片机 C语言代码

/**************************************//* 信号发生器(正弦波,方波,三角波)*//*************************************/#include<reg52.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned intsbit cs=P2^0; //tlc5615片选端口sbit clk=P2^1; //tlc5615时钟线sbit din=P2^2; //tlc5615传输端口sbit key1=P1^0;sbit key2=P1^1; //按键的单片机接口uchar keydat;uchar flag; //波形发生终止信号的标志位一旦被置零立马停止发信号uchar flagsqu; //方波高低电平控制为(运用定时器1中断控制)uchar m,num;uchar dat=0xff;uchar code tosin[141]={ //正弦波的编码0x00,0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66,0x69,0x6c,0x6f,0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7e,0x7f,0x80,0x7f,0x7e,0x7e,0x7d,0x7c,0x7b,0x7a,0x79,0x78,0x77,0x76,0x75,0x74,0x73,0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,0x00};void delay(uchar z) //延时函数{uchar x,y;for(x=0;x<110;x++)for(y=z;y>0;y--);}void prepare() //tlc5615的初始化{cs=1;din=1;clk=0;cs=0; //cs的上升沿和下降沿必须在clk 为低时进?}/* 用中断来产生方波void Squtranslator(){TR1=1; //启动定时器1 控制高低电平的持续时间占空比do{do{_wave=0;}while((!flagsqu) && flag==1);//如果一旦终止信号的//产生可以立马退出循环flagsqu=0;do{_wave=1;}while((!flagsqu) && flag==1);flagsqu=0;}while(flag);flag=1;TR1=0;}*/void Squtranslator() //方波函数{uchar j;uchar dat1=0x7f;while(flag){do{prepare();dat=dat1;for(j=0;j<12;j++){din=(bit)(dat>>7); //将数据的最高位赋给dinclk=1;dat=dat<<1; //一位位的传输clk=0;}cs=1; //cs的上升沿和下降沿必须在clk 为低时进行delay(200); //使高低电平持续一段时间if(dat1==0)dat1=0x7f; //完成了0和0x7f之间的替换elsedat1=0;}while(flag);}}void Tratranslator() //锯齿波的发生函数{uchar j;uchar dat1=0x7f;while(flag){do{prepare();dat=dat1;for(j=0;j<12;j++){din=(bit)(dat>>7); //将数据的最高位赋给dinclk=1;dat=dat<<1; //一位位的传输clk=0;}cs=1; //cs的上升沿和下降沿必须在clk 为低时进行delay(2); //稍加延时dat1--;}while(flag && dat1); //一旦有终止信号就可以停止do{prepare();dat=dat1;for(j=0;j<12;j++){din=(bit)(dat>>7); //将数据的最高位赋给dinclk=1;dat=dat<<1; //一位位的传输clk=0;}cs=1; //cs的上升沿和下降沿必须在clk 为低时进行delay(2); //稍加延时dat1++;}while(flag && (!(dat1==0x7f)));}}void Sintranslator(uchar wave[],uchar num )//正弦波的转换函数{uchar i,j;uchar dat1;do{for(i=0;i<num;i++){prepare();dat1=wave[i]; //打开片选开始工作for(j=0;j<12;j++){din=(bit)(dat1>>7); //将数据的最高位赋给dinclk=1;dat1=dat1<<1; //一位位的传输clk=0;if(flag==0)break;}cs=1; //cs的上升沿和下降沿必须在clk为低时进行delay(1); //稍加延时if(flag==0)break;}}while(flag); //等待控制键的暂停}void keyscan() //切换功能按键返回键值函数{uchar i;for(i=0;i<4;i++){if(key1==0){delay(10);if(key1==0){keydat++;do{}while(!key1); //松手检测if(keydat==4)keydat=1;//加满回零处理}}}}void keycountrl() //切断输出控制函数{if(key2==0){delay(10);if(key2==0){flag=0;do{}while(!key2); //松手检测}}}void main (){uchar temp;TMOD=0x01; //确定定时器的工作方式TH0=(65536-50000)/256; //给定时器0赋予初值TL0=(65536-50000)%256;EA=1; //开总中断ET0=1; //开启定时器0中断TR0=1;while(1){do{switch(keydat){case 1:flag=1;do{Sintranslator(tosin,141);}while(flag);break;case 2: flag=1;do{Tratranslator();}while(flag);break;case 3: flag=1;do{Squtranslator();}while(flag);break;default:break;}}while(flag);temp=keydat; //装载键值while(keydat==temp); //在这里等待键值的改变}}void Time0() interrupt 1{TH0=(65536-50000)/256; //定时器0用来扫描按键不断地扫描dTL0=(65536-50000)%256;num++;if(num==4){keyscan();keycountrl();num=0;}}。

