《泰勒公式及其应用》的开题报告

合集下载

泰勒公式及其应用

泰勒公式及其应用

本科生实践教学活动周实践教学成果成果形式:论文成果名称:泰勒公式及其应用****:***学号: **********专业:信息与计算科学班级:计科1301****:***完成时间:2014年7月20日泰勒公式及其应用摘要在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义、内容,并介绍了泰勒公式的10个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒公式的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式佩亚诺余项拉格朗日余项应用目录序言 (1)一、泰勒公式 (1)(一)定义 (1)(二)余项 (1)1.佩亚诺(Peano)余项 (1)2.施勒米尔希-罗什(Schlomilch-Roche)余项 (2)3.拉格朗日(Lagrange)余项 (2)4.柯西(Cauchy)余项 (2)5.积分余项 (2)(三)推导过程 (2)1.展开式 (2)2.余项 (3)二、泰勒公式的应用 (5)(一)实例 (5)1.利用泰勒公式求初等函数的幂级数展开式 (5)2.利用泰勒公式进行近似值计算 (6)3.利用泰勒公式求极限 (6)4.利用泰勒公式证明不等式 (7)5.利用泰勒公式判断级数的敛散性 (8)6.利用泰勒公式证明根的唯一存在性 (9)7.利用泰勒公式判断函数的极值 (9)8.利用泰勒公式求初等函数的幂级数展开式 (10)9.利用泰勒公式进行近似计算 (10)10.利用泰勒公式解经济学问题 (11)三、实践总结 (12)参考文献 (13)序言在数学分析中泰勒公式是一个重要的内容,由于在分析和研究数学问题中它有着重要作用,所以成为分析和研究其他数学问题的有力杠杆。

作为数学系的学生,我认为掌握泰勒公式及其应用是非常有必要的。

本文将从泰勒公式的内容和泰勒公式的应用两方面入手。

对于泰勒公式的内容,具体研究泰勒公式的定义、表达形式、推导过程;对于泰勒公式的应用,本文是以实例的形式出现,从十个方面介绍泰勒公式的应用。

泰勒公式及其应用

泰勒公式及其应用

本科生毕业论文设计泰勒公式及其应用目录中文摘要、关键词...........................................................................1引言 (2)1 泰勒公式的引入 (3)1.1 一元泰勒公式的引入 (3)1.2 二元及多元泰勒公式的引入 (4)1.3 泰勒公式的几种形式 (7)1.3.1带Peano余项的泰勒公式 (7)1.3.2 带Lagrange余项的泰勒公式 (7)1.3.3 带积分余项的泰勒公式 (9)1.3.4 带柯西余项的泰勒公式 (9)1.3.5 几种常见的带有佩亚诺余项的Maclaurin公式 (11)2 泰勒公式应用 (11)2.1 在近似计算中的应用 (11)2.2 在求极限中的应用 (13)2.3 利用泰勒公式的系数求函数在指定点处高阶导数的值 (14)2.4 泰勒公式在证明中的应用 (15)2.5 泰勒公式与一元函数极值的问题 (16)2.6 利用泰勒公式来研究函数图像的局部性质 (20)2.7 利用泰勒公式研究线性插值 (21)2.8 应用泰勒公式判断数项级数敛散性 (22)2.9 利用泰勒公式进行函数幂级数展开 (23)2.10 二元及多元函数泰勒公式的应用 (26)3 复变函数中的泰勒公式 (27)4 总结与归纳 (28)参考文献 (29)英文摘要、关键字 (30)泰勒公式及其应用数学与信息科学学院数学与应用数学专业摘要:泰勒公式作为数学分析中的一个基本概念,是在拉格朗日中值定理基础上进行的进一步推广。

它利用函数中最简单的形式多项式函数的形式,来进行各种理论的分析和探究,在进行近似计算以及估值等方面有广泛的应用。

本文从大家熟悉的多项式函数以及导数入手进而引入泰勒公式,并根据余项不同分成了带佩亚诺余项、带拉格朗日余项、带柯西余项以及积分余项等形式的泰勒公式,接下来根据带不同余项的泰勒公式的不同的性质对其应用进行分类讨论。

泰勒公式的应用论文

泰勒公式的应用论文

泰勒公式的应用论文泰勒公式是一个非常重要的数学工具,在物理、工程和其他科学领域都有广泛的应用。

本文将介绍一篇关于泰勒公式应用的论文,通过该论文的介绍,读者可以了解泰勒公式的具体应用以及其在该领域的重要性。

题目:《利用泰勒公式对非线性方程进行求解的数值方法研究》摘要:本文研究了一种利用泰勒公式对非线性方程进行求解的数值方法。

通过将非线性方程展开成泰勒级数的形式,可以近似地求解非线性方程,并得到更加精确的解。

本文通过对该数值方法进行理论推导和实验证明,证明了该方法的有效性和准确性。

引言:非线性方程是很多科学问题中常见的数学模型,然而求解非线性方程通常比线性方程复杂得多。

泰勒公式是一种在求解非线性方程时常用的近似方法。

通过将非线性方程进行泰勒级数展开,可以将非线性方程转化为线性方程或更简单的形式,从而得到近似的解。

方法:本文首先对泰勒公式进行了简要的介绍和推导。

然后,根据泰勒公式的展开形式,将非线性方程的各阶导数代入泰勒级数中,得到更简单的形式。

接下来,研究了如何选取适当的展开点和截断误差来提高近似解的精确性。

最后,利用MATLAB编写了求解非线性方程的数值算法,并通过多个实例进行了验证。

结果与讨论:通过对多个不同类型的非线性方程进行求解,得到了较好的结果。

与传统的数值方法相比,利用泰勒公式进行求解的方法具有更高的精确性和更快的收敛速度。

此外,通过调整展开点和增加泰勒级数的项数,还可以进一步提高解的精确度。

结论:本文研究了一种利用泰勒公式求解非线性方程的数值方法,并通过理论推导和实验证明了该方法的有效性和准确性。

该方法可以准确地求解非线性方程,并且具有更高的精确性和更快的收敛速度。

因此,该方法在实际应用中具有很大的潜力,可以应用于物理、工程和其他科学领域中。

展望:虽然本文对利用泰勒公式求解非线性方程的数值方法进行了研究和验证,但仍然有一些问题需要进一步探讨。

例如,如何选择展开点和确定截断误差的更准确方法,以及将该方法应用于更复杂的非线性方程等。

泰勒公式及其应用

泰勒公式及其应用

泰勒公式及其应用作者:闫艳来源:《教育界·上旬》2015年第04期【摘要】泰勒公式是高等数学中的一个重要公式,它能将一些复杂的函数近似地表示成简单的多项式函数。

本文主要探讨了泰勒公式在极限运算、近似计算、不等式的证明、级数敛散性的判断等方面的应用。

【关键词】泰勒公式极限不等式收敛性一、泰勒公式泰勒公式是一元微积分的一个重要内容,不仅在理论上占有重要地位,在近似计算、极限计算、函数性质的研究等方面都有着重要的应用。

泰勒公式的一般形式为:其中为拉格朗日余项或皮亚诺型余项。

若令,则泰勒公式变为麦克劳林公式,即:二、泰勒公式的应用1.利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理分式的极限,就能简捷地求出。

例如求极限,此为型极限,若用罗比塔法则很麻烦。

这时可将和分别用其泰勒展开式代替,则可简化此比式,求得==.注:用泰勒公式计算极限的实质是利用等价无穷小的替代来计算极限。

我们知道,当时,等,这种等价无穷小其实就是将函数用泰勒公式开至一次项,有些问题用泰勒公式和我们已经熟知的等价无穷小法相结合,问题又能进一步简化。

2. 利用泰勒公式判断函数的极值讨论函数极值通用的方法是:当且(或)时,是的极小(大)值。

但如果此时,此方法不能判别是否为极值点,可用泰勒公式。

3. 泰勒公式判断广义积分的收敛性为一正值函数,要判定的收敛性,如果能找到恰当的,,使,由比较判别法的极限形式可判别出无穷积分的收敛性。

这里的问题也是如何选取,才能应用判别法则呢?运用泰勒公式通过研究的阶,就可以解决这类问题。

4. 利用泰勒公式近似计算和误差估计泰勒定理:若函数在的某邻域内有直到n+1阶的连续偏导数,则对内的任一点,存在相应的,使得=+…+)5.利用泰勒公式证明不等式在高等数学中,常常要证明一些不等式,而且证明不等式的方法很多。

泰勒公式除了上面介绍的一些应用外,在证明不等式时也很方便。

《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告《泰勒公式的验证及其应用》的关键词:泰勒公式的验证数学开题报告范文中国开题报告1.本课题的目的及研究意义目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。

泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。

如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。

对泰勒公式的研究就是为了解决上述问题的。

2.本课题的研究现状数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。

泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。

对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

本课题将从以下几个方面展开研究:一、介绍泰勒公式及其证明方法二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。

三、结论。

4.本课题的实行方案、进度及预期效果实行方案:1.对泰勒公式的证明方法进行归纳;2.灵活运用公式来解决极限、级数敛散性等问题;3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。

实行进度:研究时间为第8 学期,研究周期为9周。

多元函数Taylor公式及其应用

多元函数Taylor公式及其应用

2021年第08期256高教论坛多元函数Taylor公式及其应用刘心蕾西南石油大学,四川资阳000000一、课题背景:于一七一二年,泰勒公式由布瑞科泰勒所提出,他是英国的一位伟大的数学家.泰勒公式后来经过了拉格朗日以及柯西等数学家的进一步补充后,为数学理论未来的发展提供了非常有效的工具.近几年来关于公式的研究非常繁多,对泰勒公式在一些近似计算、向量值函数、等式与不等式、判断函数的敛散性和极限中都有特别深刻的研究.下面就我对其在几篇文章中的应用的理解为,在其中有一篇名为泰勒公式及其余项的证明中,主要研究的内容是先理解泰勒公式的一般型,在理解泰勒公式基本概念后,对泰勒公式的一般型进行一些推导,就可以分别得到佩诺型、拉格朗日型以及积分型三种不同形式的余项。

