浮头式换热器设计
浮头式换热器设计简介
浮头式换热器设计(PN1.3/0.9; W=41T/h)过程装备与控制工程姓名学号指导老师 XX 工程师摘要管壳式换热器是化学、石油化学及石油炼制工业中以及其它一些行业中广泛使用的热交换设备。
它不仅可以单独作为加热器、冷却器等使用,而且是化工单元的重要附属设备,因此在化工生产中占有重要地位。
浮头式换热器是釜壳式换热器的一种,其优点是:管束可以从壳体里面抽出来,便于清洗;管壳的变形不会受到壳体的约束,消除热应力。
浮头式的设计内容有:换热器的热力学计算;换热器的零部件材料选定;换热器的结构设计;换热器的强度校核。
关键字:管壳式换热器浮头式换热器设计内容AbstractShell and tube heat exchange is widely used in the heat exchanger of chemical. It can’t only used for heater and cooler individually etc. But also for some important accessory equipment of the chemical units. So it occupies an place in chemical production.The floating head exchange is one of the shell and tude heat exchange.Tube bundle can be pumping out from the inside of the shell for easy to cheaning;The themcal deformation of the tube bundle will not be constraint of the shell by elimination of heat stress.The design of a floating head exchanger typically includes:The thermodynatic cacnlationof the heat exchanger;The components’ materials selection of the heat exchanger;Structural design of the heat exchanger;The components thickness colcnlation and strength checking of the heat exchange.Keywords:shell and tube exchanger; Floating head heat exchanger; Components of the design一、前言换热器是将热流体的部分能量传递给冷流体的设备,又称热交换器。
浮头式换热器的设计
浮头式换热器的设计一、结构设计1.管束:由多根管子组成,一般采用导热性能好、抗腐蚀性强的材料,如不锈钢、铜合金等。
2.壳体:壳体通常由圆筒形成,材料通常选用碳钢、不锈钢等。
3.浮头:浮头可以移动,其作用是分离进出口两种介质,便于维修和清洗。
浮头由盖板、支撑节、密封垫片等部分组成,密封垫片既保证了浮头与壳体之间的密封性,又使浮头能够自由上下移动。
4.支撑件:支撑件用于支撑管束,保证其在壳体内的稳定性和均衡分布。
5.端面密封件:端面密封件用于保证管束与壳体之间的密封,常见的有O形圈、金属防喷卡环等。
6.进出口管道:进出口管道用于引入和排出介质,尺寸和位置需根据实际需要进行设计。
二、工作原理具体过程如下:1.高温介质进入换热器的壳体,通过管堂进入管束内部,经过管束与壳体之间的热量传递,从而使介质温度降低。
2.低温介质进入壳体,在管束外部流动,通过壳体与管束之间的传热,使介质温度升高。
3.热量通过管束和壳体之间的传导、对流和辐射传给低温介质,完成热量传递过程。
三、选型在设计浮头式换热器时,需要根据实际工艺条件和要求进行选型。
首先,确定所需换热功率和介质的工艺参数,如温度、流量等。
然后,根据换热器的结构和材料要求,选择合适的规格和型号。
关键的选型参数包括管子的直径、管程壳程的流通方式、壳程与管程之间的布置方式和导热面积。
此外,还要考虑换热器的可靠性、耐腐蚀性和维修便利性等因素,以确保换热器在运行期间的稳定性和长期效益。
四、运行维护1.定期清洗:定期清洗管束和壳体的内表面,清除污垢和沉积物,以保证换热效果。
2.定期检查:定期检查管束和壳体的密封状况,确保密封件的完整性和可靠性。
3.检修:在必要时,对浮头、支撑件和端面密封件进行检修或更换,以保证其正常运行。
4.防腐保温:根据介质的特性和工艺要求,对换热器进行防腐处理和保温处理,延长使用寿命。
总结:浮头式换热器是一种常见的热交换设备,其结构设计合理、工作原理清晰。
浮头式换热器(过程设备设计课程设计说明书)
目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。
毕业设计:浮头式换热器设计
摘要随着石油化工行业的迅速发展,换热器在石化行业设备中占据着重要的部分和地位。
换热器是一种实现物料之间能量传递的设备,本设计主要是针对的浮头式换热器,浮头式换热器属于管壳式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。
在设计的整个过程中,严格按照GB150-1998《钢制压力容器》和GB151-1999《管壳式换热器》等标准进行设计和计算。
以及对换热器的强度,刚度和稳定性的校核。
本设计包括四个部分:说明部分;计算部分;绘图部分和翻译部分。
说明部分主要阐述了浮头式换热器的工艺流程及其在炼油化工生产中的地位,换热器设备及其发展现状和国内外换热器的最新发展趋势,同时介绍了换热器的结构设计,换热器主要零部件结构的设计及压力容器常用材料等。
最后对压力容器的制造,检验和验收等问题也作了简单的介绍。
计算部分主要针对筒体,封头,和法兰进行了详细计算,并对其进行了水压试验校核,还对换热器的管板,折流板,鞍座等进行了相关的设计计算。
除此之外,还参阅相关的设计手册及大量的文献,完成了各个零件图的绘制,还对两万字符的外文进行了翻译等工作。
因此,这是份比较具有创新性的毕业设计。
