苏教版七年级上册期末试卷
苏教版七年级上册数学期末试卷【含答案】
苏教版七年级上册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少厘米?A. 10厘米B. 22厘米C. 32厘米D. 44厘米5. 下列哪个数是立方数?A. 729B. 810C. 900D. 961二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个三角形的两个内角分别为45度和45度,那么这个三角形是等腰直角三角形。
()3. 任何偶数乘以任何偶数的积都是偶数。
()4. 一个数的平方根有两个,它们互为相反数。
()5. 一个数的立方根只有一个。
()三、填空题(每题1分,共5分)1. 1的立方根是______。
2. 一个三角形的两个内角分别为30度和60度,那么这个三角形的第三个内角是______度。
3. 如果一个数的平方是64,那么这个数可能是______。
4. 下列各数中,______是4的倍数。
5. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是______厘米。
四、简答题(每题2分,共10分)1. 简述质数的定义。
2. 简述偶数和奇数的定义。
3. 简述等腰三角形的定义。
4. 简述立方根的定义。
5. 简述勾股定理的定义。
五、应用题(每题2分,共10分)1. 一个正方形的边长是6厘米,求这个正方形的面积。
2. 一个等腰三角形的底边长为10厘米,腰长为12厘米,求这个三角形的面积。
3. 一个数的平方是81,求这个数的立方根。
4. 一个数的立方是27,求这个数的平方根。
5. 一个等腰直角三角形的斜边长为10厘米,求这个三角形的面积。
苏教版七年级数学上册期末考试卷及完整答案
苏教版七年级数学上册期末考试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.42.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.估计6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.已知整式25 2x x-的值为6,则整式2x2-5x+6的值为()A.9 B.12 C.18 D.245.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣16.2019-的倒数是( )A .2019-B .12019-C .12019D .20197.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.若162482m m ⋅⋅=,则m =________.5.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =________cm .6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.4.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F (点F与O不重合),然后直接写出∠EOF的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、B7、C8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、90°3、70.4、35、146、5三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1) ∠BAE=30 °;(2) ∠EAD=20°.4、(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
苏教版七年级上册数学期末测试卷及答案
苏教版七年级上册数学期末测试卷及答案成功的花由汗水浇灌,艰苦的掘流出甘甜的泉,祝:七年级数学期末考试时能超水平发挥。
下面是小编为大家精心整理的苏教版七年级上册数学期末测试卷,仅供参考。
苏教版七年级上册数学期末测试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?苏教版七年级上册数学期末测试卷参考答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣> ﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣ |= ,|﹣0.4|=0.4,∵ <0.4,∴﹣ >﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算: = ﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣ )2=﹣ .故答案为:﹣ .【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= 1 .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= 0 .【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1 .【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为 2 .【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= 13或7 cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM= AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC 的中点,则AM= AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240 元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为 2.5 cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣× ×6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2) ,去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x= .【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x 一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA 的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA 的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为 .根据题意,得160x+300× =4020.解得:x=12.从而 =7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45 °,∠COD和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= 8 cm OB= 4 cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x= .故CO的长是 cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。
苏科版七年级上册数学期末考试试卷及答案
苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。
苏教版七年级《生物》上册期末考试(含答案)
苏教版七年级《生物》上册期末考试(含答案)考试说明:本试卷五个大题, 满分100分, 时间90分钟。
题序一二三四五总分得分一、选择题(共25个小题, 每题2分, 共50分)1.在根瘤菌与大豆的共生中, 根瘤菌的作用是()A. 固氮B. 提供二氧化碳C. 提供水分D. 提供有机物2.为了促进儿童骨骼的发育, 除了给儿童多补充含钙、磷多的食物, 还应补充( )A. 维生素 AB. 维生素 BC. 维生素 CD. 维生素 D3.“落花不是无情物, 化作春泥更护花”.根据生态系统各成分的功能可知, 将“落花”化作“春泥”的是()A. 生产者B. 消费者C. 分解者D. 阳光4.呼吸作用的实质是()A. 合成有机物, 储存能量B. 分解有机物, 储存能量C. 合成有机物, 释放能量D. 分解有机物, 释放能量5.将鱼的内脏埋入土中, 过一段时间后翻开土壤发现鱼内脏不见了.下列解释最合理的是()A. 被土壤吸收了B. 被植物直接吸收了C. 被环境中的分解者分解了D. 通过内脏自身的呼吸作用消耗掉了6.下列所描述的生命现象与其实例不相符合的是()A.生物的生命活动需要营养——螳螂捕蝉, 黄雀在后B. 生物能对外界刺激作出反应——朵朵葵花向太阳C. 生物需要排出体内的代谢废物——蜻蜓点水D.生物能生长繁殖——离离原上草, 一岁一枯荣7、下列现象中的物体属于生物是()A. 机器人弹钢琴B. 火山爆发时岩浆喷出C. 钟乳石在慢慢长大D. 馒头上长出“白毛”8、下列有关动物的叙述, 正确的是()A. 用肺呼吸并用气囊辅助呼吸、体温恒定是鸟类特有的特征B. 动物直接或间接的以植物为食, 这对植物的生长和繁殖是不利的C. 蜘蛛是一种节肢动物, 蜘蛛结网属于先天性行为D. 长颈鹿为躲避敌害快速奔跑, 只靠运动系统就能完成9、生态系统中, 绿色植物固定的太阳能沿着食物链的单向传递叫做()A. 能量输出B. 能量流动C. 能量交换D. 能量输入10、如图是大豆种子的部分结构示意图, 下列有关叙述中, 错误的是()A. 大豆种子萌发时, 图中④提供营养物质B. 豆芽菜可供食用部分主要由图中①发育而来C. ⑥即是大豆种子的主要部分, 又是新植物体幼体D.大豆种子与玉米, 水稻种子相比, 玉米, 水稻种子中没有⑥11.下列哪种植物一般没有蒸腾作用?()A. 苔藓植物B. 藻类植物C. 蕨类植物D. 种子植物12.为使验证植物呼吸作用产生二氧化碳的实验获得良好效果, 实验中的塑料袋最好为()A. 白色B. 黑色C. 红色D. 无色13.在下列哺乳动物中, 与人类亲缘关系最近的可能是()A. 黑猩猩B. 猕猴C. 长臂猿D. 狒狒14.“白日不到处, 青春恰自来。
苏教版七年级数学上册期末试卷及答案【完美版】
苏教版七年级数学上册期末试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 42.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A.、1个B.2个C.3个D.4个4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣16.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠=二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A,B,C三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD),若∠A=120°,∠B=150°,则∠C的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若x2+kx+25是一个完全平方式,则k的值是__________.5.若一个数的平方等于5,则这个数等于________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3 759 x yx y-=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31 x yx y⎧+=⎪⎨⎪+-=⎩2.化简求值:已知:(x﹣3)2+|y+13|=0,求3x2y﹣[2xy2﹣2(xy232x y-)+3xy]+5xy2的值.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC,(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、D6、B7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、150°3、135°4、±10.5、6、48三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、2.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)略;(2) 50°5、(1)150,(2)36°,(3)240.6、略。
