空气动力学资料-课件PPT(精)

合集下载

空气动力学基础ppt课件

空气动力学基础ppt课件
30
2.1.7 连续性定理和伯努利定
理的应用
① 用文邱利管测流量
1 A1, v1 ,P1
2 A2, v2 ,P2

v1
v2
A2 A1
文邱利管测流量
v2 2 P1 P2 / 1 A22 / A12
1 2
v12

P1

1 2
v22

P2
31
无粘流动 沿物面法线方向速度一致
“附面层”
粘性流动 沿物面法线方向速度不一致
55
②附面层的特点
I. 附面层内沿物面法向方向压强不变且等于法线主 流压强。
P1
P2
只要测出附面层边界主流的静压,便可得到物面各点的静 压,它使理想流体的结论有了现实意义。
56
II. 附面层厚度随气流流经物面的距离增长而增厚。
B C’ C
A
75
●影响压差阻力的因素
总的来说,飞机压差阻力与迎风面积、形状和迎角有关。迎风面 积大,压差阻力大。迎角越大,压差阻力也越大。
压差阻力在飞机总阻力构成中所占比例较小。
76
③干扰阻力
飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把 它们组合成一个整体所产生的阻力,这种由于各部件气流之间的 相互干扰而产生的额外阻力,称为干扰阻力。
质量守恒定律是连续性定理的基础。
22
●连续性定

1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v1 A1
单位时间内流过截面1的流体质量为1 v1 A1
同理, 2v2A2
则根据质量守恒定律可得:
单位时 间内流
1 v1 A1 2 v2 A2 即 v1 A1 v2 过A截2 面C常数

空气动力学绪论PPT课件

空气动力学绪论PPT课件
27
0.3 空气动力学的发展进程
现代航空和喷气技术的迅速发展使飞行速度迅猛提高在 高速运动的情况下,必须把流体力学和热力学这两门学科 结合起来,才能正确认识和解决高速空气动力学中的问题。 1887-1896年间,奥地利科学家马赫在研究弹丸运动扰动 的传播时指出:在小于或大于声速的不同流动中,弹丸引 起的扰动传播特征是根本不同的。
高等数学计算方法大学物理理论力学绪论2学时第一章流体的基本属性和流体静力学6学时第二章流体运动学和动力学基础12学时第三章不可压缩无粘流体平面位流6学时第四章粘性流体动力学基础6学时第五章边界层理论及其近似6学时第六章可压缩高速流动基础14学时第七章高超音速流动基础4学时6学时总复习2学时陈再新刘福长鲍国华空气动力学航空工业出版社1993杨岞生俞守勤飞行器部件空气动力学航空工业出版社1987andersonjr
按速度范围分类:
低速空气动力学 (Low Aerodynamics) 亚音速空气动力学 (Subsonic Aerodynamics) 超音速空气动力学 (supersonic Aerodynamics) 高超音速空气动力学 (hypersonic Aerodynamics)
其它
36
37
38
39
21
0.3 空气动力学的发展进程
18世纪是流体力学的创建阶段。伯努利(Bernoulli) 在1738年发表“流体动力学”一书中,建立了不可压流体 的压强、高度和速度之间的关系,即伯努利公式;欧拉 (Euler)在1755年建立了理想不可压流体运动的基本方程 组,奠定了连续介质力学的基础。达朗贝尔 D'Alembert 提出著名的达朗贝尔原理:“达朗贝尔疑题”就是他在 1744年提出的。拉格朗日(Lagrange)改善了欧拉、达朗 贝尔方法,并发展了流体动力学的解析方法。关于研究气 流对物体的作用力,最早是牛顿(Newton)于1726年提出 关于流体对斜板的作用力公式,他实际上是在撞击理论的 基础上提出来的,没有考虑到流体的流动性.

《空气动力学》课件

《空气动力学》课件

未来挑战与机遇
环境保护需求
新能源利用
随着环境保护意识的提高,对空气污 染和气候变化的研究需求增加,这为 空气动力学带来了新的挑战和机遇。
新能源的利用涉及到流动、传热和燃 烧等多个方面,需要空气动力学与其 他学科合作,共同解决相关问题。
航空航天发展
航空航天领域的发展对空气动力学提 出了更高的要求,需要不断改进和完 善现有技术,以满足更高性能和安全 性的需求。
04
翼型与机翼空气动力学
翼型空气动力学
翼型概述
翼型分类
翼型是机翼的基本截面形状,具有特定的 弯度和厚度。
根据弯度和厚度的不同,翼型可分为超临 界、亚音速和超音速翼型等。
翼型设计
翼型与升力
翼型设计需考虑气动性能、结构强度和稳 定性等多个因素。
翼型通过产生升力使飞机得以升空。
机翼空气动力学
01
机翼结构
课程目标
掌握空气动力学的基本概 念和原理。
提高分析和解决实际问题 的能力。
了解空气动力学在各领域 的应用和发展趋势。
培养学生对空气动力学的 兴趣和热爱。
02
空气动力学基础
流体特性
01
02
03
04
连续性
流体被视为连续介质,由无数 微小粒子组成,彼此之间存在
相对运动。
可压缩性
流体的密度会随着压力和温度 的变化而变化。
《空气动力学》PPT课件
目 录
• 引言 • 空气动力学基础 • 流体动力学 • 翼型与机翼空气动力学 • 空气动力学应用 • 未来发展与挑战
01
引言
主题介绍
空气动力学:一门研 究空气运动规律和空 气与物体相互作用的 科学。
课件内容涵盖了基础 理论、应用实例和实 验演示等方面。