关键词:浮头式换热器;筒体;压力试验;校核AbstractWith the oil of the rapid development of the chemical industry, heat exchanger equipment in the petrochemical industry occupies an important part and status. Is a heat exchanger to achieve energy transfer between the materials of the equipment, mainly for the design of the floating head heat exchanger, floating head heat exchangers are shell and tube heat exchanger type is the use ofpartitions so that high-temperature fluid and low-temperature fluid for convective heat transfer in order to achieve the heat transfer between materials.In the design of the whole process, in strict accordance with GB150-1998 "Steel Pressure Vessels" and GB151-1999 "shell and tube heat exchanger" and other standards for the design and calculation. As well as the heat exchanger strength, stiffness and stability of the check.The design includes four parts: that part of it; calculation part; mapping and translation of some parts. Note on some of the main floating head heat exchanger and its application in the process of refining the position of chemical production, heat exchanger and the development of equipment and heat exchangers at home and abroad the latest development trends, at the same time introduced the structure of heat exchanger design, heat exchanger design of the structure of the main components and pressure vessels commonly used materials. Finally, pressure vessel manufacturing, testing and acceptance of other issues also made a brief introduction. Calculated for some of the main cylinder, head, and carried out a detailed calculation of the flange, and its hydraulic test checking, but also on the heat exchanger tube sheet, baffle, such as a saddle-related design calculation. In addition, see the related design manuals and a lot of literature, completed the mapping of various parts, but also on the20,000 foreign-language characters for the translation work. Therefore, it is a comparison of graduates with innovative design.Key words:Floating head heat exchanger; cylinder; pressure test; check目录1前言 (1)1.1管壳式换热器的分类 (1)1.2管壳式换热器的结构 (2)1.2.1管束 (2)1.2.2壳程 (3)1.2.3管子的排列方式 (3)1.2.4管板 (3)1.2.5折流板与折流杆 (3)1.3管壳式换热器相关分析 (4)1.3.1传热系数 (4)1.3.2平均温差 (4)1.3.3流体流速 (4)1.3.4流体压降 (4)1.3.5振动 (4)1.3.6其他 (4)1.4提高管壳式换热器传热能力的措施 (5)1.5管壳式换热器工作原理 (6)1.6管壳式换热器的发展 (7)1.6.1板式支承结构的发展 (7)1.6.2杆式支承结构的发展 (7)1.6.3空心环支承结构 (8)1.6.4管式自支承 (9)1.7管壳式换热器特点 (10)1.8管壳式与其他换热器的比较 (11)1.9腐蚀与防护 (14)1.9.1换热器腐蚀的原因 (14)1.9.2管壳式换热器的防腐蚀措施 (16)1.10换热器设计软件简介 (19)1.10.1HTFS (20)1.10.2 HTRI (21)1.10.3 ASPEN PLUS B—JAC (22)1.11结语 (23)2设计部分 (24)2.1浮头式换热器筒体的计算: (24)2.1.1计算条件 (24)2.1.2厚度的计算 (24)2.2前后端管箱封头的计算 (25)2.2.1设计条件 (25)2.2.2厚度计算 (25)2.2.3压力试验应力校核 (26)2.2.4压力试验应力校核 (27)2.3带法兰无折边球形封头及法兰计算 (27)2.3.1设计条件 (27)2.3.2厚度计算 (28)2.4管子排列方式的设计 (31)2.5开孔补强的计算 (31)2.5.1筒体开孔所需的补强面积要求 (32)2.5.2在有效补强范围内作为补强的截面积 (32)2.5.3选择补强圈补强 (33)2.6外头盖法兰厚度计算 (33)2.6.1设计条件 (33)2.6.2厚度计算 (34)2.7管板的厚度计算 (38)2.7.1设计条件 (38)2.7.2计算各参数 (39)2.7.3厚度计算 (41)2.7.4校核换热管轴向力 (42)3 致谢 (45)4 参考文献 (46)1 前言换热器是一种实现物料之间热量传递的节能设备,在石油、化工、冶金、电力、轻工、食品等行业应用普遍。