最新苏教版七年级数学上册期末考试卷(完整版)
最新苏教版七年级数学上册期末考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.若a x =6,a y =4,则a 2x ﹣y 的值为( )A .8B .9C .32D .405.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°6.观察下列图形,是中心对称图形的是( )A .B .C .D .7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x y x y -=⎧⎨+=⎩(2)解不等式:2132x x ->-2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.已知,点A 、B 、C 在同一条直线上,点M 为线段AC 的中点、点N 为线段BC 的中点.(1)如图,当点C 在线段AB 上时:①若线段86AC BC ==,,求MN 的长度.②若AB=a ,求MN 的长度.(2)若8,AC BC n ==,求MN 的长度(用含n 的代数式表示).4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、A6、D7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、-4π3、15°4、50°5、-1或-46、2或-8三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、(x﹣y)2;1.3、(1)①7;②12a;(2)略.4、20°5、(1)800,240;(2)补图见解析;(3)9.6万人.6、略。
苏教版七年级数学上册 期末试卷测试卷(含答案解析)
苏教版七年级数学上册 期末试卷测试卷(含答案解析)一、选择题1.下列各组单项式中,是同类项的一组是( )A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx 2.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x ﹣y 的值为( )A .-2B .6C .23-D .23.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b -- 4.下列计算正确的是( ) A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -= 5.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点6.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 7.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线8.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( )A .-3B .3C .13D .169.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A .63B .70C .92D .105 10.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 11.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A .()21313x x -+=B .()21313x x ++=C .()23113x x ++=D .()23113x x +-=12.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( )A .2018B .2019C .2020D .2021 13.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4B .4C .﹣8D .8 14.-5的倒数是 A .15 B .5 C .-15 D .-515.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( )A .m n =B .0.91n m =C .30%n m =-D .30%n m =-二、填空题16.在0,1,π,227-这些数中,无理数是___________ . 17.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________.18.比较大小:π1-+ _________3-(填“<”或“=”或“>”).19.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”).20.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.21.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.22.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.23.已知22m n -=-,则524m n -+的值是_______.24.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.25.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF 平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.三、解答题 26.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.27.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动. ①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?28.运动场环形跑道周长400米,小红跑步的速度是爷爷的53倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?29.计算(1)157()362612+-⨯(2)()421723-+÷-30.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S (x ). 例如,a =13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S (13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S (43)= ; (2)若一个“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10,求相异数y ;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.31.化简与求值(1)求3x 2+x +3(x 2﹣23x )﹣(6x 2+x )的值,其中x =﹣6. (2)先化简,再求值:5(3a 2b ﹣ab 2)﹣4(﹣ab 2+3a 2b ),其中|a +1|+(b ﹣12)2=0 32.已知:关于x 的方程(3)2m m x x -+=的解与方程372(1)y y +=--的解相等,求m 的值.33.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.四、压轴题34.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A、B两点间的距离为20个单位.,3,点P是射线AB上的一个动点35.如图,数轴上点A,B表示的有理数分别为6(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.36.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).37.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C是线段AB上的一点,M是AC的中点,N是BC的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)38.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.39.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.40.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数.41.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE ,(1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示);(3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】A. 33x y 与33xy 中相同字母的指数不相同,故不是同类项;B. 22ab 与23a b -中相同字母的指数不相同,故不是同类项;C. 2a 与2b 中所含字母不相同,故不是同类项;D. 2xy -与3yx 中所含字母相同,相同字母的指数相同,故是同类项;故选D.点睛:本题考查了利用同类项的定义,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,据此判断即可.2.B解析:B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x 、y 、z 的值,然后代入代数式计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“y”是相对面,“5”与“-5”是相对面,“-4”与“3x -2”是相对面,∵相对面上所标的两个数互为相反数,∴3x-2+(-4)=0,x+y=0,解得x=2,y=-2.∴2x ﹣y =6.故选B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.D解析:D【解析】【分析】根据数轴可以判断a 、b 的正负,从而可以解答本题.【详解】解:由数轴可得,∵a<0,b>0,∴|a |=-a ,|b |=b , ∴=a b --a-b.故选D.【点睛】本题考查绝对值,解答本题的关键是明确绝对值的意义.4.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.5.B解析:B【解析】【分析】根据平行公理、线段的性质、对顶角的性质、线段中点的性质进行判断即可.【详解】解:A 、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B 、两点之间的所有连线中,线段最短,说法正确;C 、相等的角是对顶角,说法错误;D 、若AC=BC ,则点C 是线段AB 的中点,说法错误,应是若AC=BC=12AB ,则点C 是线段AB 的中点,故此选项错误;故答案为B .【点睛】本题主要考查了平行公理、对顶角的性质、线段的性质,熟练应用课本知识、灵活应用定理是解答本题的关键. 6.C解析:C【解析】【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B、4m2n与2mn2不是同类项,不能合并,故选项B不符合题意;C.、2x-12x=32x,故选项C符合题意;D、2a2-a2=a2,故选项D不符合题意;故选C.【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.7.D解析:D【解析】【分析】根据各项定义性质判断即可.【详解】D选项应该为:同一平面内不相交的两条直线叫平行线.故选D.【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.8.A解析:A【解析】【分析】将x=-2代入方程mx=6,得到关于m的一元一次方程,解方程即可求出m的值.【详解】∵关于x的一元一次方程mx=6的解为x=-2,∴﹣2m=6,解得:m=-3.故选:A.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.C解析:C【解析】【分析】设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x+-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.A 、7x=63,解得:x=9,能求得这7个数;B 、7x=70,解得:x=10,能求得这7个数;C 、7x=92,解得:x=927,x 须为正整数,∴不能求得这7个数; D 、7x=105,解得:x=15,能求得这7个数.