(精品)空气动力学(全套1082页PPT课件)

(精品)空气动力学(全套1082页PPT课件)
雷诺(OsborneReynolds, 1842~1921),英国工程师兼物理学家, 维多利亚大学(在曼彻斯特市)教授。
录像\第0章\turbulent_laminarcombo.avi
0.3 空气动力学的发展进程简介
1904年普朗特提出了边界层理论,是 现代流体力学的里程碑论文。
在1910年-1920年期间,其主要精力 转到低速翼型和机翼绕流问题,提出著 名的有限展长机翼的升力线理论和升力 面理论。
陆士嘉长期从事空气动力学和航空工程的 研究和教学工作,倡导漩涡、分离流和湍流 结构的研究。
0.3 空气动力学的发展进程简介
儒可夫斯基简介 儒可夫斯基(Joukowski,
1847~1921),俄国数学家和空气 动力学家,科学院院士。1868年毕 业于莫斯科大学物理系,1886年起 历任莫斯科大学和莫斯科高等技术 学校教授,直至1921去世,一直在 这两所学校工作。
0.3 空气动力学的发展进程简介
• 钱学森(1911-2009) 1938年,他在导师冯卡门指导下,获
得博士学位,1947年任麻省理工学院终 身教授,1955年回国。
钱学森的主要贡献集中在跨、超声速 空气动力学方面。1946年他在一篇重要 的学术论文中首创了Hypersonic(高超 声速)一词,并提出了高超声速相似律。
的建立,流体力学和空气动力学才逐步迈 入理性研究和持续发展的阶段。
0.3 空气动力学的发展进程简介
微积分问世后,流体成为数学家们应用微 积分的最佳领域。
1738年伯努利出版了“流体力学”一书, 将微积分方法引进流体力学中,建立了分 析流体力学的理论体系,提出无粘流动流 速和压强的关系式,即Bernoulli能量方程。
0.2 空气动力学的研究对象

飞机的飞行原理--空气动力学基本知识 ppt课件

飞机的飞行原理--空气动力学基本知识  ppt课件
PPT课件 21
4、电离层(暖层、热层)






电离层位于中间层之上,顶界离地面大约 800公里。 电离层的特点: 1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。 2)空气具有很大的导电性,空气已经被 电离,主要是带负电的电离子。 3)空气可以吸收、反射或折射无线电波。 4)空气极为稀薄,占整个大气的1/亿. 这层空气主要有人造卫星、宇宙飞船飞行。
PPT课件 16



对流层的特点: 1)气流随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
PPT课件 17



4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。

空气动力学基础--空气动力学 ppt课件

空气动力学基础--空气动力学  ppt课件
称为流管。流线间隔缩小,表明流管收缩;反之,表明流管 扩张。
PPT课件
7
体积流量
Q Av
质量流量
qm Av
PPT课件
8
2.2 流体流动的基本规律
2.2.1 连续方程
连续方程是质量守恒定律在流体定常流动中的应用。 连续方程:
1 A1v1 2 A2v2 3 A3v3 ...
2.3.2机身的几何形状和参数
为了减小阻力, 一般机身前部为圆头锥体, 后都为尖 削的锥体,中间较长的部分为等剖面柱体。
表示机身儿何形状特征的参数
机身长度Lah 最大当量直径Dah 长细比λah =Lah/Dah
PPT课件
23
2.4 作用在飞机上的空气动力
2.4.1 空气动力、升力和阻力 2.4.2 升力的产生 2.4.3 阻力 2.4.4 升力和阻力 2.4.5 升力系数曲线、阻力系数曲线和升阻比曲线、极
连续介质
组成介质的物质连成一片,内部没有任何空隙。
在其中任意取一个微团都可以看成是由无数分子组成 ,微团表现出来的特性体现了众多分子的共同特性。
微小的局部也可代表整体
PPT课件
5
2.1.3 流场、定常流和非定常流
流场
流体流动所占据的空间。
非定常流
在流扬中的任何一点处,如果流体做困流过时的流动多数随 时间变化,称为非定常流;这种流场被称为非定常流场。
曲线 2.4.6 机翼的压力中心和焦点(空气动力中心)
PPT课件
24
2.4.1 空气动力、升力和阻力
空气动力
空气作用在与之有相对运动物体上的 力称为空气动力。
飞机飞行时,作用在飞机各部件上 的空气动力的合力叫做飞机的总空 气动力, 用R 表示。