浮头式换热器的设计
一.设计内容(1)设计计算列管式换热器的热负荷,传热面积,换热管,壳体,管板,隔板及等。
(2)绘制列管式换热器的装配图。
(3)编写课程设计说明书确定设计方案1.选择换热器类型两流体温度变化情况:热流体(混合物料)进口温度170.25℃,出口温度85℃;冷流体(冷水)进口温度35℃,出口温度43℃,该换热器用循环冷却水冷却,因两流体的温度之差较大,(>50℃)因此初步确定选用浮头式换热器。
2.流程的安排为使混合物料通过壳壁面向空气散热,提高冷却效果,应使冷却水走管程,混合物料走壳程。
确定物性数据定性温度:对于水等低粘度流体,其定性温度可取流体进出口温度的平均值。
故管程冷水的定性温度为T=(T1+T2)/2=(35+43)/2=39(℃)混合物料的定性温度T=(T1+T2)/2=(85.00+170.35)/2=127.68(℃)壳程混合物料在127.68℃下的有关物性数据如下密度ρo=847.25㎏/m3定压比热容c po=2.13K J/(㎏·℃)热导率 k o=0.108W/(m·℃)黏度μo=0.301×10-3Pa·s估算换热面积1.热流量依据公式Q=Wh*Cph(T1-T2)计算可得:Wh=23.3943*(92.14*0.0457+106.17*0.0256+0.380+0.157+0.256)+1 04.14*0.106)=2390㎏/hQ=2390/3600*2.13*1000*(170.35-85.00)=1.207*10^5W2.平均传热温差先按纯逆流计算,依据下式得:△t m’=△t1-△t2ln(△t1/△t2)=(127.35-50)/ln(127.35/50)=82.73℃3.计算R与PR=(T1-T2)/(t2-t1)=(170.35-85)/(43-35)=10.67P=(t2-t1)/(T1-t1)=(43-35)/(170.35-35)=0.059查表¢△t=0.83△t m=¢△t△t m’=0.83×82.73=68.67(℃)由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。
浮头式换热器毕业设计
浮头式换热器毕业设计毕业设计(论文)专业:过程装备与控制工程题目:BJS1200浮头式冷凝器设计作者姓名:导师及职称:导师所在单位:二〇一三年六月十六日本科毕业设计(论文)任务书2012 届机械与汽车工程学院过程装备与控制工程专业学生姓名:Ⅰ毕业设计(论文)题目中文:BJS1200浮头式冷凝器设计英文:The design ofBJS1200 floating head condenserⅡ原始资料1. 马小明、钱颂文、朱冬生等. 管壳式换热器[M],北京:中国石化出版社,2010.2. 董其伍、张垚。
换热器 [M],北京:化学工业出版社,2008.3.GB_151-1999_管壳式换热器Ⅲ毕业设计(论文)任务内容1、课题研究的意义换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。
随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。
换热器因而面临着新的挑战。
换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。
目前在发达的工业国家热回收率已达 96%。
换热设备在现代装置中约占设备总重的 30%左右,其中管壳式换热器仍然占绝对的优势,约 70%。
其余 30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备,其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。
在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。
浮头式换热器是管壳式换热器系列中的一种,换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。
换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。
壳体一般为圆筒形,也可为方形。
管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。
浮头式换热器
圆整可取 D=400mm
5.折流板 采用弓形折流板,取弓形折流板圆缺高度为壳体内径的 25%, 则切去的圆缺高度为 h =0.25×400 =100(mm) ,故可取 h= 110 mm。
取折流板间距 B=0.3D,则 B=0.3×400=120(mm),可取 B 为 150。
折流板数 NB =
传热管长
由于 82mm 不是标准管径,因此确定 ������ =75mm ������ 经计算 符合经济流速范围 u=
qm1
ρ A
=
18850/3600 999.8× 0.785× 0.0752
=1.2m/s
故确定 ������ =75mm,u=1.2m/s ������ ②压头 在水槽液面及压力表 2 处列伯努利方程,
5.计算传热面积:
=
219917
604.3×20.38
=17.86m2
=20.54m2
四.工艺结构尺寸
1.管径和管内流速
选用ф 25×2.5 传热管(碳钢),取管内流速 ui=1.0m/s。 2.管程数和传热管数 依据传热管内径和流速确定单程传热管数
=
18850 /(999.8×3600 ) 0.785×0.02 2 ×1
折流板间距
-1=
4500 150
-1=29(块)
折流板厚度取 6mm.