故选:C【点睛】 此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.10.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.C解析:C【解析】【分析】设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.【详解】解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .【点睛】本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.12.C解析:C【分析】由已知条件得到x2﹣2x+y2﹣2y=0,2xy=1,化简x2+2xy+y2﹣2(x+y)+2019为x2﹣2x+y2﹣2y+2xy+2019,然后整体代入即可得到结论.【详解】解:∵x2﹣2x=2y﹣y2,xy=12,∴x2﹣2x+y2﹣2y=0,2xy=1,∴x2+2xy+y2﹣2(x+y)+2019=x2﹣2x+y2﹣2y+2xy+2019=0+1+2019=2020,故选:C.【点睛】本题考查代数式求值,掌握整体代入法是解题的关键.13.B解析:B【解析】根据方程的解,把x=1代入2x+m-6=0可得2+m-6=0,解得m=4.故选B.14.C解析:C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 .故选C.15.B解析:B【解析】【分析】首先表示出提价30%的价格,进而表示出降价30%的价格即可得出答案.【详解】解:∵商品原价为m元,先提价30%进行销售,∴价格是: m (1+30%)∵再一次性降价30% ,∴售价为:n= m (1+30%) (1-30%) =0.91m故选: B.【点睛】此题主要考查了一元一次方程的应用,根据已知得出升降价后实际价格是解题关键.二、填空题16.【解析】【分析】根据无理数的定义,可得答案.【详解】是无理数,故答案为:.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,0.80解析:π【解析】【分析】根据无理数的定义,可得答案.【详解】π是无理数,故答案为:π.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.17.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于解析:5⨯5.6310【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于4320000有7位,所以可以确定n=7-1=6.【详解】解:563000=5.63×105,故答案为:5.63×105.【点睛】本题考查科学记数法,解题关键是熟记规律:(1)当|a|≥1时,n 的值为a 的整数位数减1;(2)当|a|<1时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.18.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则. 解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.19.>【解析】【分析】首先把:∠β=25.15°化为25°9′,然后再比较即可.【详解】解:∠β=25.15°=25°9′,∵25°15′>25°9′,∴∠α>∠β,故答案为:>.【点解析:>【解析】【分析】首先把:∠β=25.15°化为25°9′,然后再比较即可.【详解】解:∠β=25.15°=25°9′,∵25°15′>25°9′,∴∠α>∠β,故答案为:>.【点睛】此题主要考查了度分秒的换算,关键是掌握1度=60分,即1°=60′,1分=60秒,即1′=60″.20.两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.解析:两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.21.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75, 17340.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升510463⨯=cm,①当甲比乙高16cm时,此时乙中水位高56cm,用时1分;②当乙比甲水位高16cm 时,乙应为76cm,757=665÷分,当丙的高度到5cm时,此时用时为5÷103=32分,因为73<52,所以75分乙比甲高16cm.③当丙高5cm时,此时乙中水高535624⨯=cm,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm,当乙的水位达到5cm时开始流向甲,此时用时为355+5243⎛⎫-÷⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm,当甲的水位高为546cm时,乙比甲高16cm,此时用时155201734146340⎛⎫+-÷=⎪⎝⎭分;综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm.【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点.22.b+1【解析】【分析】根据图示,可知有理数a,b的取值范围b>a,a<-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b>a,a<-1,∴|b解析:b+1【解析】【分析】根据图示,可知有理数a,b的取值范围b>a,a<-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b-a|-|a+1|=b-a-(-a-1)=b-a+a+1=b+1.故答案为:b+1.【点睛】本题主要考查了关于数轴的知识以及有理数大小的比较,绝对值的知识,正确把握相关知识是解题的关键.23.9【解析】【分析】根据整体代入法即可求解.【详解】∵∴=5-2()=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.解析:9【解析】【分析】根据整体代入法即可求解.【详解】∵22m n -=-∴524m n -+=5-2(2m n -)=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.24.【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:∠AOC=∠AOB+∠BOC.x=45°.故答案解析:【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:90,BOC x ∠=︒-∠AOC=∠AOB+∠BOC.39090x x =︒+︒-x =45°.故答案为:45.【点睛】本题考查角度的计算,关键在于利用方程的思想将题目简单化.25.25【解析】【分析】,得出,根据对顶角相等可得出,因此,又因为平分,,即可求出答案.【详解】解:∵,∴,∵根据对顶角相等可得出,∴,∵平分,∴,∴.故答案为:25.【点睛】解析:25【解析】【分析】OE OC ⊥,得出COE 90∠=︒,根据对顶角相等可得出BOD AOC 40∠∠==︒,因此AOE 130∠=︒,又因为OF 平分AOE ∠,AOF EOF 65∠∠==︒,即可求出答案.【详解】解:∵OE OC ⊥,∴COE 90∠=︒,∵根据对顶角相等可得出BOD AOC 40∠∠==︒,∴AOE 130∠=︒,∵OF 平分AOE ∠,∴AOF EOF 65∠∠==︒,∴COF 906525∠=︒-︒=︒.故答案为:25.【点睛】本题考查的知识点是角的和与差,找出图形中角之间的数量关系是解此类题目的关键.三、解答题26.(1)113,23(2)所以和谐数为15,26,37,48,59;(3)F (t )的最大值是34. 【解析】【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b 表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F (13)=113,F (24)=23; (2)原两位数可表示为10(1)b a -+新两位数可表示为101a b +-∴10110(1)36a b b a +----=∴101101036a b b a +--+-=∴9927a b -=∴3a b -=∴3a b =+ (16b <≤且b 为正整数 )∴b =2,a =5; b =3,a =6, b =4,a =7,b =5,a =8 b =6,a =9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F (t )的最大值是34. 【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题.27.(1)9,3;(2)2;(3)①118t =或254;②36 【解析】【分析】(1)由MN 的长及,OM ON 的数量关系可得OM 、ON 的长;(2)由图知MN MC CO ON =++,结合MC CO CN =+及线段MN 、ON 的长可得CO 的长;(3)①分类讨论,分点P 在线段OM 和射线ON 上两种情况,分别用含t 的代数式表示出OP 、OQ 的长,根据24cm OP OQ -=可列出关于t 的方程,求解即可;②点D 运动的时间即为点P 从点O 到停止运动所用的时间,求出点D 运动的时间再乘以其速度即为点D 运动的路程.【详解】解:(1)12MN =,3OM ON =3412MN OM ON ON ON ON ∴=+=+== 3,39ON OM ON ∴===所以9,3OM cm ON cm ==.(2)如图12MN =,MC CO CN =+3212MN MC CO ON CO CO ON CO ON CO ON ∴=++=++++=+=由(1)知3ON =,3612CO ∴+=2CO ∴=所以CO 的长为2.(3)①如图,当点P 在线段MO 上时,93,32OP t OQ t =-=+,由24OP OQ -=得2(93)(32)4t t --+=解得118t =; 如图,当点P 在射线ON 上时,39,32OP t OQ t =-=+由24OP OQ -=得2(39)(32)4t t --+=解得254t = 综合上述,当118t s =或254s ,24OP OQ cm -=. ②点P 、Q 停止运动时,3122t t -=,解得12t =,点P 经过点O 时,39t =,解得3t =,4(123)36⨯-=所以在此过程中点D 运动的总路程是36cm.【点睛】本题考查了数轴上的动点问题,同时涉及了一元一次方程,灵活的将一元一次方程与数轴相结合是解题的关键.同时分类讨论的数学思想也在本题得以体现.28.小红速度为190 米/分,爷爷速度为114米/分.【解析】【分析】由题意得第一次与爷爷相遇,必定小红比爷爷多跑一圈,所以小红的路程=爷爷的路程+400-20,由该等式列成方程解出即可.【详解】解:设爷爷的速度为x 米/分,小红的速度为53x 米/分. 5·53x =5x +400-20 251538033x x -=103803x = x =11453x =190 米/分. 答: 小红速度为190 米/分,爷爷速度为114米/分.【点睛】本题考查一元一次方程的应用,关键在于读题列出方程.29.(1)27;(2)-2.【解析】【分析】(1)原式利用乘法分配律计算即可得;(2)原式先计算乘方运算,再计算乘除,最后算加减即可得.【详解】 解:157()362612+-⨯ 157=3636362612⨯+⨯-⨯ =183021+-=27;(2)()421723-+÷- ()=1729-+÷-()=177-+÷-()=11-+-=2-.【点睛】本题考查了有理数的混合运算,掌握运算法则和运算步骤,选用合理的运算律是解答此题的关键.30.(1)29,7;(2)46;(3)正确,理由详见解析.【解析】【分析】(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”,利用定义进行计算即可,(2)根据“相异数”的定义,由S(y)=10,列方程求出“相异数y”的十位数字和个位数字,进而确定y;(3)设出“相异数”的十位、个位数字,根据“相异数”的定义,由S(x)=5,得出十位数字和个位数字之间的关系,进而得出结论.