其次也研究了泰勒公式“中点函数”的可微性以及其余项“中间点”的渐进性.在高阶方向导数与多元泰勒定理的简单基本形式的文章中,泰勒公式对方向导数进行了推广.并且在对多元函数的研究中得到了高阶方向导数的概念及其相关方面的计算.最后,利用高阶方向导数从而推导出了多元函数泰勒公式的简单形式.泰勒是英国的一位伟大的数学家,他在函数值逼近上面做出了伟大的成就,而且他在函数值逼近上的研究结果显示:若这个函数具有一直到n + 1阶的导数,并且在某一个点的邻域中取得的值能用此函数在这一点的函数值和这个函数的各阶导数值所组成的n次多项式来近似表达出来,则由此产生的就称为泰勒公式.二、多元函数泰勒公式及其应用的发展状况:对于研究者来说,泰勒公式的证明与应用方面的研究一直都具有非常强大的吸引力.很多研究者在此领域中获得的成就很高,并且在一些优秀的文献中,有的作者在不等式和等式的证明和计算中都最大限度地利用了泰勒公式及其性质,而且使用的研究方法新颖又简便易懂,非常值得我们引以为我们学习的风向标.在泰勒提出公式后,一九九九年六月,就关于多元函数的高阶微分和泰勒共识这一篇文章的探讨中,它主要是研究了把一阶微分的微分定义为二阶微分的明确性,并且对多元函数泰勒公式也进行了一些推导,但在此文中仅仅是以二元函数来进行的展开。

泰勒公式及其应用

泰勒公式及其应用

泰勒公式及其应用许雁琴【摘要】泰勒公式是高等数学的重要内容,借助它可以解决很多问题。

本文针对泰勒公式的应用讨论了9个问题,即应用泰勒公式定义某些非初等函数,近似计算和误差估计,对某些定积分进行近似计算,求某些复合函数的极限,求高阶导数在某些点的数值,研究函数的极值,证明不等式,利用泰勒公式判断级数的敛散性,求行列式的值。

%Talyor Formula is of great importance in advanced mathematics ,and very helpful to the solutions of many other mathematical problems .This article will discuss some applications of Talyor Formula ,i .e .defining some elementary functions ,approximate calculation and error estimation ,ap‐proximately calculating of some definite integrals ,get ting the limits of some composite functions ,get‐ting the numerical value of some points in higher derivatives ,studying the extremums of functions ,pro‐ving the inequalities ,testing of convergence and divergence of series ,and getting the values of deter mi‐nants .【期刊名称】《河南机电高等专科学校学报》【年(卷),期】2015(023)006【总页数】5页(P11-15)【关键词】泰勒公式;非初等函数;近似计算;极限;导数;积分;不等式;敛散性【作者】许雁琴【作者单位】河南机电高等专科学校,河南新乡 453000【正文语种】中文【中图分类】O174泰勒公式是高等数学中的一个重要内容,但一般教材中仅介绍了泰勒公式和求函数的泰勒展开式,而对泰勒公式在数学问题中的作用并未说明,在教学中学生常因学用脱离而难以理解。

泰勒公式及应用论文

泰勒公式及应用论文

勒公式及应用论文毕业论文题目:泰勒公式及应用学生姓名:陆连荣学生学号: 0805010325 系别:数学与计算科学系专业:数学与应用数学届别: 2012届指导教师:向伟目录摘要 0关键词 (1)Abstract (1)Key words (1)前言: (1)1泰勒公式 (2)1.1带有拉格朗日余项的泰勒公式 (2)1.2带有佩亚诺余项的泰勒公式 (2)1.3带有积分型余项的泰勒公式 (2)1.4带有柯西型余项的泰勒公式 (3)2 泰勒公式的应用 (3)2.1利用泰勒公式求极限 (3)2.2利用泰勒公式证明不等式及中值问题 (5)2.3 利用泰勒公式讨论积分及级数的敛散性 (8)2.4利用泰勒公式求函数的高阶导数 (11)2.5研究泰勒公式在近似计算中的应用 (12)结语 (12)致谢 (13)参考文献 (13)泰勒公式及应用学生:陆连荣指导教师:向伟淮南师范学院数学与计算科学系摘要;泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,而且在求极限、证明不等式、讨论级数及积分的敛散性、求函数的高阶导数、证明中值公式、求解导数问题及在近似计算等中都有极其重要的作用.在本文中上述所列的几个作用都有论述,但着重论述泰勒公式在求极限、级数及积分的敛散性判断、证明不等式及中值公式与求解导数问题中的作用。

关键词:泰勒公式;应用;级数;敛散性Taylor formula and its applicationStudent: Lu LiangrongInstructor : Xiang WeiDepartment of Mathematics and Computational Science: Huainan Normal UniversityAbstract:Taylor formula in mathematical analysis is a very important content, not only in theory occupies an important position, and in the limit, to prove inequality, discuss the convergence and divergence of ser- ies and integral of function, high order derivative, mean value formula for solving the problem of proof, derivative and approximate calculation are an extremely important role. In this paper the above listed several roles are discussed, but focuses on Taylor's formula in calculating the limit, the series and the in- tegral of the divergence and judge, the proof of inequality and median formula and solving the problem of derivative function.Key words:Taylor formula; Application; Series; Convergence and divergence前言泰勒公式是数学分析中一个非常重要的内容,微分学理论中最一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。

【论文】泰勒公式及其应用开题报告

【论文】泰勒公式及其应用开题报告
签名:201年月日
九、开题审查小组意见
开题审查小组组长签名:201年月日
此文档是由网络收集并进行重新排版整理.word可编辑版本!
七、主要参考文献
[1]刘云,王阳,崔春红.浅谈泰勒公式的应用[J].和田师范专科学校学报,2008,(2):196-197.
[2]邓晓燕,陈文霞.泰勒公式的推广及其应用[J].高等函授学报(自然科学版),2012,(1):61-63.
[3]张云艳.Taylor公式的应用补遗[J].洛阳师范学院学报,2007,(5):175-176.
在2002年—2012年十年为时间范围,以“泰勒公式”和“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章。
在这些文献中作者在不等式或者等式的证明或者计算时都充分利用了泰勒公式的定理和性质,但方法新颖又恰到好处,值得借鉴和学习。泰勒公式的应用是非常广泛的,对于泰勒公式的研究还在进行中,我相信通过今后的不断努力研究,泰勒公式还能发挥出更多的作用。
四川大学数学学院陈丽教授在《关于泰勒公式课堂教学的尝试与体会》一文中把当下最流行的明星模仿秀的概念引用到函数上来,把函数比喻成明星然后用其他的简单函数来模仿明星函数,通过认识其他简单函数来认识明星函数,将深奥难懂的数学知识与时代流行结合起来,这样学生对与函数的理解就深刻多了,对泰勒公式的应用也就轻松了。
第四阶段:2013年1月9日—3月初,提交毕业论文电子稿和纸质稿各一份交给指导老师审查,便于老师及时提出修改意见。
第五阶段:2013年3月初至4月初,修改论文,将毕业论文的修订稿交与指导老师审查,并最终确定论文的内容,并根据论文规范写作。最后提交论文,做论文答辩。
第六阶段:2013年4月6日—4月21日,论文答辩阶段,整理相关材料,做好毕业论文答辩准备工作。

泰勒公式及其应用论文

泰勒公式及其应用论文

学士学位论文泰勒公式及其应用2012年5月18日毕业论文成绩评定表院(系):数学与信息学院学号:独创声明本人在此声明:本篇论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议.尽我所知,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.此声明的法律后果由本人承担.作者签名:二〇一二年五月十八日毕业论文使用授权声明本人完全了解鲁东大学关于收集、保存、使用毕业论文的规定.本人愿意按照学校要求提交论文的印刷本和电子版,同意学校保存论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文;同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文的部分或全部内容,允许他人依法合理使用.(保密论文在解密后遵守此规定)论文作者(签名):二〇一二年五月十八日目录1.引言 (1)2. 泰勒公式及其应用 (1)2.1预备知识 (1)3 泰勒公式的应用 (3)3.1利用泰勒公式求极限 (3)3.2利用泰勒公式求不等式 (3)3.3利用泰勒级数判断级数的敛散性 (4)3.4利用泰勒公式证明根的唯一性 (5)3.5利用泰勒公式判断函数的极值 (5)3.6利用泰勒公式求初等函数的幂级展开式 (6)3.7利用泰勒公式进行近似计算 (6)3.8利用泰勒公式判断函数的凸凹性和拐点 (7)3.9利用泰勒公式求高阶导数在某点的数 (8)参考文献 (8)致谢 (8)泰勒公式及其应用(数学与信息学院 数学与应用数学 2008级数本2班20082112010)摘要:在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义,内容 ,并介绍了泰勒公式的9个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒函数的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式 皮亚诺余项 拉格朗日余项 应用Taylor formula and it ’s application(20082112010 Class 2 Grade 2008 Mathematics & Applied Mathematics School of Mathematics & Information)Abstract:In the mathematical analysis Taylor formula is a important content. This paperdiscusses the definition of Taylor formula, content, and introduces the Taylor formula nine application and give an example. Use Taylor formula for inequality, please limit, folding proof scattered sex, theuniqueness of root, a series of Taylor function of application, make us more clearly know the importance of Taylor formula.Keywords: Taylor ’s formula The emaining of the Piano The remaining of the LagrangianApplication1.引言泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分.作者通过查阅一些参考文献,从中搜集了大量的习题,通过认真计算,其中部分难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳总结.由于本文的主要内容是介绍泰勒公式的应用,所以,本文以例题为主进行讲解说明.2. 泰勒公式及其应用2.1 预备知识定义[]12.1 若函数f 在0t 存在n 阶导数,则有()()()()()()()()()()20000001!2!!n n nn n f t f t f t f t f t t t t t t t o t t n '''=+-+-++-+-(1)这里()()0no t t -为皮亚诺余项,称(1)f 在点0t 的泰勒公式.当0t =0时,(1)式变成()()()()()()200001!2!!n nn f f f f t f t t t o t n '''=+++++称此式称为(带皮亚诺余项的)麦克劳林公式.定义2.2 若函数f 在0t 某邻域内为存在直至n+1阶的连续导数,则()()()()()()()()200000()1!2!!n nn n n f t f t f t f t f t t t t t t t R t n '''=+-+-++-+(2)这里R (n )为拉格朗日余项()()()110()()1!n n f R n t t n α++=++,其中α在t 与0t 之间,称(2)为f 在0t 的泰勒公示.当0t =0时,(2)式变成()()()()()20000()1!2!!n nn f f f f t f t t t R t n '''=+++++称此式为(带有拉格朗日余项的)麦克劳林公式.其中,常见函数的展开式:()()()()21135212224222311212!!(1)!sin (1)()3!5!21!cos (1)()2!4!2!ln 1(1)()231111n n a n n nn nnn n n n n n a a e e a a n n t t t t t o t n t t t t t o t n t t t x t o t n t t t t t++++++=++++++=-+++-++=-+-+-++=-+-+-++=+++++-定理[]12.1 (介值定理)设函数g 在闭区间],[21x x 上连续。