折流板圆缺面水平装配。
6.接管
壳程流体进出口接管:取接管内牛奶流速为 u=2.0m/s,则接 管内径为
4V πu 4×4200 /(3600 ×1030 ) 3.14×2
d=
=
=26.8mm
取标准管径为 30 mm。
管程流体进出口接管:取接管内冷盐水流速 u=1.5 m/s,则接管内 径为
浮头换热器的课程设计说明书
化工原理课程设计设计题目:浮头式换热器的设计指导教师李毅学生姓名凌风2010 年 10 月 20 日浮头式换热器设计任务书一、设计题目:浮头式换热器的设计二、设计原始数据操作条件:①大豆油:入口温度133℃,出口温度40℃②冷却介质:循环水,入口温度30℃,出口温度40℃③大豆油处理量:5000kg/h④允许压降:不大于1×105Pa⑤大豆油定性温度下的物性数据:根据液体相对密度共线图查得86.5℃下大豆油的密度为: =925 kg/m3根据液体粘度共线图得86.5℃下大豆油的粘度为:μ=0.000850 Pa/s根据液体比热容共线图得86.5℃下大豆油的定压比热容为:2.052 kJ/(kg·℃)CP0 =查表得86.5℃下大豆油的导热系数为λ=0.1559 W/(m·℃)⑥循环冷却水在定性温度下的物性数据如下:ρ=994 kg/m3密度:i=4.08 kJ/(kg·℃)定压比热容:CPiλ=0.626 W/(m·℃)导热系数:iμ=0.000725 Pa/s粘度:i⑦每年按330天计算,每天24小时连续运行。
三、设备型式浮头式换热器四、设计任务1.编写课程设计说明书2.设计计算列管式换热器的管径尺寸、管内流速、热负荷、传热面积、管程数、管数、壳程数和接管尺寸等3.工艺流程图及换热器工艺条件图4.设计评述目录一、设计方案 (3)1.1选择换热器的类型 (3)1.2流动空间及流速的确定 (3)二、物性数据 (4)三、计算总传热系数 (4)3.1热流量 (4)3.2平均传热温差(逆流) (4)3.3冷却水用量 (4)3.4总传热系数K (4)四、计算传热面积 (5)五、工艺结构尺寸 (5)5.1管径和管内流速 (5)5.2管程数和传热管数 (5)5.3平均传热温差校正系数 (6)5.4传热管排列和分程方法 (6)5.5壳体内径 (6)5.6折流板 (6)5.7接管 (7)六、换热器核算 (7)6.1热量核算 (7)6.2换热器内流体的流动阻力 (9)6.3换热器主要结构尺寸和计算结果 (10)七、主体设备图 (11)八、参考文献 (11)九、主要符号说明 (11)十、总结 (12)一、设计方案1.1选择换热器的类型两流体温度变化情况:入口温度133℃,出口温度40℃循环水,入口温度30℃,出口温度40℃本设计任务为煤油冷却器的设计,两流体在传热过程中无相的变化,该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器;固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。
浮头式换热器课程设计
浮头式换热器课程设计一、教学目标本课程的教学目标是使学生掌握浮头式换热器的基本原理、结构特点、工作流程和应用范围。
通过学习,学生能够理解浮头式换热器在化工、能源等领域的的重要作用,具备分析和解决实际问题的能力。
具体目标如下:1.知识目标:•掌握浮头式换热器的定义和分类;•理解浮头式换热器的工作原理和结构特点;•熟悉浮头式换热器的设计计算方法和应用场景。
2.技能目标:•能够分析浮头式换热器的工作流程和性能指标;•具备利用浮头式换热器解决实际问题的能力。
3.情感态度价值观目标:•培养学生对浮头式换热器技术的兴趣和好奇心;•使学生认识到浮头式换热器在现代工业中的重要性;•培养学生的创新精神和团队合作意识。
二、教学内容本课程的教学内容主要包括浮头式换热器的基本原理、结构特点、工作流程和应用范围。
具体安排如下:1.浮头式换热器的定义和分类;2.浮头式换热器的工作原理和结构特点;3.浮头式换热器的设计计算方法;4.浮头式换热器的应用场景和案例分析;5.浮头式换热器在现代工业中的重要性。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握浮头式换热器的基本原理和知识;2.讨论法:引导学生参与课堂讨论,培养学生的思考和分析能力;3.案例分析法:通过分析实际案例,使学生了解浮头式换热器的应用和解决实际问题的能力;4.实验法:安排实验室实践,使学生亲手操作,加深对浮头式换热器的理解和掌握。
四、教学资源为了支持本课程的教学内容和教学方法,将选择和准备以下教学资源:1.教材:选用权威、实用的浮头式换热器教材作为主要教学资源;2.参考书:提供相关的参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的课件、动画等多媒体资料,提高学生的学习兴趣;4.实验设备:准备浮头式换热器的实验设备,为学生提供实践操作的机会。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用多种评估方式,包括平时表现、作业、考试等。
浮头式换热器课程设计
目录一 设计任务书某生产过程中,需将6000kg/h 的原油从175℃冷却至130℃,压力为0.4MPa ;冷却介质采用循环水,循环冷却水的压力为0.3MPa ,循环水进口温度25℃,出口温度为55℃。
试设计一台列管式换热器,完成该生产任务。
二 设计计算2.1确定设计方案2.11 选择换热器类型 两流体的温度变化情况:原油进口温度175℃,出口温度130℃; 循环冷却水进口温度25℃,出口温度55℃。
考虑到换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。
2.12 管程安排由于循环冷却水较易结垢,若其流速太低,将会加速污垢增长速度,使换热器的热流量下降,故总体考虑,应使循环冷却水走管程,原油走壳程。
2.2 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。