实验五 三角波-方波(锯齿波-矩形波)发生器实验报告

实验五  三角波-方波(锯齿波-矩形波)发生器实验报告

实验五三角波-方波(锯齿波-矩形波)发生器实验报告实验目的:学习、理解、掌握由运算放大器构成的施密特比较器、积分器的原理,掌握锯齿波-矩形波(三角波-方波)发生器的构成方式,波形参数与电路元件值的关系,通过对理论计算、仿真、测试的数据对比分析获得对电路原理及实践能力的提升。

实验设备及器件:笔记本电脑(软件环境:Multisim13.0、WaveForms2015)AD2口袋仪器电容:0.1μF电阻:200Ω、10kΩ*4、30kΩ*3二极管:发光二极管*2(红色或绿色)、普通二极管*2运放:μA741*2面包板、连接线等实验内容:用两片μA741构成的三角波-方波发生器(施密特触发器+积分电路)见图1。

图1 三角波-方波电路1.测试(使用红色发光二极管):(1)按图1搭建电路,使用AD2测试vo1和vo的波形(屏幕拷贝波形并贴于下方,图2),观察测试的波形,给出方波及三角波的高电平、低电平、方波的高电平持续时间、方波的低电平的持续时间、占空比、振荡周期,并填入表1。

图2 三角波-方波电路的测试波形(2)令图1中的R4=10 kΩ,其他器件参数不变,构成锯齿波-矩形波发生器,使用AD2测试vo1和vo2的波形(屏幕拷贝波形并贴于下方,图3),通过波形给出锯齿波及矩形波的高电平、低电平、矩形波的高电平持续时间、矩形波的低电平的持续时间、占空比、振荡周期,并填入表2。

图3 锯齿波-矩形波电路的测试波形2.计算(1)利用测试(1)所得的方波高电平和低电平值(输出vo1,也就是发光二极管在该工作条件下的正向压降,计算周期时可使用正负峰值的平均值计算),并根据电路器件参数,理论计算三角波输出端(vo)的高电平和低电平值、方波高电平持续时间、方波低电平的持续时间、占空比、振荡周期,并填入表1。

(计算时需要考虑D3、D4二极管正向压降的影响,鉴于选用二极管的特性及实验中流过D 3、D4二极管的电流只有100μA左右,取正向压降为0.5V)。

方波三角波正玄波函数发生器设计方案

方波三角波正玄波函数发生器设计方案

路则法---2902230674 方波-三角波-正玄波函数发生器设计目录1 函数发生器的总方案及原理框图1.1 电路设计原理框图1.2 电路设计类型2设计的目的及任务2.1 课程设计的目的2.2 课程设计的任务与要求2.3 课程设计的技术指标3部分选择电路及其原理3.1集成函数发生器8038简介.2 方波---三角波转换电路的工作原理4 电路仿真4.1 方波---三角波发生电路的仿真4.2 三角波---正弦波转换电路的仿真4.3正弦波---方波---三角波电路输出5电路的原理5.1电路图及元件原理5.2 电路各部分作用5.3 总电路的安装与调试6心得体会8 仪器仪表明细清单9 参考文献1.函数发生器总方案及原理框图一、主原理框图1.1 555定时器的工作原理555定时器是一种功能强大的模拟数字混合集成电路,其组成电路框图如图22.32所示。