泰勒公式的展开及其应用_文献综述_周波

泰勒公式的展开及其应用_文献综述_周波

本科毕业论文(设计)文献综述泰勒公式的展开及其应用学院:数学与统计学院专业:数学与应用数学班级: 2012级1 班学号: ********** 学生姓名:**指导教师:***2016年5月25日《泰勒公式的展开及其应用》文献综述报告摘要前言:早期自然科学家们进行科学研究计算时,为了简化问题,总是将问题近似地的看作线性问题进行讨论研究。

直至Taylor展开思想的提出:利用n次多项式来逼近函数f,而多项式具有形式简单,易于计算等优点。

我们已经知道,在函数的运算中,多项式函数只用到加、减、乘三种简单的运算,把一个复杂的函数近似地用多项式表示出来,并能使误差达到预期的要求。

这大大降低了理论研究的误差,另外在高等数学方面,Taylor公式可以将给定函数用多项式和表示出来,这种化繁琐为简单的作用使得Taylor公式成为高等数学的核心内容之一。

本文将在前人的理论基础上进行应用探讨,所涉及的内容不仅有经常用到的还有一部分是我们不常见的Taylor公式的应用,本文最大的特点是让Taylor公式零散的应用系统化,进而加深大家对Taylor公式的认识和理解。

关键词:泰勒公式;余项;展开式一、正文:18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。

1709年后移居伦敦,获法学硕士学位。

他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。

同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。

1717年,他以泰勒定理求解了数值方程.最后在1731年1 2月29日于伦敦逝世。

泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的这个定理——泰勒定理:式子内v为独立变量的增量,及为流数.他假定z随时间均匀变化,则为常数。

上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作马克劳林定理。

吴青青《泰勒公和其应用》

吴青青《泰勒公和其应用》

附件1:贵州师范学院毕业论文(设计)规范格式学科分类号本科毕业论文题目(中文):泰勒公式及其使用(英文):Taylor formula and its application姓名吴青青学号0906020630260院(系)数学和计算机科学学院专业、年级09级数学和使用数学指导教师黄黎明职称二0一二年六月泰勒公式及其使用吴青青摘要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是使用高阶导数研究函数性态的重要工具, 它的用途很广泛.本文详细介绍泰勒公式及其使用在数学领域上的几个使用作论述.文章除了对泰勒公式在常用的近似计算、求极限、不等式的证明、外推和求曲线的渐近线方程上作解求证明外,特别地,泰勒公式还对函数凹凸性及拐点判断、广义积分敛散性中的使用、界的估计和展开的唯一性问题这4个领域的使用做详细的介绍.关键词:泰勒公式;极限;敛散性;凸凹性;拐点;展开式;近似计算AbstractThe Taylor formula is the important part of the theory of mathematical analysis, it has become an indispensable tool in the study of the limit of function and estimation error etc., embodies the essence of calculus " approach ", which is a generalization of the calculus mean value theorem, is also an important tool to be used in high order derivative function of the state, it is so widely used. Several applications in the field of mathematics, this paper introduces the application of Taylor formula are discussed . In this paper, in addition to the Taylor formula in the common approximate calculation, limit, inequality, extrapolation and the demand curve asymptote equation for solution is proved, in particular, the Taylor formula of convex function and turning point judgment, generalized integral convergence applications, bounded estimation and the uniqueness of the 4 applications in detail.Keywords:Taylor formula;the maximum;Convergence and divergence;convexity concavity;inflection point;expansion;approximation目录第一章绪论1.1 研究《泰勒公式及其使用》现状、动机和意义 (1)1.2 章节安排 (1)第二章泰勒公式2.1 泰勒公式的背景 (3)2.2 泰勒公式 (3)2.3 常见函数的展开式 (4)第三章泰勒公式在高等数学学习中的使用3.1 利用泰勒公式求极限 (6)3.2 利用泰勒公式求近似值 (7)3.3 利用泰勒公式讨论级数和广义积分的敛散性 (8)3.4 利用泰勒公式证明不等式 (9)第四章泰勒公式在实际生活中的使用4.1 泰勒公式在地采金属矿山中的使用的发展 (11)4.2 泰勒公式的实例测算 (12)归纳总结 (13)参考文献 (14)致谢 (15)第一章绪论1.1 研究《泰勒公式及其使用》现状、动机和意义泰勒公式是《数学分析》的重要组成部分,也是作为求极限,近似计算,讨论积分的敛散性,求高阶导数,求麦克劳林公式中最基础的知识和不可取代的重要部分,泰勒公式不仅在极限和不等式证明中能解决许多问题,同时也是研究分析数学的重要工具.其原理是很多函数都能用泰勒公式表示,又能借助于泰勒公式来研究函数近似值式和判断级数收敛性的问题.因此泰勒公式在数学实际使用中是一种重要的使用工具,我们必须掌握它,用泰勒公式这一知识解决更多的数学实际问题.作为一个数学专业的数学生来说,这无疑是一个很大的诱惑,对其基础理论的探讨和研究,和其在对其他科目的作用和意义以及其在现实生活中的使用也是我对这个课题感兴趣的主要原因。