故 壳程原油的定性温度为:5.1522)130175(=+=T ℃ 管程循环冷却水的定性温度为:402)5525(=+=t ℃ 已知原油在定性温度下的有关物性数据如下: 密度 0ρ=820kg/m 3 导热系数 0λ=0.128W/m ℃ 定压比热容 0p C =2.20kJ/kg ℃ 粘度 0μ=0.665mPa ﹒s 循环冷却水在40℃下的物性数据如下:密度 i ρ=992.2kg/m 3 导热系数 0λ=0.634W/m ℃ 定压比热容 0p C =4.1744KJ/kg ℃ 粘度 0μ=0.656mPa ﹒s2.3 估计传热面积2.31 热流量 (忽略热损失)h kj t C m Q p /452.260000000⨯⨯==2.32 冷却水的用量h kg t C Q m p i /2.4773301744.459400000=⨯==2.33 平均传热温差 先按照纯逆流计算得:36.112105120ln )105120('=-=mt ℃ 2.34 初算传热面积由总传热系数的选择表可得:K 的取值范围为290 ~698)/(02C m W ,在K 的取值范围内,取K=320)/(02C m W 。
浮头式换热器课程设计说明书
浮头式换热器课程设计说明书(共25页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.方案确定选择换热器的类型浮头式换热器:主要特点是可以从壳体中抽出便于清洗管间和管内。
管束可以在管内自由伸缩不会产生热应力。
换热面积的确定根据《化工设备设计手册》选择传热面积为 400m 2换热管数N 的确定我国管壳式换热器常用碳素钢、低合金钢钢管,其规格为φ19× 2、φ25× 、φ32× 3、φ38 × 3、φ57 × 等,不锈钢钢管规格为φ19 × 2、φ25 × 2、φ32 × 2、φ38 × 、φ57 × 。
换热管长度规格为、、、、、、、、等。
换热器换热管长度与公称直径之比,一般在 4~25 之间,常用的为 6~10。
管子的材料选择应根 据介质的压力、温度及腐蚀性来确定。
选用32×3mm 的无缝钢管,材质为 0Cr18Ni9,管长为 6000mmn=A/πd 0L 3-5式 3-5:n —换热管数 A —换热面积m 2 d0—换热管外径mm L —换热管长度mm故 -3-3400n==6133.1432600010⨯⨯10⨯⨯根表拉杆直径 /mm表拉杆数量换热器公称直径DN/mm400<d400≤d<700700≤d<900900≤d<2600 44810拉杆需 10根。
换热管的排布与连接方式的确定换热管排列形式如图所示。
换热管在管板上的排列形式主要有正三角形、正方形和转正三角形、转三角形。
正三角形排列形式可以在同样的管板面积上排列最多的管数,故用的最为广泛,但管外不易清洗。
为便于管外便于清洗可以采用正方形或转正方形的管束。
换热管中心距要保证管子与管板连接时,管桥有足够的强度和宽度。
管间需要清洗时还要留有进行清洗的通道。
换热管中心距宜不小于倍的换热管的外径。
浮头式换热器毕业设计
浮头式换热器毕业设计浮头式换热器毕业设计近年来,随着工业的快速发展和能源的日益紧缺,节能减排成为了各行各业的共同追求。
在众多的节能技术中,换热器作为一种重要的设备,扮演着至关重要的角色。
而浮头式换热器作为一种常用的换热设备,其设计和优化也成为了研究的热点之一。
浮头式换热器是一种常用于化工、石油、制药等领域的换热设备。
它由固定在壳体内的管束和可以上下浮动的浮头组成。
在换热过程中,热媒在管束内流动,而被换热介质则在壳体内流动,通过管壳两侧的传热界面进行热量的传递。
浮头式换热器的设计和优化旨在提高换热效率、降低能耗和减少设备的占地面积。
在浮头式换热器的设计中,流体力学和传热学是两个重要的研究方向。
流体力学研究主要关注流体在管束和壳体内的流动规律,以及流体的压降和速度分布等参数。
传热学研究则关注热媒和被换热介质之间的热量传递过程,包括传热系数、传热面积和传热效率等指标。
通过对流体力学和传热学的研究,可以优化换热器的结构和参数,提高其性能和效率。
在浮头式换热器的设计过程中,需要考虑多个因素。
首先是换热器的尺寸和形状。
尺寸和形状的选择直接影响到换热器的传热和流体力学性能。
一般来说,较大的尺寸和复杂的形状可以增加传热面积,提高传热效率,但也会增加设备的成本和能耗。
因此,在设计过程中需要综合考虑各种因素,找到最佳的尺寸和形状。
其次是换热器的材料选择。
换热器的材料需要具有良好的传热性能和耐腐蚀性能。
常用的材料包括不锈钢、铜、铝等。
不同的材料有不同的特点和适用范围,需要根据具体的工艺要求和工作环境选择合适的材料。
此外,还需要考虑材料的成本和可持续性,以及对环境的影响。
最后是换热器的操作和维护。
换热器的操作和维护对于其性能和寿命都有重要影响。
在操作过程中,需要合理控制流体的流量和温度,以及维持换热器的清洁和正常运行。
在维护过程中,需要定期清洗和检查换热器的管束和壳体,以防止堵塞和腐蚀等问题。
总之,浮头式换热器作为一种重要的换热设备,在工业生产中发挥着重要作用。
浮头式换热器
×322+5212.16=97437.696mm2 b)Dt—管板布管区当量直径 Dt= 4At/π=352.22 DG—垫片压紧力作用中心圆直径 管板外圆直径取 437mm(按 JB4701—2000,B400 —1.0 中 D4 选取) 按 GB150—1998 的 9.5 计算 b0= 2 =0.5×[0.5×(437-422)]=3.75mm<6.4mm b=b0=3.75mm DG=垫片解除的平均直径=
437+422 2 N
=429.5mm
c)ρ t=Dt/DG=352.22/427.2=0.8245 d)A1—管板布管区内开孔后的面积 A1=At-n
πd2 4
A1=46386.82mm2 =46386.82mm2
11
=97437.696-104×
π ×25 2 4
n.a 为换热管金属横截面 a 从 GB151—200 附录 J 查得 a=176.71mm2 n·a=104×176.71=18377.84mm2 e)系数 β =A = 46386 .82 =0.3962
管数 正三角形nc = 1.1 NT = 1.1 82 = 10 ΔPs = ΔPs1 + ΔPs2 Fs Ns = 1.15 × 0.5 × 0.637 × 10 × 29 + 1 ×
0.328 2 2
ΔPs = 8046Pa
× 774 + 29 × 3.5 −
2×0.2 0.4
×
0.328 2 2
80 29 + 4944 .3 632 w 1 1 + 4944 .3 632
= 34.78℃
壳体壁温为 80℃ 温差=80-34.78=45.22℃ 需补偿装置
浮头式换热器设计简介
浮头式换热器设计(PN 1.4/1.2;W=45T/h)过程装备与控制工程 10150324 李扬王文江、吴健工程师摘要列管式换热器在化工、石油等行业中广泛应用。
本设计是关于浮头式换热器的设计,主要进行了换热器的工艺计算、换热器的结构和强度设计。