[精选]mmmm空气动力学原理资料PPT课件

[精选]mmmm空气动力学原理资料PPT课件
14
• 当平板静止时,阻力虽大但并未对平板做 功;当平板在阻力作用下运动,气流才对 平板做功;如果平板运动速度方向与气流 相同,气流相对平板速度为零,则阻力为 零,气流也没有对平板做功。一般说来受 阻力运动的平板当速度是气流速度的20% 至50%时能获得较大的功率。
• 当平板与气流方向平行时,平板受到的作 用力为零(阻力与升力都为零)
方气流的吸力,这些力可用一个合力来表 示,该力与弦线(翼片前缘与后缘的连线) 的交点即为翼片的压力中心。对于普通薄 翼型,在攻角在5至15度时,压力中心约在 翼片前缘开始的1/4的位置。
26
27
28
翼的俯仰力矩
M12CMAv2L
翼的俯仰力矩系数
CM
1 2
M
Av2
L
L-翼的弦长
(苏绍禹)
29
• 相对风速 • 下图是一个风力机的叶片截面,当叶片运
动时,叶片感受到的风速称为相对风速w→, 它是叶片的线速度(矢量)u→与风进叶轮 前的速度(矢量)v→的合成矢量 • w→=u→+v→
30
31
32
33
学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
• 3)在势流场中,沿任意封闭曲线的速度环量为零。
2
• 2.流函数 • 1)流函数的等值线与流线重合 • 3.平行流 • 就是流体质点以相同的速度相互平行地作
等速直线运动。
• 存在速度势
3
• 当φ=常数时,x=常数,所以等势线是x= c的一族与y轴平行的直线。
• 存在流函数
4
平行流的等势线和流线图

《飞行原理空气动力》课件

《飞行原理空气动力》课件
气动力学对先进科技的贡献
回顾气动力学在推动先进科技发展中的贡献。
让我们一起探索气动力学的更多奥秘!
鼓励听众深入学习气动力学,并探索其更多的应用和发展。
《飞行原理空气动力》 PPT课件
通过本课件,我们将带您深入了解飞行原理中的空气动力学,包括其定义、 基本概念、应用以及与先进科技的关系。
认识空气动力学
空气动力学定义
探索飞行中的空气力学现象和原理。
空气动力学发展历程
了解空气动力学在航空和航天领域的演变过程。
空气动力学研究的重要意义
探讨空气动力学在飞行器设计中的关键作用。
能优化中的应用。
3
气动力的计算方法
探讨气动力学计算方法和模拟技术。
气动力学设计
1 气动力学和设计的联 2 飞行器设计中的气动 3 气动力学设计的实例

力学问题
分析
解释气动力学在飞行器设 计中的关键作用。
探索飞行器设计过程中涉 及的气动力学挑战。
通过实例研究,深入理解 气动力学设计的关键概念 和技术。
空气动力学基本概念
空气动力学的基本概念
介绍空气动力学中的重要概念, 如空气动力学力、气流等。
气体的物理性质
了解气体在空气动力学中的行为 和特性。
流体的基本特性
探索流体在空气动力学中的运动 和变化。
空气动力学原理
1
空气动力学公式
学习空气动力学中的关键公式和计算方
空气动力学原理的应用
2
法。
了解空气动力学原理在飞行器设计和性
气动力学与先进科技
先பைடு நூலகம்科技的气动力学 应用
探索先进科技领域中气动力学 的创新应用。
气动力学在航空航天 中的应用

西工大空气动力学PPT课件第一章

西工大空气动力学PPT课件第一章

3 气体的压缩性、粘性和热传导
压缩性(弹性)
在一定温度条件下,一定质量气体的 体积或密度随压强变化而变化的特性
度量气体压缩性大小用体积弹性模数E 各种物质的弹性模量是不同的,所以它们的压缩性也不同。
如水的弹性模量为 2.1×109 N / m2
−4 当压强增大一个大气压时密度变化 0.5 × 10
px = p y = pz = p
P
Px
dy
n
X o dx A
dz
结论 理想流体内一点处的压强与受压面 方位无关,方向垂直指向作用面。 压强仅是空间坐标的连续函数。
△ABC的面积ds
z C
Py
流体微团四面体和压强
2 流体的密度、压强和温度
完全气体的状态方程 分子是完全弹性的 忽略内聚力 忽略分子微粒的实有总体积
流动性弱
将固体、液体 和气体放在一 密闭的容器当 中,会有什么 现象?
1
连续介质假设
微观上:流体分子距离的存在以及分子运动的随机性使得 微观上:流体分子距离的存在以及分子运动的随机性使得 流体的各物理量在时间和空间上的分布都是不连续的。 流体的各物理量在时间和空间上的分布都是不连续的。
空气动力学研究对象(飞行器)的特 征尺寸远大于流体分子平均自由程
低层大气层
高温层:85~500Km
高层大气层
电离层
外层大气:>500Km
5 标准大气
大气的分层
•普通飞机主要在对流层和平流层飞行,约39Km左右。 •探测气球:44Km左右 •定点通讯卫星约35000Km •航天飞行器几百Km
5 标准大气
海平面上的标准值
Ta = 288.15 K pa = 101325 N / m 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档