泰勒公式及其应用论

泰勒公式及其应用论

本科毕业论文(设计) 论文题目:泰勒公式及其应用学生姓名:学号:专业:数学与应用数学班级:指导教师:完成日期:2012年 5月20日泰勒公式及其应用内容摘要本文介绍泰勒公式及其应用,分为两大部分:第一部分介绍了泰勒公式的相关基础知识,包括带Lagrange余项、带Peano余项两类不同泰勒公式;第二部分通过详细的例题介绍了泰勒公式在八个方面的应用.通过本文的阅读,可以提高对泰勒公式及其应用的认识,明确其在解题中的作用,为我们以后更好的应用它解决实际问题打好坚实的基础.关键词:泰勒公式Lagrange余项Peano余项应用The Taylor Formula and The Application Of Taylor FormulaAbstractThis paper focuses on Taylor formula and the application of Taylor formula. It has two parts. The first part of this paper introduces the basic knowledge of the Taylor formula,Including Taylor formula with Lagrange residual term and with Peano residual term. With the detailed examples,The second part introduces eight applications of Taylor formula.By reading this paper,you can build a preliminary understanding of Taylor formula,define the function in problem solving ,in the later application that can be a good reference.Key Words:Taylor formula Lagrange residual term Peano residual term application目录一、泰勒公式 (1)(一)带Lagrange余项的泰勒公式 (1)(二)带Peano余项的泰勒公式 (2)二、公式的应用 (3)(一)、泰勒公式在近似运算上的应用 (3)(二)、泰勒公式在求极限中的应用 (5)(三)、泰勒公式在方程中的应用 (6)(四)、泰勒公式在中值公式证明中的应用 (8)(五)、泰勒公式在有关于界的估计中的应用 (9)(六)、泰勒公式在证明不等式中的应用 (10)(七)、泰勒公式在级数中的应用 (11)(八)、泰勒公式在求高阶导数值中的应用 (13)三、结论 (14)参考文献 (15)序 言泰勒公式是数学分析中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数.这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.[]1因为泰勒公式在解决一些数学问题时的确有着不可替代的作用,故有关它的理论在教材中一般都有比较详细的介绍,而关于它的应用则介绍甚少或不全面.本文比较详细地介绍了泰勒公式在近似计算、求极值、方程、证明中值公式、关于界的估计、证明不等式、级数、高阶导数值等方面的应用.作者在阅读了大量参考文献的基础上,通过例题给出了泰勒公式的许多应用,使我们能更直接的看到泰勒公式在各方面的运用.一、泰勒公式对于函数f ,设它在点0x 存在直到n 阶的导数.由这些导数构造一个n 次多项式()20000000'()''()()()()()()...()1!2!!n n f x f x f x Tn x f x x x x x x x n =+-+-++-,称为函数f 在点0x 处的泰勒多项式.[2]泰勒公式根据所带的余项的不同有不同的定义.泰勒公式的余项分为两类,一类是定量的,一类是定性的,它们的本质相同,但性质各异.下面我们来介绍一下:(一)带Lagrange 余项的泰勒公式对于这种泰勒公式,Lagrange 余项是一种定量形式. 定理1[]3 若函数f 在[,]a b 上存在直到n 阶的连续导函数,在),(b a 内存在直到+1n 阶导函数,则对任意给定的0[,]x x a b ∈、,至少存在一点(,)a b ξ∈,使得()(1)2100000000''()()()()()'()()()...()()2!!(1)!n n nn f x f x f f x f x f x x x x x x x x x n n ξ++=+-+-++-+-+,该式称为(带有Lagrange 余项的)泰勒公式.证明 作辅助函数])(!)())(()([)()()('n n t x n t f t x t f t f x f t F -++---= ,1)()(+-=n t x t G ,所以要证明的式子即为)!1()()()()()!1()()()1(000)1(0+=+=++n f x G x F x G n f x F n n ζζ或. 不妨设x x <0,则)(t F 与)(t G 在],[0x x 上连续,在),(0x x 内可导,且 0))(1()()(!)()(')1('≠-+-=--=+n nn t x n t G t x n t f t F , 又因0)()(==x G x F ,所以由柯西中值定理证得)!1()()()()()()()()()()1(''0000+==--=+n f G F x G x G x F x F x G x F n ζζζ, 其中),(),(0b a x x ⊂∈ζ. 所以定理1成立.(二)带Peano 余项的泰勒公式对于这种泰勒公式,Peano 余项是一种定性形式. 定理2[]3 若函数f 在点0x 存在直到n 阶导数,则有0()()(())nf x Tn x o x x =+-,即()200000000''()()()()'()()()...()(())2!!n n n f x f x f x f x f x x x x x x x o x x n =+-+-++-+-,称为函数f 在点0x 处的(带有Peano 余项的)泰勒公式,该公式定性的说明当x 趋于0x 时,逼近误差是较0()nx x -高阶的无穷小量.证明 设)()()(x T x f x R n n -=,n n x x x Q )()(0-=,现在只需证0)()(lim0=-x Q x R nn x x .由n k x T x f k n k ,,2,1,0)()(0)(0)( ==,可知,0)()()(0)(0'0====x R x R x R n n n n .并易知!)(,0)()()(0)(0)1(0'0n x Q x Q x Q x Q n n n n n n =====- ,因为)(0)(x f n 存在,所以在点0x 的某邻域)(0x U 内)(x f 存在1-n 阶导函数)(x f .于是,当o0x U x ∈()且0x x →时,允许接连使用洛必达(L'Hospital )法则1-n 次,得到)]()()([lim !1)(2)1())(()()(lim )()(lim )()(lim )()(lim 0)(00)1()1(000)(0)1()1()1()1(''00000=---=-----====--→--→--→→→x f x x x f x f n x x n n x x x f x f x f x Q x R x Q x R x Q x R n n n x x n n n x x n nn n x x n n x x n n x x 所以定理2成立.当00x =时,得到泰勒公式)10(,)!1()(!)0(...!2)0('')0(')0()(1)1()(2<<++++++=++θθn n n n x n x f x n f x f x f f x f ,该式称为(带有Lagrange 余项的)麦克劳林公式. 当上式中00x =时有()2''(0)(0)()(0)'(0)...()2!!n nn f f f x f f x x x o x n =+++++,它称为(带有Peano 余项的)麦克劳林公式.二、公式的应用(一)、泰勒公式在近似运算上的应用利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为'''2(0)(0)()(0)(0)2!!n n f f f x f f x x xn ≈++++[]4,其误差是余项()n R x . 例1[]5:计算e 的值,使其误差不超过610-.解 应用泰勒公式有11111...2!3!!(1)!e e n n θ=+++++++,(01)θ<<,估3(1)!(1)!n e R n n θ=<++,当=9n 时,便有6331010!3628800n R -<=<, 从而略去9R 而求得e 的近似值为718285.2!91...!31!2111≈+++++≈e . 例2[]5: 求21x edx -⎰的近似值,精确到510-.解 因为21x e dx -⎰中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求21x e dx -⎰的近似值.在xe 的展开式中以2x -代替x 得24221(1)2!!nx nx x e x n -=-+++-+,逐项积分,得2421111121(1)2!!nx nx x edx dx x dx dx dx n -=-+-+-+⎰⎰⎰⎰⎰111111(1)32!5!2n 1n n =-+-+-++11111111310422161329936075600=-+-+-+-+,上式右端为一个收敛的交错级数,由其余项()n R x 的估计式知71||0.00001575600R ≤<,所以2111111110.7468363104221613299360x e dx -≈-+-+-+≈⎰.由于泰勒公式可以将一些复杂函数近似地表示为简单的多项式函数,所以当选定函数中的自变量时,就可以进行近似计算.在这个应用中主要注意选择适当的函数,然后运用麦克劳林展开式,带入数值.(二)、泰勒公式在求极限中的应用为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简洁的求出.接下来我们用两个例子来说明: 例3[]6:求极限2240cos limx x x ex -→-.解 考虑到极限式的分母为4x ,我们用麦克劳林公式表示极限的分子(取=4n )245cos 1()224x x x o x =-++ ,)(82154222x o x x ex ++-=-,)(12cos 5422x o x ex x +-=--,因而求得,245244001()cos 112limlim 12x x x x o x x e x x -→→-+-==-. 例4[]7: 求极限 )3(211ln 3)76(sin 6lim 2202x x xx x x x e x x +--+---→.解 )(!51!31sin 653x o x x x x ++-=, )(402767sin e 5532x o x x x x x ++-=-)(51413121)1ln(55432x o x x x x x x ++-+-=+ )(51413121)1ln(55432x o x x x x x x +-----=-)(52322)1ln()1ln(11ln 553x o x x x x x x x +++=+-+=-+,原式=5505527()40lim 6()5x x o x x o x →++=169.由上边两个例子可见,因为通常情况下对于函数多项式和有理分式的极限问题的计算是十分简单的,所以对于一些复杂的函数可以根据泰勒公式将原来的复杂的问题转化为类似多项式和有理分式的极限问题.综上所述,在式子满足下列情况时可以考虑用泰勒公式来求极限:(1)用洛必达法则时,次数比较多、求导过程和化简过程比较复杂的情况. (2)分子或分母中有无穷小的差, 且此差不容易转化为等价无穷小替代形式. (3)函数可以很容易的展开成泰勒公式.(三)、泰勒公式在方程中的应用泰勒公式在函数方程中应用比较广泛,题型也比较多,主要有判断根,方程次数等等一些证明类问题,做此类题,要注意观察题目中导数阶数,以便用泰勒公式展开到相应阶数.我们用三个例子来说明: 例5[]8: 设()f x 在[,)a +∞上二阶可导,且()0f a >,'()0f a <,对(,)x a ∈+∞,''0f ≤证明 ()0f x =在(,)a +∞内存在唯一实根.分析: 这里()f x 是抽象函数,直接讨论()0f x =的根有困难,由题设()f x 在[,)a +∞上二阶可导且()0f a >,'()0f a <,可考虑将()f x 在a 点展开一阶泰勒公式,然后设法应用介值定理证明.证明 因为''()0f x ≤,所以'()f x 单调减少,又'()0f a <,因此>x a 时,''()()0f x f a <<, 故()f x 在(,)a +∞上严格单调减少.在a 点展开一阶泰勒公式有''2()()()()()()()2f f x f a f a x a x a a x ξξ=+-+-<<.由题设'()0f a <,'()0f ξ≤,于是有lim ()x f x →∞=-∞,从而必存在b a >,使得()0f b <,又因为()0f a >,在[,]a b 上应用连续函数的介值定理,存在0(,)x a b ∈,使0()0f x =,由()f x 的严格单调性知0x 唯一,因此方程()0f x =在(,)a +∞内存在唯一实根.例6[]8: 设()f x 在(,)-∞+∞内有连续三阶导数,且满足方程,()()'(),01f x h f x hf x h θθ+=++<<. (1)试证:()f x 是一次或二次函数.证明 问题在于证明:''()0f x ≡或'''()0f x ≡.为此将(1)式对h 求导,注意θ与h 无 关.我们有'()'()''()f x h f x h hf x h θθθ+=+++, (2) 从而'()'()'()'()''()f x h f x f x f x h f x h hθθθ+-+-+=+.令0→h 取极限,得''()''()''()f x f x f x θθ-=,''()2''()f x f x θ=. 若21≠θ,由此知)(,0)(''x f x f ≡为一次函数;若21=θ,(2)式给出 111'()'()''()222f x h f x h hf x h +=+++,此式两端同时对h 求导,减去''()f x ,除以h ,然后令0→h 取极限,即得'''()0f x ≡,()f x 为 二次函数. 例7[]9: 已知函数)(x f 在区间(-1,1)内有二阶导数,且(0)'(0)0f f ==,''()()'()f x f x f x ≤+试证:0δ∃>,使得δδ-(,)内()0f x ≡. 证明 为了证明)(x f 在0=x 处的邻域内恒为零.我们将(3)式右端的)(x f ,)('x f 在0=x 处按公式展开.注意到(0)'(0)0f f ==.我们有22''()1()(0)'(0)''()22f f x f f x x f x ξξ=++=, '()'(0)''()''()f x f f x f x ηη=+=.从而21()|'()|''()''()2f x f x f x f x ξη+=+, 今限制11[,]44x ∈-,则()'()f x f x +在11[,]44-上连续有界,011[,]44x ∃∈-,使得 001144()'()max ()'().x f x f x f x f x M -≤≤+=+≡我们只要证明0M =即可.事实上20000001()'()''()''()2M f x f x f x f x ξη=+=+, ))('')(''(4100ηξf f +≤, ))()(')()('(410000ηηξξf f f f +++≤, 11242M M ≤⋅=. 即102M M ≤≤.所以0M =,在11[]44-,上()0f x ≡.由以上例题可见,在函数方程方面,泰勒公式对于求二阶或二阶以上的连续导数的问题来说十分的好用,主要是通过作辅助函数,对有用的点进行泰勒公式展开并对余项作合适的处理.(四)、泰勒公式在中值公式证明中的应用由于泰勒公式将函数和它的高阶导数结合了起来,所以遇到这类有高阶导数的证明时,首先应考虑用泰勒公式来求解.接下来我们用一个例子来说明: 例8[]9: 设)(x f 在],[b a 上三次可导,试证:(,)c a b ∃∈,使得31()()'()()'''()()224a b f b f a f b a f c b a +=+-+-. 证明 设k 为使下式成立的实数:31()()'()()()0224a b f b f a f b a k b a +-----=, 这时,我们的问题归为证明:(,)c a b ∃∈,使得'''()k f c =.令31()()()'()()()0224a x g x f x f a f x a k x a +=-----=. 则0)()(==b g a g ,根据Rolle 定理,(,)a b ξ∃∈,使得,0)('=ξg 即:1'()'()''()()202228a a a f f f k a ξξξξξ++-----=. 这是关于k 的方程,注意到)('ξf 在点2ξ+a 处的泰勒公式: 21'()'()''()'''()()022222a a a a f f f f c ξξξξξ++--=++=. (五)、泰勒公式在有关于界的估计中的应用我们知道有些函数是有界的,有的有上界,而有的有下界,结合泰勒公式的知识与泰勒公式的广泛应用,这里我们将探讨泰勒公式关于界的估计,下面通过例题来分析. 例9[]9: 设)(x f 在[0,1]上有二阶导数,10≤≤x 时|()|1f x ≤,''()2f x <.试证:当10≤≤x时,|'()|3f x ≤.证明 21(1)()'()(1)''()(1)2f f x f x x f x ξ=+-+-, 21(0)()'()()''()()2f f x f x x f x η=+-+-, 所以2211(1)(0)'()''()(1)''()22f f f x f x f x ξη-=+--, 22)1(|)(''|21)(''21|)0(||)1(||)('|x f x f f f x f -+++≤ξη,222(1)213x x ≤+-+≤+=.例10[]10: 设)(x f 二次可微,(0)(1)0f f ==,01max ()2x f x ≤≤=,试证01max ''()16x f x ≤≤≤-.证明 因)(x f 在[0,1]上连续,有最大、最小值.又因01max ()2x f x ≤≤=,(0)(1)0f f ==,最大值在(0,1)内部达到.所以)1,0(0∈∃x 使得001()max ()x f x f x ≤≤=.于是)(0x f 为最大值.由Fermat 定理,有0'()0f x =,在0x x =处按泰勒公式展开,)1,0(,∈∃ηξ使得:22000110(0)()''()(0)2''()22f f x f x f x ξξ==+-=+, 22000110(1)()''()(1)2''()(1)22f f x f x f x ηη==+-=+-.因此22010044max ''()min{''(),''()}min{,}(1)x f x f f x x ξη≤≤≤=---. 而 01[,1]2x ∈时,222000444min{,}16(1)1x x x --=-≤---(), 01[0,]2x ∈时,222000444min{,}16(1)x x x --=-≤--, 所以 01max ''()16x f x ≤≤≤-.由上边例题可以总结出一些经验,比如当遇到求有关于界的问题,且涉及高阶导数时,通常考虑用泰勒公式来解题.在解题时可以应用这个经验尝试解题.(六)、泰勒公式在证明不等式中的应用当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.[]7例11[]11: 设)(x f 在],[b a 上二次可微,''()0f x <.试证:12...0,n i a x x x b k ∀≤<<<≤≥,11nii k==∑,有)()(11i ni i i ni i x f k x k f ∑∑==>.证明 取01ni ii x k x==∑,将)(i x f 在0x x =处按泰勒公式展开有:20000))((''21))((')()(x x f x x x f x f x f i i i i -+-+=ξ, ))((')(000x x x f x f i -+<, (1,2,3...,)i n = 以i k 乘此式两端,然后n 个不等式相加,注意11nii k==∑,11()0nniii ii i k x x k x x==-=-=∑∑,得)()()(101∑∑===<ni i i i ni ix k f x f x f k.例12[]11: 当0x ≥时,证明31sin 6x x x ≥-. 证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0(0)0(0)0()1cos (0)0f f f f x x f ====-≥,,,,.带入泰勒公式,其中=3n ,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-. 由此可见,关于不等式的证明,有多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.但归结起来都可以看做是泰勒公式的特殊情形,所以证明不等式时,注意应用泰勒公式这个重要方法.(七)、泰勒公式在级数中的应用在级数敛散性的理论中,要判断一个正项级数∑=nn na1是否收敛,通常找一个简单的函数,)0(111>=∑∑==p n b nn p nn n ,在用比较判定法来判定,但是在实际应用中比较困难的问题是如何选取适当的∑=nn pn11(0>p 中的p 值).如 当2=p ,此时∑∞=121n n收敛,但是+∞=∞→21lim n a n n , 当1=p 时,此时∑∞=11n n发散,但是01lim =∞→na n n . 在这种情况下我们就无法判定∑=nn n a 1的敛散性,为了更好的选取∑=nn pn11中p 的值,使得lim 1n n p a t n→∞=且0t <<+∞,在用比较判别法,我们就可以判定∑=nn n a 1的敛散性. 例13[]11:讨论级数1n ∞=∑的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正项级数比较困难,因而也就无法恰当选择判敛方法,注意到11lnln(1)n n n +=+,若将其泰勒展开为1n 的幂的形式,相呼应,会使判敛容易进行.解 因为2341111111lnln(1)234n n nn n n nn+=+=-+-+<, 所以<从而0n u=>,故该级数是正项级数.又因为3212n =>==-, 所以332211)22nun n=-<-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例14[]12:求211x x++的幂级数展开式.解利用泰勒公式231111xx x x-=++-36934679103467910(1)(1)1()222222222(1)[sin]3nnx x x x x x x x x x xx x x x x x xnxπ∞=-++++=-+-+-+-+=-+-+-+-++=由例题可见,当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.(八)、泰勒公式在求高阶导数值中的应用如果()f x泰勒公式已知,其通项中的加项nxx)(-的系数正是)(!1)(xfnn,从而可反过来求高阶导数数值,而不必再依次求导.例15[]12: 求函数x exxf2)(=在1x=处的高阶导数(100)(1)f.解设=+1x u,则eeueuugxf uu⋅+=+==+2)1(2)1()1()()(,)0()1()()(nn gf=,ue在=0u的泰勒公式为)(!100!99!9811001009998uouuuue u++++++= ,从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g +++++++= ,而()g u 中的泰勒展开式中含100u的项应为100100!100)0(u g ,从()g u 的展开式知100u 的项为100)!1001!992!981(u e ++,因此 100(0)121()100!98!99!100!g e =++,100(0)10101g e =⋅,e gf 10101)0()1(100100==.通过泰勒公式求高阶导数,这是泰勒公式比较简单的一种应用,重点就在于掌握,其通项中的加项nx x )(0-的系数正是)(!10)(x f n n .在求导数时只需在系数上乘以!n 即可. 三、结 论泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具.它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用.本文介绍了泰勒公式以及它在八个方面应用,使我们对泰勒公式有了更深一层的理解,对怎样应用泰勒公式解答具体问题有了更深一层的认识,只要在解题过程中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]华东师范大学数学系,《数学分析》(上),高等数学出版社,2008,134-141[2]裴礼文,《数学分析中的典型问题及方法》,高等教育出版社,2009,150-157[3]同济大学数学教研室主编,《高等数学》,人民教育出版社,2007,139-145[4]刘玉琏,《数学分析讲义》,人民教育出版社,2000,120-138[5]张利凯,《高等数学学习辅导》,科学技术文献出版社,2002,138-156[6]M.克莱因,《古今数学思想》,上海科学技术出版社,1988,165-168[7]W.盖勒特、H.奎斯特纳等,《简明数学全书Ⅱ.高等数学与现代数学》,上海科学技术出版社,1985,295-297[8]H.J.巴茨,《数学公式书册》,科学出版社,1987,439-440[9]闵祥伟,《高等数学学习指导与例题分析》,北京邮电大学出版社,2004,520-521,539-540[10]吴炯圻,陈跃辉等,《高等数学及其思想方法与实验》(上),厦门大学出版社,2008,122-127[11]上海财经大学应用数学系,《高等数学》,上海财经大学出版社,2004,66-71[12]蔡子华,《新编高等数学导学》,科学出版社,2002,336-337,369-376(本资料素材和资料部分来自网络,仅供参考。