【详解】解:(1)根据“相异数”的定义可知29是“相异数”, 20,77不是“相异数”S(43)=(43+34)÷11=7,故答案为:29,7;(2)由“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10得,10k+2(k﹣1)+20(k﹣1)+k=10×11,解得k=4,∴2(k﹣1)=2×3=6,∴相异数y是46;(3)正确;设“相异数”的十位数字为a,个位数字为b,则x=10a+b,由S(x)=5得,10a+b+10b+a=5×11,即:a+b=5,因此,判断正确.【点睛】本题主要考查相异数,一元一次方程的应用,掌握相异数的定义及S(x)的求法是解题的关键.31.(1)﹣2x,12;(2)3a2b﹣ab2,74.【解析】【分析】(1)根据整式的加减混合运算法则把原式化简,代入计算即可;(2)根据整式的加减混合运算法则把原式化简,根据非负数的性质分别求出a、b,代入计算得到答案.【详解】解:(1)3x2+x+3(x2﹣23x)﹣(6x2+x)=3x 2+x+3x 2﹣2x ﹣6x 2﹣x=﹣2x当x =﹣6时,原式=﹣6×(﹣2)=12;(2)5(3a 2b ﹣ab 2)﹣4(﹣ab 2+3a 2b )=15a 2b ﹣5ab 2+4ab 2﹣12a 2b=3a 2b ﹣ab 2,由题意得,a+1=0,b ﹣12=0, 解得,a =﹣1,b =12, 则原式=3×(﹣1)2×12﹣(﹣1)×(12)2=74. 【点睛】 此题考查了整式的加减-化简求值,熟练掌握整式的加减法运算法则,准确计算是关键. 32.2【解析】【分析】先求出方程372(1)y y +=--的解,再根据方程的解进行解答即可.【详解】解:∵方程372(1)y y +=--的解为:1y =-又∵关于x 的方程(3)2m m x x -+=的解与方程372(1)y y +=--的解相等∴关于x 的方程(3)2m m x x -+=的解为1x =-把1x =-代入(3)2m m x x -+=得:()(-13)2-1m m -+=⨯解得:2m =∴m 的值为:2.【点睛】本题考查了同解方程,把x 的值代入得出关于m 的方程是解题关键.33.当12∠∠=时,//DM BC【解析】【分析】根据平行线的性质得到2CBD ∠∠=,等量代换得到1CBD ∠∠=,根据平行线的判定定理得到//GF BC ,证得//MD GF ,根据平行线的性质即可得到结论.【详解】当12∠∠=时,//DM BC ,理由://BD EF ,2CBD ∠∠∴=,12∠∠=,1CBD ∠∠∴=,。
(苏教版)七年级上学期末考试数学试题附答案
(满分150分 考试时间120分钟) 成绩:一、选择题(每题3分,共24分,请将正确的答案填入下表: )1.计算:11--的值为( ▲ )A .0B .1-C .2-D .3-2.某药品的说明书上标明保存温度是(20±2)℃,则该药品适宜保存的温度范围是( ▲ ). A .18℃~20℃ B.20℃~22℃ C .18℃~21℃ D .18℃~22℃ 3.已知四个数中:(―1)2013,2-,-(-1.5),―32,其中负数的个数有( ▲ ).A .1个B .2个C .3个D .4个 4.下面不是同类项的是( ▲ ). A .-2与21 B . 2m 与2n C .b a 22-与b a 2 D .22y x -与2221y x 5.如图,直线AB 、CD 、EF 相交于点O ,则123∠+∠+∠的度数为( ▲ ). A .90︒ B .120︒ C .180︒ D .不能确定6.若3x =-是方程7a x -=的解,则a 的值是( ▲ ). A .4 B .7 C .10 D .737.如图,是将正方体切去一块后的几何体,则它的俯视图是( ▲ ).A .B .C .D .8.如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠,正确的有( ▲ ) A . 4个 B .3个 C .2个 D . 1个二、填空题(每小题3分,共30分) 9.请你写一个解为12x =-的一元一次方程 . 10.请你写一个大于0而小于1的无理数: .第5题图第7题图11.一个多项式加上232x x -+-得到21x -,则这个多项式是___________. 12.如图是一正方体的平面展开图,若5AB =,则该正方体上A 、B 两点间的距离为 ________.13.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是 .14.关于x 的方程()22620m m x---=是一元一次方程,则m = .15.如图,从一个三棱柱形状的萝卜块上切下一个三棱柱,剩下的部分仍然是一个棱柱,则剩下部分可能是____________________(填几何体的名称).16.已知3348'α∠=︒,则它的补角为_____________︒(友情提醒:结果化成度).17.已知线段2AB cm =,点C 在直线..AB 上,若6BC cm =,且D 为AB 的中点,则线段DC = cm .18.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意..四.个相邻格子.....中所填的整数之和都相等,则第2013个格子中的数为 .三、解答题(本大题共10题,满分96分) 19.(本题8分)计算:()211121326⎛⎫⎛⎫-⨯-+-÷- ⎪ ⎪⎝⎭⎝⎭;20.(本题8分)解下列方程:⑴ 3(2)2x x -=-; ⑵31652--=+-x x x .21.(本题8分)化简后再求值:()()()()22222152282233x y x y x y x y -------,其中211023x y ⎛⎫++-= ⎪⎝⎭.22.(本题8分)如图所示,点C 、D 为线段AB 的三等分点,点E 在线段DB 上,若9AB =cm ,12BE =cm ,求线段CD 、CE 的长度.23.(1)(本题4分)左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体的主视图和左视图.(2) (本题6分)如图,点P 是AOB ∠的边OB 上的一点.①过点P 画OB 的垂线,交OA 于点C ;②过点P 画OA 的垂线,垂足为H ;③线段PH 的长度是点P 到直线 的距离,是点C 到直线OB 的距离;因为 ,所以线段PC 、PH 、OC 这三条线段大小关系是 (用“<”号连接).24.(本题10分)下面是红旗商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你求出这台电脑的进价是多少(写出解答过程)?12123主视图 左视图25.(本题10分)已知如图,直线AB 、CD 相交于点O ,BOC ∠与DOE ∠互余,若108AOC ∠=︒,求DOE ∠的度数.26.(本题10分)甲、乙两果园分别产有苹果10吨和40吨,现全部运送到A 、B 两地销售,根据市场调研,A 、B 两地分别需要苹果15吨和35吨;已知从甲、乙地到A 、B 地的运价如右表,由以上信息,解决下列问题:(1) 若从乙果园运到A 地的苹果为x 吨,则从甲果园运到B 地的苹果为 吨;从甲果园将苹果运往A 地的运输费用为 元(用含x 的代数式表示);(2)若运往A 地的运输费用比运往B 地的运输费用少1150元,用你所学的知识来说明是怎样安排运输方案的27.(本题12分)已知,OM 、ON 分别是AOC ∠,BOC ∠的角平分线. (1)如图1,若120AOB ∠=︒,30BOC ∠=︒,则 ________MON ∠=︒;(2)如图1,若120AOB ∠=︒,BOC β∠=︒,能否求出MON ∠的度数?若能,求出其值,若不能,试说明理由;(3) 如图2,若AOB α∠=︒,BOC β∠=︒,是否仍然能求出∠MON 的度数,若能,求MON ∠的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律 .28.(本题12分)在数学的学习过程中,我们经常用以下的探索过程解决相关问题.数学问题:三角形有3个顶点,如果在它的内部再画n 个点,并以这()3n +个点为顶点画三角形,那么可以剪得多少个这样的三角形?探索规律:为了解决这个问题,我们可以从1n =、2n =、3n =等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1)填表:当三角形内有4个点时,把表格补充完整; (2)你发现的变化规律是:第27题图1第27题图2;(3)猜想:当三角形内点的个数为n 时,最多可以剪得 个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.问题解决:请你尝试用归纳的方法探索()()13572121n n +++++-++的和是多少?七年级数学参考答案一. 选择题 (每小题3分计3*8=24分)二.填空题(每小题3分计3*10=30分) 9. 如:210x += 10. 如:4π(建议:写成0.1010010001…类似的算正确) 11.232x x -+ 12.2513. 24 14.1 15.三棱柱或四三棱柱(如学生给出一个答案给1分) 16.146.2 17.5或7 (如学生给出一个答案给1分) 18. -1 三.解答题(所有解答题请参照步骤分步给分,如有不一样的解法请合理给分) 19.解原式=()()1141632⎛⎫-⨯-+-⨯- ⎪⎝⎭…………4分=423-+ …………6分 =5 ……………………8分 20.(1) 2=x ………4分 (2) 1=x ………4分 21.由题意,得12x =-,13y =- ……………………2分 (这里把()22x y -看成一个整体)则()221152=2=2312x y ⎛⎫---⨯- ⎪⎝⎭……………………3分原式=()()()222322=42x y x y x y ------……………………6分=154=123⎛⎫-⨯-⎪⎝⎭ ……………………8分(其他解法请参考给分)22.因为点C 、D 为线段AB 的三等分点,9AB =所以3AC CD DB === ……………………2分 因为12BE =所以 15322DE DB BE =-=-= ……………………5分所以511322CE CD DE =+=+= ……………………8分 23.(1)(每个图正确可得2分)(2) ①如图所示 ②如图所示 (标注要正确)…………………2分③直线OA ,线段PC ,垂线段最短,PH PC OC <<……………………6分 24.解:设这台电脑的进价是x 元,根据题意,得 …………………1分主视图左视图210%805850=-⨯x …………………5分4470=x …………………9分答:这台电脑的进价是4470元. …………………10分 25.因为∠︒=108AOC ,∠AOC +∠︒=180BOC所以∠︒=72BOC …………………5分 因为BOC ∠与DOE ∠互余所以 ︒=︒-︒=∠187290DOE ……………………………………10分 26.(1) )5(-x )1502250(x - …………………4分 (2))40(90)5(1201150100)15(150x x x x -+-=++- …………6分 解得5=x …………………8分 方案如下:从甲果园运到A 地的苹果为10 吨,从甲果园运到B 地的苹果为0 吨, 从乙果园运到A 地的苹果为5吨,从乙果园运到B 地的苹果为35吨.……10分 27.(1)60 …………………2分 (2)CON MOC MON ∠-∠=∠ …………………4分 22120︒-︒+︒=ββ …………………6分 ︒=60 …………………7分 (3)CON MOC MON ∠-∠=∠ …………………9分 22︒-︒+︒=ββα …………………11分2︒=α …………………12分 (以上可以分下来写,条理清楚,结果正确就给分)。
苏教版七年级上册数学 期末试卷测试卷附答案