设计前半部分是工艺计算:主要有设计条件估算换热面积,从而进行选型、校核传热系数,计算出实际换热面积,最后压力降和壁温的计算。
设计后半部分是关于结构和强度的设计:主要是根据已经选定的换热器形式进行设备内个零件部件的设计,包括:材料选择、具体尺寸确定、具体位置确定、管板厚度计算、开孔补强、计算拉脱力、震动计算等等。
最后设计结果通过35张图纸表现出来。
关键词:浮头式换热器;工艺设计;结构设计;AbstractTube type heat exchanger is widely used in chemical industy petrochemical industy and so on.This design work is floating head heat exchanger design calculation ,which include technology calculate of heat exchange ,the struclure and intensity of heat exchanger.The first part of design is the technology calculationprocess .Mainly ,the process of technology calculate is according to the given conditions to extimate the heat exchanger area,and then,select a suitable heat transfer area.The secondhalf of the design is about the structure and intensity of the degign,This part is just on the selecttype of heat exanger to design the heat ehchanger is components and part. T his part design mainly include,the choice of materials identify specifics size.identify specific location ,the thickeness calculate of tube sheet,the thickness .In the end,the finalresults through 35 maps to display.Key Words: floating head heat exchanger; total design; structural design. floating head planting一、浮头式换热器基本理论(一)工作原理浮头式换热器属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。
列管式换热器的设计---浮头式换热器
列管式换热器的设计---浮头式换热器浮头式换热器是一种常见的列管式换热器,它由壳体、管束、浮头、支撑件、密封件、进出口管道等组成。
浮头式换热器的特点是浮头可以随着管束的膨胀和收缩自由移动,从而保证管束间的间隙与浮头间隙都处于有效状态,不仅可以避免管束的卡塞和挤压,同时也可以保证了热交换效果。
浮头式换热器的设计,需要考虑以下几个因素:1. 热力计算换热器的热力计算是设计的首要考虑因素,它主要是通过计算换热器的传热面积、传热系数、温度差、流量等参数,来确定热量传递的效率,并选定合适的管径和间距。
在浮头式换热器设计中,还需要考虑管束结构的变化和浮头活动范围,以满足热传递的要求。
2. 浮头设计浮头是浮头式换热器的核心,它需要具备一定的自由度,以应对管束的变化和热胀冷缩所带来的影响。
在浮头设计时,需要考虑到流体的入口角度、出口角度、流速、压降等因素,同时尽量减小反向流的影响,确保热传递效率。
3. 管束结构设计管束是浮头式换热器中的传热元件,它的结构设计直接影响到换热器的传热效率。
在设计时需要考虑管径、材料、管道密度、孔网大小等因素,同时还需要考虑管束的抗震性和伸缩性,以保证安全稳定运行。
4. 流体动力学设计流体动力学设计主要关注流体的流动形态、速度分布、压力分布等参数,这些参数在浮头式换热器设计中十分重要。
通过计算流体的速度、方向和压降,可以选择合适的管径和间距,以提高热传递效率。
同时还需要考虑到流体的物理特性,如密度、黏度、比热等。
浮头式换热器的设计需要考虑多方面的因素,如热力计算、浮头设计、管束结构设计和流体动力学设计等,而且还需要充分考虑到安全稳定运行的要求。
当然,具体的设计方案还要根据具体的使用情况和客户需求,进行个性化设计和调整。
浮头式换热器设计说明书
浮头式换热器设计说明书摘要本设计说明书是关于浮头式换热器的设计,主要是进行了换热器的工艺计算、换热器的结构和强度设计。
设计的前半部分是工艺计算部分,主要是根据给定的设计条件估算换热面积,从而进行换热器的选型,校核传热系数,计算出实际的换热面积,最后进行压力降和壁温的计算。
设计的后半部分则是关于结构和强度的设计,主要是根据已经选定的换热器型式进行设备内各零部件(如接管、折流板、定距管、钩圈、管箱等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板厚度的计算、浮头盖和浮头法兰厚度的计算、开孔补强计算等。
关于浮头式换热器设计的各个环节,设计说明书中都有详细的说明。
浮头式换热器:其结构如图2所示。
管子一端固定在一块固定管板上,管板夹持在壳体法兰与管箱法兰之间,用螺栓连接;管子另一端固定在浮头管板上,浮头管板夹持在用螺柱连接的浮头盖与钩圈之间,形成可在壳体内自由移动的浮头,故当管束与壳体受热伸长时,两者互不牵制,因而不会产生温差应力。
浮头部分是由浮头管板,钩圈与浮头端盖组成的可拆联接,因此可以容易抽出管束,故管内管外都能进行清洗,也便于检修。
由上述特点可知,浮头式换热器多用于温度波动和温差大的场合,尽管与固定管板式换热器相比其结构更复杂、造价更高。
1.1设计任务根据给定的工艺设计条件,此设计为无相变热、冷流体间换热的浮头式换热器设计任务。
1.2总体设计①确定结构形式。
由于介质换热温差较大,因此选用浮头式换热器。
②合理安排流程。
安排冷的污水走壳程,处理过的热清水走管程。