555定时器有二个比较器A1和A2,有一个RS触发器,R和S高电平有效。

三极管VT1对清零起跟随作用,起缓冲作用。

三极管VT2是放电管,将对外电路的元件提供放电通路。

比较器的输入端有一个由三个5kW电阻组成的分压器,由此可以获得和两个分压值,一般称为阈值。

555定时器的1脚是接地端GND,2脚是低触发端TL,3脚是输出端OUT,4脚是清除端Rd,5脚是电压控制端CV,6脚是高触发端TH,7脚是放电端DIS,8脚是电源端VCC。

555定时器的输出端电流可以达到200mA,因此可以直接驱动与这个电流数值相当的负载,如继电器、扬声器、发光二极管等。

2、单稳类电路单稳工作方式,它可分为3种。

见图示。

第1种<图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。

他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。

第2种<图2)是脉冲启动型单稳,也可以分为2个不同的单元。

基于EDA技术的正弦波方波三角波锯齿波四种波形发生器

基于EDA技术的正弦波方波三角波锯齿波四种波形发生器

梧州学院课程论文(2014 -2015学年第2学期)课程论文题目:基于EDA技术的正弦波、方波、三角波、锯齿波、四种波形发生器学生姓名:目录一、系统设计目的与要求.........................................1.1、前言..................................................1.2、功能要求:............................................1.3、设计目的:............................................二、设计方案以及原理说明.......................................2.1、设计方案..............................................2.2、原理说明..............................................三、设计内容...................................................3.1、正弦波发生器..........................................3.2、方波发生器............................................3.3、三角波发生器..........................................3.4、锯齿波发生器.........................................3.5、波形的选择............................................四、心得体会...................................................五、参考文献...................................................论文题目: 基于EDA技术的正弦波、方波、三角波、锯齿波、四种波形发生器学生姓名:摘要随着EDA技术以及大规模集成电路技术的迅猛发展,波形发生器的各方面性能指标都达到了一个新的水平。

正弦波、方波、三角波发生电路解析

正弦波、方波、三角波发生电路解析

一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。

1.2、设计要求: (1)设计波形产生电路。

(2)信号频率范围:100Hz ——1000Hz 。

(3)信号波形:正弦波。

二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。

但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。

如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。

反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。

为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。

选频网络由R 、C 和L 、C 等电抗性元件组成。

正弦波振荡器的名称一般由选频网络来命名。

正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。

产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。

只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。

在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。

(a)负反馈放大电路 (b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。

由于振荡电路的输入信号i X =0,所以i X =fX 。

由于正、负号的改变,正反馈的放大倍数为:F AA A -=1f,式中A 是放大电路的放大倍数,.F 是反馈网络的放大倍数。

振荡条件:1..=F A幅度平衡条件:|..F A |=1相位平衡条件:ϕAF = ϕA +ϕF = ±2n π振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求1|..|>F A 这称为起振条件。

基于LM324的方波、三角波、正弦波发生器(含原理图)讲解

基于LM324的方波、三角波、正弦波发生器(含原理图)讲解

课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。

将其接入电源,并通过在显示器上观察波形及数据,得到结果。

电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。

NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。

凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。

本设计就是利用Multisim软件进行电路图的绘制并进行仿真。

关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。

函数信号发生器工作原理

函数信号发生器工作原理

函数信号发生器工作原理函数信号发生器是一种可以产生不同形式的波形信号的电子设备。

它通常用于测试电路或设备的响应,及验证系统的可靠性和性能。

本文将介绍函数信号发生器的工作原理及其基本组成。

1、函数信号发生器的基本原理函数信号发生器使用内部电路产生信号波形,这些波形可以是正弦波、方波、三角波等,也可以是随时间变化的任意模拟波形信号,称为任意波形(Arbitrary Waveform)。