泰勒公式及其在工程实践中的应用

泰勒公式及其在工程实践中的应用

泰勒公式及其在工程实践中的应用泰勒公式是一种数学公式,可以用来近似计算函数值。

它最初由英国数学家泰勒所提出,因而得名。

泰勒公式将函数在某一点附近进行泰勒展开,即将函数展开为一项项的幂函数,并用代数式近似表示原函数值。

这样可以方便地进行计算,特别是在工程实践中常常被使用。

在工程实践中,有许多需要用到泰勒公式的情况,例如在计算机控制系统中,可以通过泰勒公式来实现快速的近似计算,从而提高计算速度和精度。

另外,在物理学中,泰勒公式也经常被用来近似计算复杂的物理量,如电流、电压等。

总而言之,泰勒公式在工程实践中的应用非常广泛,它可以帮助工程师们更加高效地解决各种复杂问题,从而使实际工程效果得到提升。

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是高等数学中一种常用的数学工具,它可以将一个函数在某点附近展开成无穷次幂的形式,从而方便我们进行运算和近似计算。

泰勒公式的应用非常广泛,下面将介绍一些泰勒公式的常见应用。

一、泰勒公式的定义及展开形式泰勒公式是数学中的一种近似计算方法,它是由英国数学家James Gregory和Brook Taylor独立发现的,所以又称为Gregory-Taylor公式。

对于任意可导的函数f(x),泰勒公式可以将其在某一点a附近展开成无穷次幂的形式,表示为:f(x)=f(a)+f'(a)(x-a)+f''(a) (x-a)^2/2!+f'''(a) (x-a)^3/3!+...+f^n(a)(x-a)^n/n!+Rnf'(a)表示函数f(x)在点a处的导数,f''(a)表示函数f(x)在点a处的二阶导数,f^n(a)表示函数f(x)在点a处的n阶导数,n!表示n的阶乘,Rn表示剩余项。

二、泰勒公式的应用1.函数的近似计算泰勒公式可以通过截取展开式的前几项,近似计算一个函数的极限。

特别是当函数在某点处的极限存在但不容易计算时,我们可以利用泰勒公式进行近似计算,从而得到更精确的结果。

3.函数的图像绘制由于泰勒公式将一个函数表示为一系列多项式的和,因此可以利用这个特性,将一个函数的图像近似为一系列多项式的图像的和。

如果我们截取展开式的前几项,就可以得到近似于原函数图像的图像,从而方便我们进行观察和分析。

4.误差估计剩余项Rn在泰勒公式中起到了重要的作用,它表示了使用泰勒公式近似计算的误差。

通过对剩余项的分析和估计,我们可以得到一个近似值的误差范围,从而判断近似结果的有效性,并进行误差的控制和优化。

泰勒公式是一种非常重要的数学工具,在高等数学的学习中具有广泛的应用。

它在函数的近似计算、极限计算、图像绘制和误差估计等方面都发挥着重要的作用。

泰勒公式及其在解题中的应用毕业设计论文

泰勒公式及其在解题中的应用毕业设计论文

毕业设计(论文)题目:泰勒公式及其在解题中的应用Title: Taylor formula and its application in solving problems学院:理学院专业:信息与计算科学姓名:罗书云学号:08102209指导教师:蔡奇嵘二零一二年六月摘要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,它集中体现了微积分“逼近法”的精髓,在近似计算方面有着得天独厚的优势,利用它可以将复杂问题简单化,可以将非线性问题化为线性问题,并且能满足相当高的精确度要求。

它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具。

泰勒公式在微积分的各个领域都有着重要的应用,而且泰勒公式“化繁为简”的功能在数学领域的研究方面也起到了很大的作用。

文章除了介绍了带佩亚诺型余项和拉格朗日型余项的泰勒公式在常用的近似计算、求极限、不等式的证明、判断函数极值上作求解证明外,特别地,对泰勒公式在函数凹凸性及拐点判断、级数和广义积分敛散性判断、行列式计算等问题的应用上做了详细系统的介绍,并且本文讨论了一种新的证明泰勒公式的方法,进一步将泰勒公式推广到更一般的形式。