1.3热工计算①原始数据○2定性温度与物性参数○3物料与热量恒算○4有效平均温差○5初算传热面积○6换热器结构设计○7管程传热与压降○8壳程传热与压降结构设计与强度设计1)换热流程设计:采用壳程为单程、管程为单程的结构型式.2)换热管及其排列方式:采用的无缝钢管,材料为2520钢,热管排列方式为三角形排列,如图所示,共101根。
另外6根拉杆,共排列107根。
浮头式换热器设计说明书
1 绪论1.1 换热设备在工业中的应用在炼油、化工生产中,绝大多数的工艺过程都有加热、冷却和冷凝的过程,这些过程总称为换热过程。
传热过程的进行需要一定的设备来完成,这些使传热过程得以实现的设备就称之为换热设备。
据统计,在炼油厂中换热设备的投资占全部工艺设备总投资的35%~40%,因为绝大部分的化学反应或传质传热过程都与热量的变化密切相关,如反应过程中:有的要放热、有的要吸热、要维持反应的连续进行,就必须排除多余的热量或补充所需的热量。
工艺过程中某些废热或余热也需要加以回收利用,以降低成本。
综上所述,换热设备是炼油、化工生产中不可缺少的重要设备。
换热设备在动力、原子能、冶金及食品等其他工业部门也有着广泛的应用。
1.2 换热设备的分类1.2.1按作用原理或传热方式可分为:直接接触式、蓄热式、间壁式。
1.2.1.1直接接触式换热器,如下图所示热流体图1.1其传热的效果好,但不能用于发生反应或有影响的流体之间。
蓄热式换热器,如下图所示图1.2其适用于温度较高的场合,但有交叉污染,温度被动大。
1.2.1.3 间壁式换热器,又称表面式换热器利用间壁进行热交换。
冷热两种流体隔开,互不接触,热量由热流体通过间壁传递给冷流体。
1.2.2 按其工艺用途可分为:冷却器(cooler)、冷凝器(condenser)、加热器(一般不发生相变)(heater)、蒸发器(发生相变)(evaporator)、再沸器(reboiler)、废热锅炉(waste heat boiler)。
1.2.3 按材料分类:分为金属材料和非金属材料换热器。
1.3 国内外的研究现状上个世纪70年代初发生世界性能源危机,有力地促进了传热强化技术的发展。
为了节能降耗,提高工业生产的经济效益,要求开发适用不同工业过程要求的高效能换热设备。
因此,几十年来,高效换热器的开发与研究始终是人们关注的课题,国内外先后推出了一系列新型高效换热器。
近年来,国内已经进行了大量的强化传热技术的研究,但在新型高效换热器的开发方面与国外差距仍然较大,并且新型高效换热器的实际推广和应用仍非常有限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学生物工程专业《化工原理课程设计》说明书题目名称浮头式换热器的设计专业班级学号学生姓名指导教师2012 年06 月08 日目录1、设计方案.................................................................................. 错误!未定义书签。
2、衡算.......................................................................................... 错误!未定义书签。
2.1确定设计方案 ..................................................................... 错误!未定义书签。
2.1.1换热器的类型................................................................ 错误!未定义书签。
2.1.2 管程安排....................................................................... 错误!未定义书签。
2.2确定物性数据 ..................................................................... 错误!未定义书签。
2.3估算传热面积 ..................................................................... 错误!未定义书签。
2.3.1 热负荷........................................................................... 错误!未定义书签。
2.3.2 热流体用量................................................................... 错误!未定义书签。
2.3.3 平均传热温差........................................................... 错误!未定义书签。
2.3.4 初算传热面积............................................................... 错误!未定义书签。
2.4换热器工艺结构尺寸设计 ................................................. 错误!未定义书签。
2.4.1 管径和管内流速........................................................... 错误!未定义书签。
2.4.2管程数和传热管数....................................................... 错误!未定义书签。
2.4.3 平均传热温差校正....................................................... 错误!未定义书签。
2.4.4 传热管排列................................................................... 错误!未定义书签。
2.4.5 壳体直径....................................................................... 错误!未定义书签。
2.4.6 折流板........................................................................... 错误!未定义书签。
2.4.7接管............................................................................... 错误!未定义书签。