任意波形信号可以通过数字信号处理器(DSP)和相应的算法产生,可以控制其幅值、频率、相位、周期等参数,与旋钮手动调节产生的波形相比,任意波形信号更具有可重复性和精度。

任意波形成为了近年来函数信号发生器的重要特点之一。

函数信号发生器的工作原理基于模拟电路和数字技术的结合。

如下图所示,函数信号发生器的主要部件包括信号发生器主控板、波形发生控制板、数字信号处理器(DSP)和高精度数字模拟转换器(DAC)等。

其中波形发生控制板控制信号发生器主控板的输出电压幅值、频率、相位等参数,主控板再将这些参数转换成数字信号通过DSP和DAC产生电压波形输出到信号输出端。

2、函数信号发生器的基本组成(1)信号发生器主控板信号发生器主控板是函数信号发生器的核心控制板,它负责启动、控制和调节函数信号发生器的各种功能。

主控板内包含高速时钟电路、微控制器、输出放大器等部件,通过接收波形控制板发来的指令从而产生需要的波形输出并控制其电压幅值、频率、相位等参数。

(2)波形发生控制板波形发生控制板负责产生波形控制信号,这些信号包括电压幅值、频率、相位等参数。

它和信号发生器主控板通过数字接口连接,主控板根据波形控制板的指令产生相应的波形信号输出。

(3)数字信号处理器(DSP)数字信号处理器(DSP)是函数信号发生器中的重要部件,它用于实现任意波形信号的产生和输出。

DSP通过高精度滤波器将输入的数字信号处理成需要的波形信号,再将这些信号通过DAC转换成模拟信号输出到信号输出端。

正弦波方波三角波

正弦波方波三角波

课程设计名称:设计制作一个方波\三角波\正弦波\锯齿波发生器摘要函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。

该电路可为实验室提供波形频率范围为0.02Hz~20kHz,幅值2v的稳定信号源。

大大降低了实验成本,有效的简化了实验的操作步骤,是实验室小型电路信号发生器的理想所选,具有广泛的应用价值。

此信号发生器采用模块化结构,主要由以下三个模块组成,即正弦波发生器模块、方波发生器模块、三角波发生器模块。

在设计此函数信号发生器时,采用模块化的设计思想,使设计起来更加简单、容易、条理清晰。

同时调试起来也更容易。

经过一系列的分析、准备,本次设计除在美观方面处理得不够得当之外,完成了全部的设计要求。

关键词:函数信号发生器、 LM324、集成运算放大器、晶体管差分放大目录前言 (4)第一章函数发生器的设计要求 (5)1.1 波形发生器的特点及应用 (5)1.2 设计任务及要求 (5)第二章电路设计原理及单元模块 (6)2.1 设计原理 (6)2.1 单元模块 (6)2.1.1 RC选频振荡模块 (6)2.1.2 过零比较器 (8)2.3.3 产生三角波模块 (9)第三章安装与调试 (12)3.1 电路的安装 (12)3.2 电路的调试 (12)3.2 电路的分析 (13)结论 (14)参考文献 (14)附录一 (15)附录二 (16)前言科学技术是第一生产力。

三次工业革命使我们的社会发生了翻天覆地的变化,使我们由手工时代进入了现代的电器时代。

同时科技在国家的国防事业中发挥了重要的作用,只有科技发展了才能使一个国家变得强大。

而作为二十一世纪的主义,作为一名大学生,不仅仅要将理论知识学会,更为重要的是要将所学的知识用于实际生活之中,使理论与实践能够联系起来。

波形发生器在实际生活中有很重要的作用,影响着科技的发展,在当今社会又好又快的生活方式是人们所向往的,因此作为一名学习知识的青年,应该学好基础知识,设计出是人民满意的东西,产出人性化和自能化的电子产品,另一方面电子产品不断的更新,需要我们更加扎实的基础。

方波三角波正弦波锯齿波发生器

方波三角波正弦波锯齿波发生器

方波三角波正弦波_锯齿波发生器Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】电子工程设计报告目录方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。