关键词:泰勒公式;佩亚诺型余项;拉格朗日型余项;应用ABSTRACTTaylor's formula is an important part of mathematical analysis, the theory has become an indispensable tool of the research function limits and estimation error, which embodies the essence of calculus "approximation method", It have an unique advantage in the approximate calculation, it also can make complex issues into simplistic, non-linear problem into a linear problem, and can meet the very high accuracy requirements. It is the promotion of the mean value theorem in calculus, is also an important tool for the application of higher order derivatives of the functional state. Taylor formula in the calculus of the various fields have important applications, and the Taylor formula for complex simple "function in the mathematical field of research has played a significant role. This article in addition introdution Peano remainder and Lagrange remainder term of Taylor formula commonly used in approximate calculation, the limit inequality proof to determine the function extremum for solving prove, in particular, A detailed introduction of the Taylor formula in the application of the function bump and the inflection point judgment, the judgment of convergence and divergence of series and generalized integral, determinant calculation, and the article discusses a new method to prove that the Taylor formula, further Taylor formula to the more general form.Keywords: Taylor formula; Peano more than; Lagrange remainder; application东华理工大学毕业设计(论文)目录目录1. 绪论 (1)1.1综述 (1)1.2泰勒公式的研究背景 (2)1.3泰勒公式的研究意义 (2)1.4泰勒公式的研究目的 (2)1.5本论文所做的工作 (3)1.6本论文的基本思路与采用的方法 (3)2. 泰勒公式 (4)2.1泰勒公式的建立 (4)2.2泰勒公式的定义 (6)2.2.1 带有佩亚诺(Peano)型余项的泰勒公式 (6)2.2.2 带有拉格朗日(Lagrange)型余项的泰勒公式 (7)3. 泰勒公式的新证明及其推广 (8)3.1罗尔中值定理的两种推广形式 (8)3.2泰勒公式的新证明 (10)3.3泰勒公式的推广 (11)4. 泰勒公式在解题中的应用 (15)4.1利用泰勒公式求近似值 (15)4.2利用泰勒公式求极限 (16)4.3泰勒公式在判断级数和广义积分的敛散性中的应用 (17)4.3.1 判断级数的敛散性 (17)4.3.2 判断广义积分的敛散性 (18)4.4泰勒公式在判别函数的极值中的应用 (19)4.5泰勒公式在不等式证明中的应用 (20)4.6泰勒公式在判断函数凹凸性及拐点中的应用 (22)4.6.1 判断函数凹凸性 (23)4.6.2 判别函数拐点 (24)4.7泰勒公式在行列式计算方面的应用 (25)结论及展望 (27)致谢 (28)参考文献 (29)东华理工大学毕业设计(论文) 绪论11. 绪 论1.1 综述十七世纪中叶,随着近代微积分的蓬勃发展,极限作为数学中的一个概念也就被明确地提了出来。

泰勒公式及其应用开题报告

泰勒公式及其应用开题报告
除此之外,泰勒公式及‎泰勒级数的‎应用,往往能峰回‎路转,使问题 便的‎ 简单易解。
二、国内外研究‎ 现状分析: 国内外同类‎课题研究现‎状及发展趋‎势: 泰勒公式的‎证明与应用‎方面
的研究‎对于科研者‎来说一直具‎有强大的吸‎引力, 许多研究者‎已在此领域‎ 获得许多研‎究成果,例如:湖南科技学‎院数学系的‎唐仁献 在文章《泰勒 公式的‎新证明及其‎推广》中在推广了‎罗尔定理的‎基础上重新‎证明了 泰勒 公式; 洛阳工业高‎等专科校计‎算机系王素‎芳、 陶容、 张永胜在所‎著的 文章《泰 勒公式在计‎算及证明中‎的应用》中研究了泰‎勒公式在极‎限运算、 等式及不等‎式证 明中的应用‎,解决了用其‎它方法较难‎解决的问题‎,于此 类似的‎研究成果还‎有湖北 师范学院数‎学系的蔡泽‎林、陈琴的《定积分不 等‎式的几种典‎型证法》和潍坊高等‎ 专科学校的‎陈晓萌所著‎的《泰勒公式 在‎不等式中的‎应用》等等。
实现途径:
一、对泰勒公式‎的证明方法‎进行归纳; 二、灵活运用公‎式来解决极‎限、级数敛散性‎等问题;
三、研究实际数‎学问题中有‎关泰勒公式‎应用题目,寻求解决问‎题 题的途径‎ 。
3. 完成本课题‎所需工作条‎件(如工具书、计算机、实验、调研等)及解 决办法‎ :
为了写好论‎文我到中国‎ 期刊网、中国知识网‎和中国数字‎化期刊群查‎ 找相关论文‎的发表日期‎、刊名、作者,接下来要到‎图书馆四楼‎过刊室查 找‎相关文献,到电子阅览‎室查找相关‎期刊文献. 从图书馆借‎阅相关书 籍‎,仔细阅读,细心分析,通过自己的‎耐心总结、研究,老师的指导‎、 改正,争取做好毕‎业论文工作‎ . 具体采用了‎数学归纳法‎、分析法、反证 法、演绎法等方‎法.
毕 业设 计(论文) 开题报 告

泰勒公式及其应用(数学考研)

泰勒公式及其应用(数学考研)