苏教版七年级上册数学期末试卷测试卷附答案一、选择题1.如果a+b+c=0,且|a|>|b|>|c|,则下列式子可能成立的是()A.c>0,a<0 B.c<0,b>0 C.c>0,b<0 D.b=02.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.3505(10)40810--+=x xB.3505(10)40810+--=x xC.850104035+-=x x+10 D.850104035-+=x x+103.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.44.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A.15°B.20°C.25°D.30°5.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A .13B .12C .23D .16.如图所示的几何体的左视图是( )A .B .C .D .7.下列平面图形不能够围成正方体的是( ) A .B .C .D .8.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( ) A .2018B .2019C .2020D .20219.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2B .3C .4D .510.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .11.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3 B .3C .13D .1612.单项式24x y 3-的次数是( )A.43-B.1C.2D.313.下列各图中,是四棱柱的侧面展开图的是( )A.B.C.D.14.关于零的叙述,错误的是( )A.零大于一切负数B.零的绝对值和相反数都等于本身C.n为正整数,则00n=D.零没有倒数,也没有相反数.15.在解方程123123x x-+-=时,去分母正确的是( )A.3(x-1)-2(2x+3)=6 B.3(x-1)-2(2x+3)=1C.2(x-1)-3(2x+3)=6 D.3(x-1)-2(2x+3)=3二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.地球的半径大约为6400000m,用科学计数法表示地球半径为___________m. 18.下图是计算机某计算程序,若开始输入2x=-,则最后输出的结果是____________.19.一个数的绝对值是2,则这个数是_____.20.在-2 、-3 、4、5 中选取2个数相除,则商的最小值是________.21.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.22.如图,每一幅图中均含有若干个正方形,第1幅图中有2个正方形;第2幅图中有8个正方形;…按这样的规律下去,第7幅图中有___个正方形.23.若代数式M=5x2﹣2x﹣1,N=4x2﹣2x﹣3,则M,N的大小关系是M___N(填“>”“<”或“=”)24.请写出一个系数是-2,次数是3的单项式:________________.25.若a-2b=1,则3-2a+4b的值是__.三、解答题26.如图,已知BD平分∠ABC,点F在AB上,点G在AC上,连接FG、FC,FC与BD相交于点H,如果∠GFH与∠BHC互补,那么∠1=∠2吗?请说明理由.27.(1)计算:2311113222⎛⎫⎛⎫⎛⎫-+-÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)化简求值:()()()2214121422x x x x--++-,其中3x=-.28.解不等式组:2(1),312.2x xxx+⎧⎪⎨--≥⎪⎩>并在数轴表示它的解集.29.如图,直线l上有A、B两点,线段10AB cm=.点C在直线l上,且满足4BC cm=,点P为线段AC的中点,求线段BP的长.30.已知方程532x x-=与方程2463k xx+-=的解互为相反数,求5417k⎛⎫-⎪⎝⎭的值. 31.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++-⎪ ⎪⎝⎭⎝⎭32.我们经常运用“方程”的思想方法解决问题.已知∠1是∠2的余角,∠2是∠3的补角,若∠1+∠3=130°,求∠2的度数.可以进行如下的解题:(请完成以下解题过程)解:设∠2的度数为x,则∠1=°,∠3=°.根据“”可列方程为:.解方程,得x=.故:∠2的度数为°.33.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.四、压轴题34.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.35.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 36.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.37.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.38.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.39.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).42.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据题意分类讨论,综合情况解出即可. 【详解】1.假设a 为负数,那么b+c 为正数; (1)b 、c 都为正数;(2)一正一负,因为|b|>|c|,只能b 为正数,c 为负数; 2.假设a 为正数,那么b+c 为负数,b 、c 都为负数;(1)若b 为正数,因为|b|>|c|,所以b+c 为正数,则a+b+c=0不成立; (2)若b 为负数,c 为正数,因为|b|>|c|,则|b+c|<|b|<|a|,则a+b+c=0不成立. 故选A. 【点睛】本题考查绝对值的性质,关键在于分类讨论正负性.2.D解析:D 【解析】由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.3.C解析:C 【解析】 【分析】确定原正方体相对两个面上的数字,即可求出和的最小值. 【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面, 因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6. 故选:C . 【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.4.D解析:D 【解析】 【分析】根据∠1=∠BOD+EOC -∠BOE ,利用等腰直角三角形的性质,求得∠BOD 和∠EOC 的度数,从而求解即可. 【详解】 解:如图,根据题意,有90AOD BOE COF ∠=∠=∠=︒, ∴903555BOD ∠=︒-︒=︒,902565COE ∠=︒-︒=︒, ∴155659030BOD COE BOE ∠=∠+∠-∠=︒+︒-︒=︒; 故选:D. 【点睛】本题考查了角度的计算,正确理解∠1=∠BOD+∠COE -∠BOE 这一关系是解决本题的关键.5.A解析:A 【解析】 【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解. 【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A. 【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.6.A解析:A 【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A .7.B解析:B 【解析】 【分析】直接利用正方体的表面展开图特点判断即可.根据正方体展开图的特点可判断A 属于“1、3、2”的格式,能围成正方体,D 属于“1,4,1”格式,能围成正方体,C 、属于“2,2,2”的格式也能围成正方体,B 、不能围成正方体. 故选B . 【点睛】本题主要考查展开图折叠成几何体的知识点.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.8.C解析:C 【解析】 【分析】由已知条件得到x 2﹣2x +y 2﹣2y =0,2xy =1,化简x 2+2xy +y 2﹣2(x +y )+2019为x 2﹣2x +y 2﹣2y +2xy +2019,然后整体代入即可得到结论. 【详解】解:∵x 2﹣2x =2y ﹣y 2,xy =12, ∴x 2﹣2x +y 2﹣2y =0,2xy =1,∴x 2+2xy +y 2﹣2(x+y )+2019=x 2﹣2x +y 2﹣2y +2xy +2019=0+1+2019=2020, 故选:C . 【点睛】本题考查代数式求值,掌握整体代入法是解题的关键.9.B解析:B 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程. 【详解】 解:①x−2=2x是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x=5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误; ⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确; ⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误. 综上所述,一元一次方程的个数是3个. 故选B .本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.10.B解析:B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【点睛】考核知识点:几何体的三视图.11.A解析:A【解析】【分析】将x=-2代入方程mx=6,得到关于m的一元一次方程,解方程即可求出m的值.【详解】∵关于x的一元一次方程mx=6的解为x=-2,∴﹣2m=6,解得:m=-3.故选:A.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.12.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】单项式43x2y的次数是2+1=3.故选D.【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.13.A解析:A【分析】根据棱柱的特点和题意要求的四棱柱的侧面展开图,即可解答.【详解】棱柱:上下地面完全相同,四棱柱:侧棱有4条故选A【点睛】本题考查棱柱的特点以及棱柱的展开图,难度低,熟练掌握棱柱的特点是解题关键. 14.D解析:D【解析】【分析】根据数轴、绝对值、相反数、倒数、乘方的定义依次对各选项进行判断即可.【详解】解:A.零大于所有的负数,说法正确;因为在数轴上,负数都在0的左边,正数都在0的右边,越往右,数越来越大,越往左,数越来越小;B.根据绝对值和相反数的定义,零的绝对值和相反数都等于本身,说法正确;n ,说法正确;C.根据乘方的定义,当n为正整数时,0n代表n个0相乘,故00D.零的相反数是它本身,故本选项说法错误.故选:D.【点睛】本题考查数轴、绝对值、相反数、倒数和乘方,理解这些基本定义是解决此题的关键.15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x−1)−2(2x+3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题16.75【解析】根据互为余角的两角之和为90°,即可得出答案. 【详解】 ∵∠α=40° 15′,∴∠a 的余角=90°-40° 15′=49° 45′=49.75°. 故答案为:4解析:75 【解析】 【分析】根据互为余角的两角之和为90°,即可得出答案. 【详解】 ∵∠α=40° 15′,∴∠a 的余角=90°-40° 15′=49° 45′=49.75°. 故答案为:49.75. 【点睛】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90°.17.【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 解析:66.410⨯【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】6400000=66.410⨯.故填:66.410⨯. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.【解析】 【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再解析:17【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再把−5代入计算:(−5)×4−(−3)=−20+3=−17<−5,即−17为最后结果.故本题答案为:−17【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.19.±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.解析:±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.20.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵,,,,,,,,∴商的最小值为.故答案为:.