函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。

除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。

设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。

然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。

其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。

函数(波形)信号发生器。

能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。

关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。

2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

555定时器构成的方波、三角波、正弦波发生器 设计报告

555定时器构成的方波、三角波、正弦波发生器 设计报告

电子技术课程设计说明书题目:555定时器构成的方波、三角波、正弦波发生器系部:歌尔科技学院专业:班级:2013级1班学生姓名: 学号:指导教师:年月日目录1 设计任务与要求 (1)2 设计方案 (1)2.1 设计思路 (1)2.1.1 方案一原理框图 (1)2.1.2 方案二原理框图 (2)2.2 函数发生器的选择方案 (2)2.3 实验器材 (3)3 硬件电路设计 (4)3.1 555定时器的介绍 (4)3.2 电路组成 (4)3.3 引脚的作用 (5)3.4 基本功能 (5)4 主要参数计算与分析 (7)4.1 由555定时器产生方波 (7)4.2 由方波输出为三角波 (9)4.3 由三角波输出正弦波 (10)5 软件设计 (12)5.1 系统组成框图 (12)5.2 元件清单 (13)6 调试过程 (14)6.1 方波---三角波发生电路的安装与调试 (14)6.1.1 按装方波——三角波产生电路 (14)6.1.2 调试方波——三角波产生电路 (14)6.2 三角波---正弦波转换电路的安装与调试 (14)6.2.1 按装三角波——正弦波变换电路 (14)6.2.2 调试三角波——正弦波变换电路 (14)6.2.3 总电路的安装与调试 (15)6.2.4 调试中遇到的问题及解决的方法 (15)7 结论 (16)8 附录 (17)8.1 用mulstisim 12设计的方波仿真电路图如图8-1 (17)8.2 用mulstisim 12设计的三角波仿真电路图如图8-3 (18)8.3 用mulstisim 12设计的正弦波仿真电路图如图8-5 (19)8.4 电源参考电路图 (20)参考文献 (21)1 设计任务与要求(1) 555定时器构成的方波发生器电路输出频率范围:10-1KH可调;占空比0-100%连续可调;输出方波Vp_p<=12v;输出三角波Vp-p>0.2v;输出正弦波Vp-p<1v;(2)写出详细的电路工作原理、参数计算;(3)画出仿真电路图;(4)仿真测试并记录结果:A.输出方波的仿真结果;B.输出三角波的仿真结果;C.输出正弦波的仿真结果;(5)设计以上电路工作电源:A.画出电源电路图;B.写出电源电路工作原理、参数计算;(6)制作实物;2 设计方案2.1 设计思路2.1.1 方案一原理框图图2-1 方波、三角波、正弦波信号发生器的原理框图首先由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,最后用低通滤波器将方波转化为正弦波,但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。

方波三角波正弦波锯齿波

方波三角波正弦波锯齿波

方波三角波正弦波_锯齿波发生器This manuscript was revised by the office on December 10, 2020.电子工程设计报告目录方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。

函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。

除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。

设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。

然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。

其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。

函数(波形)信号发生器。

能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。

关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。

2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

方波三角波正弦波锯齿波函数发生器

方波三角波正弦波锯齿波函数发生器

模拟电路课程设计报告设计课题:设计制作一个方波 /三角波 /正弦波专业班级:09电信(本学生姓名 :学号:指导教师:设计时间:设计制作一个方波 /三角波 /正弦波 /锯齿波函数发生器一、设计任务与要求①输出波形频率范围为 0.2KHz~20kHz且连续可调;②正弦波幅值为±2V ;③方波幅值为 2V ,占空比可调;④三角波峰 -峰值为 2V ;⑤锯齿波峰 -峰值为 2V ;⑥分别用四个发光二极管显示四种波形输出;⑦用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V 。