第2章 预备知识前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的.给定一个函数)(x f 在点0x 处可微,则有:)()()()(000x x x f x f x x f ∆+∆'+=∆+ο这样当1<<∆x 时可得近似公式x x f x f x x f ∆'+≈∆+)()()(000或))(()()(000x x x f x f x f -'+=,10<<-x x即在0x 点附近,可以用一个x 的线形函数(一次多项式)去逼近函数f ,但这时有两个问题没有解决:(1) 近似的程度不好,精确度不高.因为我们只是用一个简单的函数—一次多项式去替代可能是十分复杂的函数f .(2)近似所产生的误差不能具体估计,只知道舍掉的是一个高阶无穷小量)(0x x -ο,如果要求误差不得超过410-,用))(()(000x x x f x f -'+去替代)(x f 行吗?因此就需要用新的逼近方法去替代函数.在下面这一节我们就来设法解决这两个问题.2.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,我们可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令n n x x a x x a a x f )(...)()(0010-++-+= (2.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线)(x f y =在点))(,(00x f x 的切线)去替代)(x f y =,而是想用一条n 次抛物线n n x x a x x a a x f )(...)()(0010-++-+=去替代它.我们猜想在点))(,(00x f x 附近这两条曲线可能会拟合的更好些.那么系数0a ,1a …n a 如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有n n x x a x x a a x f )(...)()(0010-++-+=于是得:)(00x f a =求一次导数可得:)(01x f a '= 又求一次导数可得:!2)(02x f a ''= 这样进行下去可得:!3)(03x f a '''=,!4)(0)4(4x f a =,… ,!)(0)(n x f a n n = 因此当f 是一个n 次多项式时,它就可以表成:k nk k nn x x k x f x x n x fx x x f x f x f )(!)()(!)(...))(()()(000)(00)(000-=-++-'+=∑= (2.2) 即0x 附近的点x 处的函数值)(x f 可以通过0x 点的函数值和各级导数值去计算.通过这个特殊的情形,我们得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式n n n x x n x f x x x f x x x f x f x T )(!)(...)(!2)())(()()(00)(200000-++-''+-'+=称为函数)(x f 在点0x 处的泰勒多项式,)(x T n 的各项系数!)(0)(k x fk ),...,3,2,1(n k = ,称为泰勒系数.因而n 次多项式的n 次泰勒多项式就是它本身.2.2 Taylor 公式的各种余项对于一般的函数,其n 次Taylor 多项式与函数本身又有什么关系呢?函数在某点0x 附近能近似地用它在0x 点的n 次泰勒多项式去替代吗?如果可以,那怎样估计误差呢?下面的Taylor 定理就是回答这个问题的.定理1]10[ (带拉格朗日型余项的Taylor 公式)假设函数)(x f 在h x x ≤-||0上存在直至1+n 阶的连续导函数,则对任一],[00h x h x x +-∈,泰勒公式的余项为10)1()()!1()()(++-+=n n n x x n f x R ξ其中)(00x x x -+=θξ为0x 与x 间的一个值.即有10)1(00)(000)()!1()()(!)(...))(()()(++-++-++-'+=n n nn x x n f x x n x fx x x f x f x f ξ (2.3) 推论1]10[ 当0=n ,(2.3)式即为拉格朗日中值公式:))(()()(00x x f x f x f -'=-ξ所以,泰勒定理也可以看作是拉格朗日中值定理的推广. 推论2]10[ 在定理1中,若令)0()()1(!)()(101)1(>--⋅=+-++p x x n p fx R n p n n n θξ则称)(x R n 为一般形式的余项公式, 其中0x x x --=ξθ.在上式中,1+=n p 即为拉格朗日型余项.若令1=p ,则得)0()()1(!)()(10)1(>--=++p x x n f x R n n n n θξ,此式称为柯西余项公式.当00=x ,得到泰勒公式:11)(2)!1()(!)0(...!2)0()0()0()(++++++''+'+=n n n n x n x f x n f x f x f f x f θ)(,)10(<<θ (2.4)则(2.4)式称为带有拉格朗日型余项的麦克劳林公式.定理2]10[ (带皮亚诺型的余项的Taylor 公式) 若函数f 在点0x 处存在直至n 阶导数,则有∑=-=nk k k n x x k x fx P 000)()(!)()(, )()()(x P x f x R n n -=.则当0x x →时,))(()(0n n x x x R -=ο.即有))(()(!)(...))(()()(000)(000n n n x x x x n x f x x x f x f x f -+-++-'+=ο (2.5)定理3所证的(2.5)公式称为函数)(x f 在点0x 处的泰勒公式,)()()(x P x f x R n n -=, 称为泰勒公式的余项的,形如))((0n x x -ο的余项称为皮亚诺型余项,所以(2.5)式又称为带有皮亚诺型余项的泰勒公式当(2.5)式中00=x 时,可得到)(!)0(...!2)0()0()0()()(2n nn x x n f x f x f f x f ο+++''+'+= (2.6)(2.6)式称为带有皮亚诺型余项的麦克劳林公式,此展开式在一些求极限的题目中有重要应用.由于))(()(0n n x x x R -=ο,函数的各阶泰勒公式事实上是函数无穷小的一种精细分析,也是在无穷小领域将超越运算转化为整幂运算的手段.这一手段使得我们可能将无理的或超越函数的极限,转化为有理式的极限,从而使得由超越函数所带来的极限式的奇性或不定性,得以有效的约除,这就极大的简化了极限的运算.这在后面的应用中给以介绍.定理3 设0>h ,函数)(x f 在);(0h x U 内具有2+n 阶连续导数,且0)(0)2(≠+x f n ,)(x f 在);(0h x U 内的泰勒公式为10,)!1()(!)(...)()()(10)1(0)(000<<+++++'+=+++θθn n n n h n h x fh n x fh x f x f h x f (2.7)则21lim 0+=→n h θ. 证明:)(x f 在);(0h x U 内的带皮亚诺型余项的泰勒公式:)()!2()()!1()(!)(...)()()(220)2(10)1(0)(000++++++++++++'+=+n n n n n n n h h n x f h n x f h n x f h x f x f h x f ο将上式与(2.7)式两边分别相减,可得出)()!2()()!1()(-)(220)2(10)1(0)1(++++++++=++n n n n n n h h n x fhn x fh x fοθ,从而220)2(0)1(0)1()()!2()()()()!1(+++++++=-+⋅+n n n n n h h n x f h x f h x fn οθθθ,令0→h ,得)!2()()(lim )!1(10)2(0)2(0+=⋅⋅+++→n x fx f n n n h θ,故21lim 0+=→n h θ. 由上面的证明我们可以看得出,当n 趋近于无穷大时,泰勒公式的近似效果越好,拟合程度也越好.第3章 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数)(0x f 及n 阶导数值:)(0x f ',)(0x f '',…,)(0)(x fn ,以及用这些值表示动点x 处的函数值)(x f ,本章研究泰勒公式的具体应用,比如近似计算,证明中值公式,求极限等中的应用.3.1 应用Taylor 公式证明等式例3.1.1 设)(x f 在[]b a ,上三次可导,试证: ),(b a c ∈∃,使得3))((241))(2()()(a b c f a b b a f a f b f -'''+-+'+= 证明: (利用待定系数法)设k 为使下列式子成立的实数:0)(241))(2()()(3=---+'--a b k a b b a f a f b f (3.1) 这时,我们的问题归为证明:),(b a c ∈∃,使得:)(c f k '''=令3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--=,则0)()(==b g a g . 根据罗尔定理,),(b a ∈∃ξ,使得0)(='ξg ,即:0)(82)()2()2()(2=---+''-+'-'a k a a f a f f ξξξξξ 这是关于k 的方程,注意到)(ξf '在点2ξ+a 处的泰勒公式:2))((812)()2()2()(a c f a a f a f f -'''+-+''++'='ξξξξξ 其中),(b a c ∈∃,比较可得原命题成立.例3.1.2 设)(x f 在[]b a ,上有二阶导数,试证:),(b a c ∈∃,使得3))((241)2()()(a b c f b a f a b dx x f ba-''++-=⎰. (3.2) 证明:记20ba x +=,则)(x f 在0x 处泰勒公式展开式为: 20000)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ (3.3)对(3.3)式两端同时取[]b a ,上的积分,注意右端第二项积分为0,对于第三项的积分,由于导数有介值性,第一积分中值定理成立:),(b a c ∈∃,使得32020))((121)()())((a b c f dx x x c f dx x x f baba-''=-''=-''⎰⎰ξ 因此原命题式成立.因此可以从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式.以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明.证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面我们通过几个例子来说明一下.3.2 应用Taylor 公式证明不等式例3.4设)(x f 在[]b a ,上二次可微,0)(<''x f ,试证:b x x x a n ≤<<≤≤∀...21,0≥i k ,11=∑=n i i k ,∑∑==>ni i i n i i i x f k x k f 11)()(.证明:取∑==ni i i x k x 10,将)(i x f 在0x x =处展开))(()()(2)())(()()(00020000x x x f x f x x f x x x f x f x f i i i i i -'+<-''+-'+=ξ 其中()n i ,...,3,2,1=.以i k 乘此式两端,然后n 个不等式相加,注意11=∑=ni i k()00110=-=-∑∑==x x k x xk ni i i ni ii得:)()()(101∑∑===<ni i i ni i ix k f x f x f k.例3.2.2 设)(x f 在[]1,0上有二阶导数,当10≤≤x 时,1)(≤x f ,2)(<''x f .试证:当10≤≤x 时,3)(≤'x f .证明:)(t f 在x 处的泰勒展开式为:2)(!2)())(()()(x t f x t a f x f t f -''+-'+=ξ 其中将t 分别换为1=t ,0=t 可得:2)1(!2)()1)(()()1(x f x x f x f f -''+-'+=ξ (3.4) 2)(!2)())(()()0(x f x x f x f f -''+-'+=η (3.5)所以(3.4)式减(3.5)式得:22!2)()1(!2)()()0()1(x f x f x f f f ηξ''--''+'=- 从而,312)1(2)(21)1()(21)0()1()(2222=+≤+-+≤''+-''++≤'x x x f x f f f x f ηξ 例3.2.3 设)(x f 在[]b a ,上二阶可导,0)()(='='b f a f ,证明:),(b a ∈∃ξ,有|)()(|)(4|)(|2a fb f a b f --≥''ξ.证明:)(x f 在a x =,b x =处的泰勒展开式分别为:21)(!2)())(()()(a x f a x a f a f x f -''+-'+=ξ,),(1x a ∈ξ 22)(!2)())(()()(b x f b x b f b f x f -''+-'+=ξ,),(2b x ∈ξ令2ba x +=,则有 4)(!2)()()2(21a b f a f b a f -''+=+ξ,)2,(1ba a +∈ξ (3.6)4)(!2)()()2(22a b f b f b a f -''+=+ξ,),2(2b b a +∈ξ (3.7) (3.7)-(3.6)得:[]0)()(8)()()(122=''-''-+-ξξf f a b a f b f 则有[])()(8)()()(8)()()(122122ξξξξf f a b f f a b a f b f ''+''-≤''-''-=- 令{})(,)(max )(21ξξξf f f ''''='',即有|)()(|)(4|)(|2a fb f a b f --≥''ξ. 例3.2.4 设)(x f 二次可微,0)1()0(==f f ,2)(max 10=≤≤x f x ,试证:16)(min 10-≤''≤≤x f x .证明:因)(x f 在[]1,0上连续,故有最大值,最小值.又因2)(max 10=≤≤x f x ,0)1()0(==f f ,故最大值在()1,0内部达到,所以()1,00∈∃x 使得)(max )(100x f x f x ≤≤=于是)(0x f 为极大值,由费马定理有:0)(0='x f ,在0x x =处按Taylor 公式展开:)1,0(,∈∃ηξ使得:2002)()()0(0x f x f f ξ''+==, (3.8) 200)1(2)()()1(0x f x f f -''+==η. (3.9)因此{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=''''≤''≤≤202010)1(4,4min )(),(min )(min x x f f x f x ηξ 而⎥⎦⎤⎢⎣⎡∈1,210x 时,16)1(4)1(4,4min 202020-≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x , ⎥⎦⎤⎢⎣⎡∈21,00x 时,164)1(4,4min 202020-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x . 所以,16)(min 10-≤''≤≤x f x .由上述几个例题可以看出泰勒公式还可以用来证明不等式,例3.2.1说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例3.2.2说明可以对某些函数在一定范围内的界进行估计,例3.2.3是用泰勒公式证明中值不等式,例3.2.4与例3.2.2很相似,只不过前者是界的估计,后者是对导数的中值估计.证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学习中我们要会灵活应用.但前提是要满足应用的条件,那就是泰勒公式成立的条件.3.3 应用Taylor 公式求极限例3.3.1求422cos limxex x x -→-.解:在这里我们用泰勒公式求解,考虑到极限,用带皮亚诺型余项的麦克劳林公式展开,则有)(2421cos 542x x x x ο++-=)(82154222x x x ex ο++-=-)(12cos 5422x x ex x ο+-=--所以,121)(12lim cos lim4540242-=+-=-→-→xx x xex x x x ο. 像这类函数用泰勒公式求极限就比较简单,因为使用洛毕达法则比较麻烦和复杂.例 3.3.2 设函数)(x ϕ在[)+∞,0上二次连续可微,如果)(lim x x ϕ+∞→存在,且)(x ϕ''在[)+∞,0上有界,试证:0)(lim ='+∞→x x ϕ.证明:要证明0)(lim ='+∞→x x ϕ,即要证明:0>∀ε,0>∃δ.当M x >时()εϕ<'x . 