【点睛】本题考解析:5 2 -【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.21.3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第202 0次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序解析:3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序中,得到输出结果为12,将x=12代入运算程序中,得到输出结果为6,将x=6代入运算程序中,得到输出结果为3,将x=3代入运算程序中,得到输出结果为6.∵(2020-2)÷2=1009,∴第2020次输出结果为3.故答案为:3.【点睛】本题考查了代数式求值,弄清题中的运算程序是解答本题的关键.22.168【解析】【分析】根据已知图形找出每幅图中正方形个数的变化规律,即可计算出第7幅图中正方形的个数.【详解】解:第1幅图中有2=2×1个正方形;第2幅图中有8=(3×2+2×1)个正方解析:168【解析】【分析】根据已知图形找出每幅图中正方形个数的变化规律,即可计算出第7幅图中正方形的个数.【详解】解:第1幅图中有2=2×1个正方形;第2幅图中有8=(3×2+2×1)个正方形;第3幅图中有20=(4×3+3×2+2×1)个正方形;∴第7幅图中有8×7+7×6+6×5+5×4+4×3+3×2+2×1=168个正方形故答案为:168.【点睛】此题考查的是探索规律题,找出正方形个数的变化规律是解决此题的关键.23.>.【解析】【分析】首先计算出、的差,再分析差的正负性可得答案.【详解】M﹣N=5x2﹣2x﹣1﹣(4x2﹣2x﹣3),=5x2﹣2x﹣1﹣4x2+2x+3,=x2+2>0,∴M>N解析:>.【解析】【分析】首先计算出M、N的差,再分析差的正负性可得答案.【详解】M﹣N=5x2﹣2x﹣1﹣(4x2﹣2x﹣3),=5x2﹣2x﹣1﹣4x2+2x+3,=x2+2>0,∴M>N,故答案为:>.【点睛】此题主要考查了整式的加减,关键是注意去括号时符号的变化.24.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解析:-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.25.1【解析】【分析】先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可. 【详解】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.故答案为:1.【点解析:1【解析】【分析】先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可.【详解】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.故答案为:1.【点睛】本题考查了代数式求值.注意此题要用整体思想.三、解答题26.∠1=∠2;见解析.【解析】【分析】根据题意算出∠GFH+∠FHD=180°,利用同旁内角互补两直线平行,证明FG∥BD,再由角平分线性质判断即可.【详解】解:12∠=∠,理由如下:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2;【点睛】本题考查了平行线的判定与性质和角平分线的有关计算,关键在于掌握相关基础知识.27.(1)126-;(2)36x-,-15.【解析】【分析】(1)根据有理数的运算法则即可求解;(2)根据整式的加减运算法则即可化简,再代入x 即可求解.【详解】(1)解:原式111648⎛⎫=-+÷- ⎪⎝⎭126=- (2)解:()()()2214121422x x x x --++- =2244222x x x x ---+-36x =-3x ∴=-时,原式15=-【点睛】此题主要考查有理数与整式的运算,解题的关键是熟知其运算法则.28.-2<x ≤1,在数轴上表示见解析.【解析】【分析】分别解出每个不等式后再求不等式组的解集,最后将解集表示在数轴上即可.【详解】2(1),312.2x x x x +⎧⎪⎨--≥⎪⎩>①② 不等式①的解集为x >-2不等式②的解集为x ≤1∴原不等式组的解集为-2<x ≤1 ,解集在数轴上表示为.【点睛】本题考查一元一次不等式组的解法,解题的关键是熟悉解一元一次不等式组的解法,并会在数轴上表示不等式组得解集.29.线段的BP 的长为7cm 或3cm .【解析】【分析】分两种情况画出图形,即点C 在线段AB 上和点C 在线段AB 的延长线上结合中点的性质求解即可.【详解】①C 在线段AB 上,如图,∵AB=10cm,BC=4cm,∴AC=AB-BC=10-4=6cm, ∵P 是AC 中点,∴116322AP PC AC cm ===⨯= ∴347BP PC BC cm =+=+=②C 在线段AB 外,如图,∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14cm,∵P 是AC 中点,∴1114722AP PC AC cm ===⨯= ∴743BP PC BC cm =-=-=答:线段的BP 的长为7cm 或3cm .【点睛】本题考查线段的和差及线段中点的性质,分类讨论画出相应图形是解答此题的关键.30.-1【解析】【分析】先分别求出两方程的解,根据相反数的定义求出k 的值,再代入代数式即可求解.【详解】解:解方程532x x -=,得1x =,根据题意,方程2463k x x +-=的解为1x =-, 把1x =-代入方程2463k x x +-=,得()214163k --⨯-=, 解,得72k =. 所以55447111772k ⎛⎫⎛⎫-=-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】此题主要考查解方程的应用,解题的关键熟知一元一次方程的解法.31.(1)12;(2)79. 【解析】【分析】 (1)按照整数的运算法则运算即可.(2)按照分数的运算法则运算即可.【详解】(1) ()()48(2)(4)44441612-+÷-⨯-=-+-⨯-=-+=. (2) 2151313104181912874632612121212361236369⎛⎫⎛⎫⎛⎫--+++-=--+++=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【点睛】本题考查有理数的运算法则,关键在于掌握基础计算方法.32.(90﹣x );(180﹣x );∠1+∠3=130°;(90﹣x )+(180﹣x )=130;70;70.【解析】【分析】根据余角和补角的定义解答即可.【详解】设∠2的度数为x ,则∠1=(90﹣x )°,∠3=(180﹣x )°.根据“∠1+∠3=130°”可列方程为:(90﹣x )+(180﹣x )=130.解方程,得x =70.故:∠2的度数为70°.【点睛】此题考查了余角和补角的意义,互为余角的两角的和为90︒,互为补角的两角之和为180︒.解此题的关键是能准确的找出角之间的数量关系.33.(1)90︒;(2)COD=10∠︒;(3)1752MON COD ∠=∠+︒,证明见解析 【解析】【分析】(1)利用角平分线定义得出12AOM MOC AOC x ∠=∠=∠=,12BON DON BOD y ∠=∠=∠=,再利用∠AOB 的和差关系进行列方程即可求解; (2)利用8MON COD ∠=∠,表达出∠AOC 、∠BOD ,利用∠AOB 的和差关系进行列方程即可求解;(3)画出图形后利用角的和差关系进行计算求解即可.【详解】解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴设11,22AOM MOC AOC x BON DON BOD y ∠=∠=∠=∠=∠=∠= ∴2,2AOC x BOD y ∠=∠=,30MON MOC COD DON x y ∠=∠+∠+∠=+︒+ ∵2302150AOB AOC BOD COD x y ∠=∠+∠+∠=+︒+=︒∴60x y +=︒∴3090MON x y ∠=+︒+=︒故答案为: 90︒(2)∵8MON COD ∠=∠∴设=,8COD a MON a ∠∠=∵射线OD 恰好平方MON ∠∴14,2DOM DON MON a ∠=∠=∠= ∴43,COM DOM COD a a a ∠=∠-∠=-= ∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴113,422AOM MOC AOC a BON DON BOD a ∠=∠=∠=∠=∠=∠= ∴6,8AOC a BOD a ∠=∠= ∵68150AOB AOC BOD COD a a a ∠=∠+∠+∠=++=︒∴=10a ︒∴COD=10∠︒(3) 1752MON AOC ∠=∠+︒,证明如下: 当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x ∠=∠-∠=︒-∠=︒-∵ON 平分∠BOD∴117522DON BOD x ∠=∠=︒-∴MON COD DON ∠=∠+∠1752x x =+︒- 1752x =︒+ ∴1752MON COD ∠=︒+∠当OC 在OA 的左侧时设∠AOD=a ,∠AOC=b,则∠BOD=∠AOB -∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b ∵ON 平分∠BOD∴117522DON BOD a ∠=∠=︒- ∵OM 平分∠AOC∴1122AOM COM AOC b ∠=∠=∠= ∴∠MON=∠MOA+∠AOD+∠DON117522b a a =++︒- 117522b a =++︒ 1752COD =∠+︒当OD 与OA 重合时∵ON 平分∠AOB∴1752AON AOB ∠=∠=︒ ∵OM 平分∠AOC∴12MON AOC ∠=∠ ∴MON MOD AON ∠=∠+∠ 1752AOC =∠+︒ 综上所述 1752MON AOC ∠=∠+︒ 【点睛】本题考查了角平分线的动态问题,掌握角平分线的性质是解题的关键. 四、压轴题34.(1)125°;(2)ON 平分∠AOC ,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC 计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论; (3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.【详解】解: (1) ∵∠MON=90° , ∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.(2)ON 平分∠AOC .理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM 平分∠BOC ,∴∠BOM=∠MOC .∴∠AON=∠NOC .∴ON 平分∠AOC .(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC .∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB =90°-(50°-∠NOC )=∠NOC +40°.【点睛】本题主要考查了角的运算、余角以及角平分线的定义,解题的关键是灵活运用题中等量关系进行角度的运算.35.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或10114 【解析】【分析】(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可;【详解】解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线,∴∠BOD=90°,∠BOE=∠DOE=12∠BOD =45° ∵85AOE ∠=∴∠AOB=∠AOE +∠BOE=130°∵OC 是AOB ∠的角平分线,∴∠AOC=∠BOC=12AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20°(2)由原图可知:∠COD=∠DOE -∠COE=25°,故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ;。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题 1.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=- 2.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a= D .若a b c c=(c ≠0),则a b = 3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( )A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 4.