二、方案设计与论证设计要求产生四种不同的波形分别为正弦波方波三角波锯齿波。

正弦波通过滞回比较器可以转换成方波, 方波通过一个积分电路可以转换成三角波, 只要调节三角波的占空比就可以得到锯齿波。

正弦波可以通过 RC 振荡电路产生。

方案一、一、直流电源部分电路可把 220V 的交流电变成 12V 的直流电二、波形产生部分1正弦波——方波上电路可以同时产生输出方波正弦波 2方波——三角波电路可产生三角波3方波——锯齿波Key = A10k¦¸电路可以产生锯齿波方案二一、直流电源部分电路可把 220V 的交流电变成 12V 的直流电1N4007二、波形产生电路1正弦波——方波——三角波100k¦¸Key=A50%电路可产生正弦波、方波、三角波2方波——锯齿波Key = A 10k¦¸电路可以产生锯齿波方案论证:我选的是第二个方案,上述两个方案均可以产生四种波形。

方案一的电路过多焊接部分, 显得不方便而且这样浪费了很多元器件, 但是方案的在调节的时候还是比较方便的,可以很快的调出波形。

方案二电路简洁利于焊接并且可以节省元器件, 但是在调节波形的时候可能会稍稍有点费力, 是由于在整个电路调波时, 只要调节前面部分就会影响后面的波形。

所以要兼顾前后。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方波三角波正弦波锯齿
波发生器
This model paper was revised by LINDA on December 15, 2012.
电子工程设计报告
目录
设计要求
1.前言 ................................................................... 2方波、三角波、正弦波发生器方案...........................................
原理框图 ............................................................ 3.各组成部分的工作原理 ...................................................
方波发生电路的工作原理 .............................................
方波--三角波转换电路的工作原理 .....................................
三角波--正弦波转换电路的工作原理 ....................................
方波—锯齿波转换电路的工作原理 .....................................
总电路图 ............................................................
方波—三角波—正弦波函数信号发生器
摘要
波形函数信号发生器广泛地应用于各场所。

函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。

除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。

设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。

然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。

其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。

函数(波形)信号发生器。

能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途
而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。

关键词:振荡电路;电压比较器;积分电路;低通滤波电路
设计要求
1.设计、组装、调试方波、三角波、正弦波发生器。

2.输出波形:方波、三角波、正弦波;锯齿波
3.频率范围:在-20KHz范围内且连续可调;
1.前言
在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。

传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。

随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。

与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。

2方波、三角波、正弦波发生器方案
原理框图
图1 方波、三角波、正弦波、锯齿波信号发生器的原理框图该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。

然后经过积分电路产生三角波,通过改变方波的占空比不仅可以得到锯齿波,还可得到额外的矩形波。

三角波通过低通滤波电路来实现正弦波的输出。

然后将各种信号通过比例放大电路得到需要幅值;峰峰值的信号波
该电路具有结构、思路简单,运行时性能稳定且能较好的符合设计要求,对原器件要求不高,且成本低廉、调整方便,
3.各组成部分的工作原理
方波发生电路的工作原理
图2 方波信号发生原理
此电路由反相输入的滞回比较器和RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。

设某一时刻输出电压+Uz,,此时滞回电压比较器的门限电压为UTH2。

输出信号通过R对电容C1正向充电,充电波形如图3箭头所示。

当该电压上升到UTH2时,电路的输出电压变为-
压也随之变为UTH1,电容C1经电阻R放电。

当该电压下降到UTH1时输出电压又回到+Uz
图3方波信号发生波形
方波--三角波转换电路的工作原理
1.电路的组成
充放电波
图4 积分电路产生三角波
根据RC积分电路输入和输出信号波形的关系可知,当RC积分电路的输入信号为方波时,输出信号就是三角波,由此可得,利用方波信号发生器和RC积分电路就可以组成三角波信号发生器。

如图4
该电路的工作原理是:方波信号发生器输出的方波输入积分电路,在积分电路的输出端得到三角波信号。

积分电路的输出端除了输出三角波信号外,还通过电阻R1.Rp1将三角波信号反馈到滞回电压比较器的输入端,将三角波信号整形变成方波信号输出。

该电路工作波形图如图5
图5三角波
2.振荡频率
因为,该电路振荡信号的频率与三角波输出信号的幅度有关,所以要确定该电路的振荡频率,必须先确定三角波信号的输出幅度。