3、换热器核算.............................................................................. 错误!未定义书签。
3.1传热面积校核...................................................................... 错误!未定义书签。
3.1.1管程传热膜系数............................................................ 错误!未定义书签。
3.1.2 壳程传热膜系数........................................................... 错误!未定义书签。
3.1.3 总传热系数................................................................... 错误!未定义书签。
3.1.4 传热面积校核............................................................... 错误!未定义书签。
3.2换热器内压降的核算........................................................ 错误!未定义书签。
3.2.1 管程阻力....................................................................... 错误!未定义书签。
3.2.2 壳程阻力....................................................................... 错误!未定义书签。
4、设备选型.................................................................................. 错误!未定义书签。
4.1管子排列方式的选择 ......................................................... 错误!未定义书签。
4.2折流板的选择 ..................................................................... 错误!未定义书签。
4.3除污垢措施的选择 ............................................................. 错误!未定义书签。
4.4材料的选择 ......................................................................... 错误!未定义书签。
5、附录及图表.............................................................................. 错误!未定义书签。
6、设计总结.................................................................................. 错误!未定义书签。
7、参考文献.................................................................................. 错误!未定义书签。
1、设计方案在化工、石油、动力、制冷、食品等行业中广泛地使用各种换热器,且他们是上述这些行业的通用设备,并占有十分重要的地位。
在化工厂,换热器的费用约占总费用的10%-20%。
在某工厂的生产过程中,因生产需要,需用水回收甘油的热量。
已知水将甘油从120℃冷却至50℃,且甘油的压力不大于0.1MPa 。
水的流量为50m 3/h ,水的入口温度为28℃,出口温度为78℃,压力不大于0.1MPa ,请设计一台换热器能完成上述任务。
2、衡算2.1 确定设计方案 2.1.1换热器的类型两流体的温度变化情况:水的进口温度28℃,出口温度为78℃;甘油的进口温度为120℃,出口温度为50℃,本组为浮头式换热器。
2.1.2 管程安排对于一般压力较高的流体流经管内,因为管子直径小,承受高压能力好,所以水走管程,又被冷却物料一般走壳程,便于散热,所以甘油走壳程。
2.2 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进、出口温度平均值。
故壳程甘油的定性温度为12050852T +==℃ 管程流体的定性温度为2878532T +==℃在定性温度下,分别查取管程和壳程流体(水和甘油)的物性参数,见下表:表1 冷热流体的物性参数物质 密 度 (kg/m 3) 比热容(kJ/kg·℃)黏 度 (Pa·s) 导热系数 (W/m·℃) 甘油 水 810985.62.22 4.1760.9×10-3 509.6×10-60.18 65.4×10-22.3 估算传热面积2.3.1 热负荷(忽略热损失)6m c p c 985.610 4.17650 2.0610Q C T ∆=⨯⨯⨯=⨯,,KJ/h =572kW2.3.2 热流体用量(忽略热损失)()3m,h3p h 2157210 3.7kg /s 13320() 2.221012050T Q Q C T T ⨯====-⨯-,kg/h 2.3.3 平均传热温差先按纯逆流计算,得m 7050602t +∆==℃2.3.4 初算传热面积参照列管式换热器中K 值大致范围表[1],可假设K=350W/(m 2·℃)则估算的传热面积为357210===2735060T m Q S K t ⨯∆⨯估m 22.4 换热器工艺结构尺寸设计 2.4.1 管径和管内流速参照列管式换热器内常用的流速范围表[3],取管内流速为1i u =m/s ,并取s N =24管径用下式计算27.15d ===mm又由于考虑到市场上管径的一般规格大小,所以我们选用φ30×1.0mm 的管子。
利用试差法,计算管内流速为:2250/3600==0.940.7850.028244v i s q u d N π=⨯⨯⨯⨯m/s 2.4.2 管程数和传热管数由于s N =24,按照单管程,所需的传热管长度为27123.140.02824sS L d N π===⨯⨯估m按照单管程设计,由于传热管太长,故宜采用多管程设计。