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ) (1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格5.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°6.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 7.下列图形,不是柱体的是( )A .B .C .D .8.下列各式进行的变形中,不正确的是( )A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b = D .若32a b =,则94a b = 9.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( )A .2018B .2019C .2020D .202110.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( )A .-4B .-2C .2D .4 11.下列合并同类项正确的是( )A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 12.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .13.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 14.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D . 二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .18.已知22m n -=-,则524m n -+的值是_______.19.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简b c c a b -+--的结果是________.20.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.21.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.23.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.24.比较大小:227-__________3-. 25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.27.已知平面上点,,,A B C D .按下列要求画出图形:(1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________;(3)画出从点A 到CD 的垂线段AH ,垂足为H .28.解方程:(1)-5x +3=-3x -5;(2)4x -3(1-x )=11.29.解下列方程:(1)3(45)7x x --=;(2)5121136x x +-=-. 30.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.例如,以点M为圆心,1cm为半径画圆如图1,那么点M到该圆的距离等于1cm;若点N是圆上一点,那么点N到该圆的距离等于0cm;连接M N,若点Q为线段M N中点,那么点Q到该圆的距离等于0.5cm,反过来,若点P到已知点M的距离等于1cm,那么满足条件的所有点P就构成了以点M为圆心,1cm为半径的圆.(初步运用)(1)如图 2,若点P到已知直线m的距离等于1cm,请画出满足条件的所有点P.(深入探究)(2)如图3,若点P到已知线段的距离等于1cm,请画出满足条件的所有点P.(3)如图 4,若点P到已知正方形的距离等于1cm,请画出满足条件的所有点P.31.如图,A、B、C是正方形网格中的三个格点.(1)①画射线AC;②画线段BC;③过点B画AC的平行线BD;④在射线AC上取一点E,画线段BE,使其长度表示点B到AC的距离;(2)在(1)所画图中,①BD与BE的位置关系为;②线段BE与BC的大小关系为BE BC(填“>”、“<”或“=”),理由是.32.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.33.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
苏教版七年级上册期末试卷【含答案】
苏教版七年级上册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种动物属于哺乳动物?A. 青蛙B. 鲨鱼C. 老虎D. 鹦鹉2. 在光合作用中,植物释放出的气体是什么?A. 二氧化碳B. 氧气C. 氮气D. 甲烷3. 下列哪种物质是纯净物?A. 食盐B. 空气C. 酒精D. 肥皂水4. 下列哪个单位是力的单位?A. 千克B. 瓦特C. 牛顿D. 安培5. 地球绕太阳公转一周的时间大约是多少?A. 一个月B. 一年C. 一周D. 一天二、判断题(每题1分,共5分)1. 水是由氢元素和氧元素组成的化合物。
()2. 地球是太阳系中最大的行星。
()3. 鸟类是唯一会飞行的脊椎动物。
()4. 植物的根只负责吸收水分和养分。
()5. 物质的固态比液态密度大。
()三、填空题(每题1分,共5分)1. 地球上最大的生物圈是______。
2. 人体中最重要的骨骼是______。
3. 光在真空中的传播速度是______。
4. 金属活动性顺序中,最不活泼的金属是______。
5. 植物进行光合作用的主要场所是______。
四、简答题(每题2分,共10分)1. 简述血液循环系统的组成。
2. 描述水的沸腾现象。
3. 解释什么是生态平衡。
4. 简述植物根的结构和功能。
5. 解释什么是能量守恒定律。
五、应用题(每题2分,共10分)1. 小明用2小时走了10公里,求小明的平均速度。
2. 如果一个物体的质量是5千克,受到一个10牛的力,求这个物体的加速度。
3. 某化学反应的化学方程式为:2H2 + O2 → 2H2O。
如果反应物中有4克的氢气和32克的氧气,求的水的质量。
4. 一个长方体的长、宽、高分别是2米、3米和4米,求这个长方体的体积。
5. 如果一棵树的高度是20米,树影子长度是10米,求太阳光与地面的夹角。
六、分析题(每题5分,共10分)1. 分析影响植物生长的因素。
2. 分析地球自转和公转的关系。
2024更新-2023年苏教版七年级生物(上册)期末试卷及答案(今年)(可打印)
2023年苏教版七年级生物(上册)期末试卷及答案(今年)考试说明:本试卷五个大题,满分100分,时间90分钟。
题序一二三四五总分得分一、选择题(共25个小题,每题2分,共50分)1、为了促进儿童骨骼的发育,除了给儿童多补充含钙、磷多的食物,还应补充( ) A.维生素 A B.维生素 B C.维生素 C D.维生素 D2、在观察菜豆植株的不同结构时,选取实验材料不正确的是()A.观察气孔一一叶表皮B.观察子房——雄蕊C.观察根毛——根尖D.观察子叶——种子3、绿色开花植物的双受精是指()A.两个极核都完成受精作用的过程B.两个精子分别与两个卵细胞结合的过程C.两个精子分别与两个极核结合的过程D.两个精子分别与卵细胞和极核结合的过程4、下列不属于绿色植物对生物圈的作用的是()A.作为分解者参与物质循环B.为许多生物提供食物和能量C.参与了生物圈的水循环D.维持二氧化碳和氧气的相对平衡5、下列关于营养成分与其主要食物来源的搭配中,你认为搭配错误的一项是()A.脂肪——米饭B.糖类——马铃薯C.蛋白质——牛奶D.铁质——瘦肉6、莘县香瓜闻名全国,为提高产量,果农采取了一系列措施。
下面列举的措施中,与光合作用无关的是()A.合理密植B.提高大棚内二氧化碳浓度C.增长光照时间D.夜间适当降低大棚内温度7、瓣膜保证了血液在心脏中的流动方向是()A.动脉→心室→心房B.心房→动脉→心室C.心房→心室→动脉D.心室→动脉→心房8、现实中有许多实例能说明生物既能适应环境,也能影响环境。
下列实例中能体现生物影响环境的是()A.北方多种树木入冬会自动落叶B.仙人掌的叶变成刺C.部分宠物犬进入盛夏脱毛D.城市绿化改变了空气质量9、动物和人体的生长发育都是从一个细胞开始的,这个细胞就是()A.卵细胞 B.受精卵 C.精子 D.神经细胞10、在我国西部大开发的战略中,“保护天然林”和“退耕还林”是两项重要内容,采取这两项措施的首要任务是()A.开展生态旅游B.发展畜牧业C.增加木材产量D.改善生态环境11、下列消化液中,不能消化蛋白质的是()A.唾液B.胃液C.肠液D.胰液12、血液流经人体器官b时,血液中某种物质含量的变化用曲线表示,如图。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.下列各组单项式中,是同类项的一组是( ) A .3x 3y 与3xy 3 B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 3.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mn B .23m nC .3m nD .32m n4.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 5.下列说法错误的是( ) A .2的相反数是2- B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是06.下列合并同类项结果正确的是( ) A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 67.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元 B .145元 C .150元 D .160元 8.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,79.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-10.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3B .3C .-2D .211.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10012.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线13.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐14.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( ) A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯15.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( ) A . 1.5(7020)x x =-+ B .70 1.5(20)x x +=+ C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.一个角的的余角为30°15′,则这个角的补角的度数为________. 18.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3. 19.在数轴上到-3的距离为4个单位长度的点表示的数是___.20.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.21.已知222x y -+的值是 5,则 22x y -的值为________. 22.多项式234ab ab -的次数是______.23.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.24.下列各数:3.141592、1.010010001、..4.21、π、813中,无理数有_______个25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.化简:(1)-3x +2y +5x -7y ; (2)2(x 2-2x )-(2x 2+3x ).27.如图,∠AOB 是平角,OD 是∠AOC 的角平分线,∠COE =∠BOE . (1)若∠AOC = 50°,则∠DOE = °;(2)若∠AOC = 50°,则图中与∠COD 互补的角为 ;(3)当∠AOC 的大小发生改变时,∠DOE 的大小是否发生改变?为什么?28.(探索新知)如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.29.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天30.列方程解应用题:《弟子规》的初中读本的主页共计96页。