三角波输出信号的幅度等于滞回电压比较器的阈值电压,根据叠加定理可求出滞回电压比较器的阈值电压为
u+=UOR1/(R1+R2)-UOR2(R1+R2)=u-=0
由此可得输出信号的幅度为:Uom=UTH=R1Uz/R2
设积分电路的输出电压从+Uom到-Uom所需要的时间为t,根据积分电路输出电压和输入电压的关系式可得
2Uom=uo1*t/(C*R4)
即t=2R4*C1*Uom/Uz=2R1*R4*C1/R2
因三角波信号的周期为2t,所以三角波输出信号的频率为
f=R2/(4R1*R4*C1)
三角波--正弦波转换电路的工作原理
图6 三角波产生正弦波原理图
原理:采用低通滤波的方法将三角波变换为正弦波。

图7 正弦波
方波—锯齿波转换电路的工作原理
图8 锯齿波产生原理图
三角波信号的特征是波形上升和下降的斜率相同,当波形上升和下降的斜率不同时,三角波就转化成锯齿波。

根据这个特征,只要将图4的电路中的积分电路改成时间常数随方波输出极性而变化的电路,即可组成锯齿波信号发生器。

图7中的二极管D3和D4的作用是改变积分电路的时间常数,当输入为+Uz时,D3导通,D4断开,积分电路的时间常数为R(8到12)C1;当输入为-Uz时,D3断,D4通,积分电路的时间常数为R(6到12)C1.可得
T=t1+t2=2(R4+R5)R1C1/R2
波形图如图9
图9锯齿波
总电路图
图9总电路图
图中S1开关可实现各种波形切换,滑动变阻器Rp2可实现不同频率调节,调节Rp1可实现方波占空比的调节,最主要的是可将三角波转换为锯齿波,调节Rp3可调节输出波形不同的幅值。

5实验总结
为期几天的课程设计已经结束,在这几天的学习、设计、及电路搭建过程中我感触颇深。

使我对抽象的理论有了具体的认识。

通过对函数信号发生器的设计,我掌握了常用元件的识别和测试;熟悉了常用的仪器仪表;了解了电路的连接、搭建方法;以及如何提高电路的性能等等。

通过对函数信号发生器的设计,我还深刻认识到了“理论联系实际”的这句话的重要性与真实性。

而且通过对此课程的设计,我不但知道了以前不知道的理论知识,而且也巩固了以前知道的知识。

最重要的是在实践中理解了书本上的知识,明白了学以致用的真谛。

也明白老师为什么要求我们做好这个课程设计的原因。

他是为了教会我们如何运用所学的知识去解决实际的问题,提高我们的动手能力。

在整个设计到电路的焊接以及调试过程中,我个人感觉调试部分是最难的,因为你理论计算的值在实际当中并不一定是最佳参数,我们必须通过观察效果来改变参数的数值以期达到最好。

而参数的调试是一个经验的积累过程,没有经验是不可能在短时间内将其完成的,而这个可能也是老师要求我们加以提高的一个重要方面吧!
其次,这次课程设计提高了我的团队合作水平,使我们配合更加默契,体会了在接好电路后测试出波形的那种喜悦,体会到成功来自于汗水,体会到成果的来之不易。

在实验过程中,我们遇到了不少的问题。

比如:波形失真,甚至不出波形这样的问题。

在老师和同学的帮助下,把问题一一解决,那种心情别提有多高兴啦。

实验中暴露出我们在理论学习中所存在的问题,有些理论知识还处于懵懂状态,老师们不厌其烦地为我们调整波形,讲解知识点,实在令我感动。

还有值得我们自豪的就是我们的线路连得横竖分明,简直就是艺术,当然,我们也有很多不足的地方,
最后用一句话来结束吧:“实践是检验真理的唯一标准”。

相关文档
最新文档