利用Taylor 公式,0>∀h ,2)(21)()()(h h x x h x ξϕϕϕϕ''+'+=+ (3.10)即[]h x h x h x )(21)()(1)(ξϕϕϕϕ''--+=' (3.11) 记)(lim x A x ϕ+∞→=,因)(x ϕ''有界,所以0>∃M ,使得M x ≤'')(ϕ, )0(≥∀x故由(3.11)知[]h x A A h x h x |)(|21)()(1)(ξϕϕϕϕ''+-+-+≤' (3.12) 0>∀ε,首先可取0>h 充分小,使得221ε<Mh , 然后将h 固定,因)(lim x A x ϕ+∞→=, 所以0>∃δ,当δ>x 时[]2)()(1εϕϕ<-+-+x A A h x h 从而由(3.12)式即得:εεεϕ=+<'22)(x .即0)(lim ='+∞→x x ϕ例3.3.3 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程. (1)32)1)(2(+-=x x y ;(2))1(cos 2215x e xx y --=.解:(1)首先设所求的渐近线为 b ax y +=,并令 xu 1=,则有:0)(1lim )()321)(321(lim )1()21(lim])1)(2([lim 003231032=+--=+--+-=--+-=--+-→→→∞→uu bu a u u bu a u u ubu a u u b ax x x u u u x οο从中解出:1=a ,0=b .所以有渐近线:x y =.(2)设b ax y +=,xu 1=,则有 0)()4221)(2421(lim cos lim ])1(cos [lim 554424205542021522=+--⋅+-+-=---=---→-→-∞→u u bu au u u u u u bu au e u b ax e x x u u u xx ο从中解出:121-=a ,0,1==b a . 所以有渐近线:x y 121-=.从上面的例子中我们可以看得出泰勒公式在判断函数渐近线时的作用,因而我们在判断函数形态时可以考虑这个方法,通过求极限来求函数的渐进线.上述三个例子都是泰勒公式在求极限的题目上的应用,例3.3.1是在具体点或者是特殊点的极限,而第二个例子是求无穷远处的极限,第三个是利用极限来求函数的渐近线,学习了数学分析,我们知道求极限的方法多种多样,但对于有些复杂的题目我们用洛必达法则或其他方法是很难求出,或者是比较复杂的,我们不妨用泰勒公式来解决.3.4 应用Taylor 公式求中值点的极限例3.4.1]4[ 设(1))(x f 在),(00δδ+-x x 内是n 阶连续可微函数,此处0>δ; (2)当)1(,...,3,2-=n k 时,有0)(0)(=x f k ,但是0)(0)(≠x f n ;(3)当δ<≠h 0时有))(()()(000h h x f hx f h x f θ+'=-+. (3.13)其中1)(0<<h θ,证明:101)(lim -→=n h nh θ. 证明:要求出)(h θ的极限必须设法解出)(h θ,因此将(3.13)式左边的)(0h x f +及右端的))((0h h x f θ+'在0x 处展开,注意条件(2),知)1,0(,21∈∃θθ使得())(!)()()(10000h x f n h x f h x f h x f n n θ++'+=+, (3.14) ))(()!1())(()())((20)(1100h h x f n h h x f h h x f n n n θθθθ+-+'=+'--, (3.15)于是(3.13)式变为=++'-)(!)(10)(10h x f n h x f n n θ))(()!1())(()(20)(110h h x f n h h x f n n n θθθ+-+'--从而120)(10)())(()()(-++=n n n h h x nf h x f h θθθθ. 因)1,0()(,,21∈h θθθ,利用)()(x f n 的连续性,由此可得101)(lim -→=n h nh θ. 这个例子可以作为定理来使用,但前提是要满足条件.以后只要遇到相关的题目就可以简单应用.3.5 应用Taylor 公式近似计算由于泰勒公式主要是用一个多项式去逼近函数,因而可用于求某些函数的近似值,或根据误差确定变量范围.特别是计算机编程上的计算.例3.5.1 求:(1)计算e 的值,使其误差不超过610-;(2)用泰勒多项式逼近正弦函数x sin ,要求误差不超过310-,以2=m 的情形讨论x 的取值范围.解:(1) 由于x e 的麦克劳林的泰勒展开式为: 10,)!1(!...!2112<<++++++=+θθn xn x x n e n x x x e 当1=x 时,有)!1(!1...!2111++++++=n e n e θ故)!1(3)!1()1(+<+=n n e R n θ. 当9=n 时,有691036288003!103)1(-<<=R 从而省略)1(9R 而求得e 的近似值为: 718285.2!91...!31!2111≈+++++≈e (2) 当2=m 时, 6sin 3x x x -≈,使其误差满足: 355410!5!5cos )(-<≤=x x x x R θ 只需6543.0<x (弧度),即大约在原点左右37°29′38″范围内,上述三次多项式逼近的误差不超过310-.3.6 应用Taylor 公式求极值定理3.1 ]12[ 设f 在0x 附近有1+n 阶连续导数,且)(0x f ')(0x f ''=0)(...0)(===x f n , 0)(0)1(≠+x f n(1)如果n 为偶数,则0x 不是f 的极值点.(2)如果n 为奇数,则0x 是f 的严格极值点,且当0)(0)1(>+x fn 时,0x 是f 的严格极小值点;当0)(0)1(<+x f n 时,0x 是f 的严格极大值点.证明:将f 在0x 点处作带皮亚诺型余项的Taylor 展开,即:))(()()!1()()()(10100)1(0+++-+-++=n n n x x x x n x f x f x f ο 于是1010100)1(0)()())(()!1()()()(++++-⎥⎦⎤⎢⎣⎡--++=-n n n n x x x x x x n x f x f x f ο 由于)!1()()())(()!1()(lim 0)1(10100)1(0+=⎥⎦⎤⎢⎣⎡--++++++→n x f x x x x n x f n n n n x x ο 故0>∃δ,),(00δδ+-x x 中,10100)1()())(()!1()(+++--++n n n x x x x n x f ο与)!1()(0)1(++n x f n 同号. (1)如果n 为偶数,则由10)(+-n x x 在0x 附近变号知,)()(0x f x f -也变号,故0x 不是f 的极值点.(2)如果n 为奇数,则1+n 为偶数,于是,10)(+-n x x 在0x 附近不变号,故)()(0x f x f -与)!1()(0)1(++n x f n 同号. 若0)(0)1(>+x f n ,则)()(0x f x f >,)(),(0,000δδ+-∈∀x x x x x Y ,0x 为f 的严格极小值点. 若0)(0)1(<+x f n ,则)()(0x f x f <,)(),(0,000δδ+-∈∀x x x x x Y ,0x 为f 的严格极大值点.例3.6.1 试求函数34)1(-x x 的极值.解:设34)1()(-=x x x f ,由于)47()1()(23--='x x x x f ,因此74,1,0=x 是函数的三个稳定点.f 的二阶导数为)287)(1(6)(22+--=''x x x x x f ,由此得,0)1()0(=''=''f f 及0)74(>''f .所以)(x f 在74=x 时取得极小值. 求三阶导数)4306035(6)(23-+-='''x x x x x f ,有0)0(='''f ,0)1(>'''f .由于31=+n ,则2=n 为偶数,由定理3.1知f 在1=x 不取极值.再求f 的四阶导数)1154535(24)(23)4(-+-=x x x x f ,有0)0()4(<f .因为41=+n ,则3=n 为奇数,由定理3.1知f 在0=x 处取得极大值.综上所述,0)0(=f 为极大值,82354369127374)74(34-=-=)()(f 为极小值. 由上面的例题我们可以了解到定理3.1也是判断极值的充分条件.3.7 应用Taylor 公式研究函数图形的局部形态定理3.2]12[ 设R X ∈为任一非空集合,X x ∈0,函数R X f →:在0x 处n 阶可导,且满足条件:)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n .(1)n 为偶数,如果)0(0)(0)(<>x f n ,则曲线)(x f y =在点))(,(00x f x 的邻近位于曲线过此点的切线的上(下)方.(2)n 为奇数,则曲线)(x f y =在点))(,(00x f x 的邻近位于该点切线的两侧,此时称曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.证明:因为f 在0x 处n 阶可导,并且)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x fn ,所以f 在0x 的开邻域 ),(0δx B ο内的n 阶Taylor 公式为))(()(!)())(()()(000)(000n n n x x x x n x f x x x f x f x f -+-+-'+=ο )(0x x → 于是[]⎥⎦⎤⎢⎣⎡--+-=-'+-n n n nx x x x n x f x x x x x f x f x f )())((!)()())(()()(000)(0000ο 由于!)()())((!)(lim 0)(000)(0n x f x x x x n x f n n n n x x =⎥⎦⎤⎢⎣⎡--+→ο 由此可见:0>∃δ,),(0δx B X x οI ∈∀,有:[]))(()()(000x x x f x f x f -'+-与n n x x n x f )(!)(00)(-同号. (1)当n 为偶数,如果0)(0)(>x f n ,则[]0))(()()(000>-'+-x x x f x f x f ,),(0δx B X x οI ∈∀这就表明在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上方;如果0)(0)(<x f n ,则有[]0))(()()(000<-'+-x x x f x f x f ,),(0δx B X x οI ∈∀因此,在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下方.(2)当n 为奇数,这时若)0(0)(0)(<>x f n ,则[])0(0))(()()(000<>-'+-x x x f x f x f , ),(0δx B X x οI +∈∀ [])0(0))(()()(000><-'+-x x x f x f x f , ),(0δx B X x οI -∈∀ 由此知,在0x 的右侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上(下)方;而在0x 的左侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下(上)方.因此,曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.3.8 应用Taylor 公式研究线形插值例 3.8.1(线形插值的误差公式) 设R b a f →],[:为实一元函数,l 为两点))(,(a f a 与))(,(b f b 所决定的线形函数,即)()()(b f a b a x a f a b x b x l --+--=,l 称为f 在区间],[b a 上的线形插值.如果f 在区间],[b a 上二阶可导,f 在],[b a 上连续,那么,我们可以对这种插值法带来的误差作出估计.应用带Lagrange 型余项Taylor 公式:),(x a ∈∃ξ,),(b x ∈∃η,使得 [][])(2))(()()(2))(()()(21)()()()(21)()()()()()()()(22ζηξηξf a x x b f a b x b f a b a x a x x b f x b x f x b a b a x f x a x f x a a b x b x f b f ab a x x f a f a b x b x f x l ''--=⎥⎦⎤⎢⎣⎡''--+''----=⎥⎦⎤⎢⎣⎡''-+'---+⎥⎦⎤⎢⎣⎡''-+'---=---+---=-其中,),(b a ∈ζ,最后一个式子是由于0>--a b x b ,0>--ab a x . )}(),(max{)()())}((),(min{)}(),(min{ηξηξηξηξf f f ab x b f a b a x ab x b a b a x f f f f ''''≤''--+''--≤--+--''''='''' 以及Darboux 定理推得.如果M 为)(x f ''的上界(特别当)(x f ''在],[b a 上连续时,根据最值定理,取)(max ],[x f M b a x ''=∈),则误差估计为 M a b f a x x b x f x l 2)(|)(|2))(()()(2-≤''--≤-ζ,],[b a x ∈∀ 这表明,M 愈小线性插值的逼近效果就会愈好,当M 很小时,曲线)(x f y =的切线改变得不剧烈,这也是符合几何直观的.3.9 应用Taylor 公式研究函数表达式例3.9.1]4[ 设在内有连续三阶导数,且满足方程:)()()(h x f h x f h x f θ+'+=+,10<<θ.(θ与h 无关) (3.16)试证:)(x f 是一次或二次函数.证明:要证)(x f 是一次或二次函数,就是要证0)(≡''x f 或0)(≡'''x f .因此要将(3.16)式对h 求导,注意θ与h 无关,我们有)()()(h x f h h x f h x f θθθ+''++'=+' (3.17)从而)()()()()(h x f hh x f x f x f h x f θθθ+''=+'-'+'-+' (3.18) 令0→h ,对(3.17)式两边取极限得:)()()(x f x f x f ''=''-''θθ,即)(2)(x f x f ''=''θ 若21≠θ,由此知0)(≡''x f ,)(x f 为一次函数; 若21=θ,则(3.17)式变成:)21(21)21()(h x f h h x f h x f +''++'=+'.此式两端同时对h 求导,减去)(x f '',除以h ,然后令0→h 取极限,即得0)(≡'''x f ,即)(x f 为二次函数.实际上在一定条件下证明某函数0)(≡x f 的问题,我们称之为归零问题,因此上例实际上也是)(x f '',)(x f '''的归零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《泰勒公式及其应用》的开题报告
《泰勒公式的验证及其应用》的开题报告
关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义
目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。

泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。

如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。

对泰勒公式的研究就是为了解决上述问题的。

2.本课题的研究现状
数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。

泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。

对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容
对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

本课题将从以下几个方面展开研究:
一、介绍泰勒公式及其证明方法
二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。

三、结论。

4.本课题的实行方案、进度及预期效果
实行方案:
1.对泰勒公式的证明方法进行归纳;
2.灵活运用公式来解决极限、级数敛散性等问题;
3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。

实行进度:
研究时间为第8学期,研究周期为9周。

1.前期准备阶段:
收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。

2.研究阶段:20XX年12月—20XX年4月
3.第一阶段:初期(20XX年12月1日-20XX年3月15日)第二阶段:中期(20XX年3月16日-20XX年4月15日)
第三阶段:结题(20XX年4月16日-20XX年4月30日)。

相关文档
最新文档