最新苏教版七年级数学上册期末试卷(共4套)(含答案)
最新苏教版七年级数学上册期末试卷(共4套)(含答案)最新苏教版七年级数学上册期末试卷(Ⅰ)一、选择题(每小题3分,共36分)1、在下图的四个图形中,不能由左边的图形经过旋转或平移得到的是()。
2、在-(-8),(-1)/4,22π,-3,-53/2中,负有理数共有()个。
3、a、b两数在数轴上位置如图所示,将a、b、-a、-b用“<”连接,其中正确的是()。
4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为亿元,亿元用科学记数法表示为(保留三个有效数字)()。
5、下列结论中,正确的是()。
6、在解方程x-1/2x+3/23=1时,去分母正确的是()。
7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()。
8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x只羊,则下列方程正确的是()。
9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
一列火车以每小时120千米的速度迎开来,测得火车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒。
如果队伍长500米,那么火车长()。
10、下列图形中,不是正方体的展开图的是()。
11、自行车的轮胎安装在前轮上行驶6000公里后报废,安装在后轮上,只能行驶4000公里。
为了行驶尽可能多的路程,采取轮胎调换的方法,行驶一定路程后,用前后轮调换使用。
问安装在自行车上的这对轮胎最多可行驶多少公里?答案:4800公里12、已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB中点的个数有:①AP=BP;②BP=1/2AB;③AB=2AP;④AP+PB=AB。
答案:2个(②和③)13、当x=1时,代数式ax^3+bx+1的值为2012.则当x=-1时,代数式ax^3+bx+1的值为_______。
苏教版七年级上册语文期末考试卷及答案
一、选择题(每题2分,共20分)1. 下列词语中,字形、字音完全正确的一项是()A. 调和(tiáo hé)调和(tiáo hé)调和(tiáo hé)B. 奔腾(bēn téng)奔腾(bēn téng)奔腾(bēn téng)C. 翻滚(fān gǔn)翻滚(fān gǔn)翻滚(fān gǔn)D. 沉默(chén mò)沉默(chén mò)沉默(chén mò)2. 下列句子中,没有语病的一项是()A. 他的成绩提高了,但是老师还是不满意。
B. 随着科技的发展,我们的生活水平越来越高。
C. 他一边唱歌,一边跳舞,观众们为他鼓掌。
D. 为了保护环境,我们应该节约用水、用电。
3. 下列词语中,与“教育”意思相近的一项是()A. 培养B. 指导C. 指挥D. 指点4. 下列句子中,使用了比喻修辞手法的一项是()A. 这本书像一块磁铁,吸引了我。
B. 那个男孩像一只猴子,跳来跳去。
C. 她的笑容像阳光一样温暖。
D. 那条河像一条银带。
5. 下列词语中,与“骄傲”意思相反的一项是()A. 自卑B. 自信C. 谦虚D. 傲慢6. 下列句子中,使用了排比修辞手法的一项是()A. 春天来了,万物复苏。
B. 这本书让我明白了什么是坚持,什么是努力,什么是奋斗。
C. 小明喜欢画画,喜欢音乐,喜欢运动。
D. 那座山高高的,绿绿的,远远的。
7. 下列词语中,与“友谊”意思相近的一项是()A. 友爱B. 友情C. 友善D. 友好8. 下列句子中,使用了拟人修辞手法的一项是()A. 那朵花在微风中轻轻摇曳。
B. 这本书就像一个好朋友,陪伴我度过了许多寂寞的时光。
C. 那只鸟在枝头欢快地唱歌。
D. 那条河在阳光下闪闪发光。
9. 下列句子中,没有使用夸张修辞手法的一项是()A. 那个湖就像一面镜子,倒映着天空的美丽。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --2.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-3.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 4.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( ) A .c >0,a <0 B .c <0,b >0 C .c >0,b <0 D .b =05.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .3 6.下列四个数中,最小的数是()A .5B .0C .1-D .4-7.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元B .145元C .150元D .160元8.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .9.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×10610.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .11.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3 B .3 C .-2 D .2 12.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4 B .4C .﹣8D .813.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-14.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m15.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -二、填空题16.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.17.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.18.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.19.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)20.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同. 年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级 17 6 8 八年级 14.5 57九年级12.5则九年级科技小组活动的次数是_____.21.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.若单项式42m a b 与22n ab -是同类项,则m n -=_______.24.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________;(2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由.27.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来; (2)该几何体的表面积(含下底面)为________.28.画出如图所示物体的主视图、左视图、俯视图.29.已知:点A 、B 在数轴上表示的数分别是a 、b ,线段AB 的中点P 表示的数为m .请你结合所给数轴,解答下列各题:(1)填表:a 1- 1-2.5▲b13▲2-m▲▲4 4-(2)用含a 、b 的代数式表示m ,则m =___________. (3)当2021a =,2020m =时,求b 的值.30.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形; (2)若30AOB ∠=︒,求出COD ∠的度数.31.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯32.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0-300(含)a3第二阶梯300-600(含)0.5a+ 3.5第三阶梯600以上 1.5a+5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?33.如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版国标本初中一年级语文下册期末测试题第一部分积累与运用 (共23分)1、依据拼音写出恰当的汉字:(2分)①(bènɡ) 发②(ɡōu) 火③和 (xù) ④萧 (sè)2、给词语中加点字写出拼音:(3分)①机杼.( ) ②称.职( ) ③假寐.( )④卷帙.( ) ⑤瀚.海( ) ⑥佞.臣( )3、下列句子中加点的成语里各有一个错别字.......,请找出并在括号内订正:(3分)①“正确答案只有一个”这种思维模式,在我们头脑中已不知不觉地根深地...固.。
( )②皇帝心里想:“我们也没有看见!这可害人听闻....了……”。
( )③一旦产生小的灵感,相信它的价值,并契而不舍....地把它发展下去()4、根据下面这句话的意思选择出一个成语,并用这个成语造一个句子:(3分)长久地坚持下去。
①这个成语是: (孜孜不倦,持之以恒,一劳永逸)。
②造句:5、默写:(5分)①海日生残夜,。
(王湾《次北固山下》)②晴空一鹤排云上,。
(刘禹锡《秋词》)③子曰:“学而不思则罔,。
” (《论语·八则》)④东临碣石,以观沧海。
水何澹澹,。
树木丛生,。
(曹操《观沧海》)6、下面句子中加点的词语运用不当....,请根据语境进行修改。
(2分)小李是位很大方的同学,我们第一次见面,他就肆无忌惮....地跟我谈心。
不过,他有时也很顽固..,不肯虚心接受朋友的正确意见。
改正:7、某一天,你的同桌做数学作业时,碰到了难题不会做,想拿你的作业本“参考”一下。
此时你该如何婉转拒绝他的要求呢?请把你要对他说的话写在下面:(60个字以内)(5分)第二部分阅读 (共57分)(一)阅读《梵天寺木塔》一文,完成8—11题。
(计14分)钱氏据两浙时,于杭州梵天寺建一木塔,方两三级,钱帅登之,患其塔动。
匠师云:“未布瓦,上轻,故如此。
”乃以瓦布之,而动如初。
无可奈何,密使其妻见喻皓之妻,贻以金钗,问塔动之因。
皓笑曰:“此易耳,但逐层布板讫,便实钉之,则不动矣。
”匠师如其言,塔遂定。
盖钉板上下弥束,六幕相联如胠箧,人履其板,六幕相持,自不能动。
人皆伏其精练。
8、解释下列文言句子中加点词的意思:(4分)①方.两三级,( ) ②患.其塔动。
( )③但.逐层布板讫。
( ) ④人皆伏.其精练。
( )9、用现代汉语说出下列各句话的意思。
(4分)①密使其妻见喻皓之妻,贻以金钗。
②匠师如其言,塔遂定。
10、下列文言句子中加点的“于”字,在意思上....与例句中加点的“于”字相同的一项是( )(3分)例句:于.杭州梵天寺建一木塔。
A、其剑自舟中坠于.水,B、于.土墙凹凸处,花台小草丛杂处,C、学而不厌,诲人不倦,何有于.我哉!D、至于.夏水襄陵,沿溯阻绝。
11、文中写匠师“密使其妻”,又对喻皓之妻“贻以金钗”,这位匠师为什么要这样做?表现出这位匠师怎样的心态?(3分)简答:(二)阅读《捧着空花盆的孩子》一文,完成12—15题。
(计16分)捧着空花盆的孩子很久很久以前,在一个国家,有一个贤明的而受人爱戴的国王。
但是,他的年纪已很大了,而且年迈的国王没有一个孩子。
这件心事,使他很伤脑筋。
有一天,国王想出了一个办法。
他吩咐发给每个孩子一些花种子,并宣布:“如果谁能用这些种子培育出最美丽的花朵,那么,那个孩子便是我的继承人。
”所有的孩子都种下了那些花种子,他们从早到晚,浇水、施肥、松土,护理得非常精心。
有个名叫雄日的男孩,他也整天用心培育花种,但是,十天过去了,半月过去了,一月过去了……花盆里的种子依然如故,不见发芽。
“真奇怪!”雄日有些纳闷。
最后,他去问他的母亲:“妈妈,为什么我种的花不出芽呢?”母亲同样为此事操心,她说:“你把花盆里的土换一换,看行不行。
”雄日依照妈妈的意见,在新的土壤里播下了种子,但是它们仍然不发芽。
国王决定观花的日子来到了。
无数个穿着漂亮的孩子涌上街头,他们各自捧着盛开着鲜花的花盆,每个人都想成为继承王位的王子。
但是,不知为什么,当国王环视花朵,从一个个孩子面前走过去时,他的脸上没有一丝高兴的影子。
忽然,在一个店铺旁,国王看见了正在流泪的雄日,这个孩子端着空花盆站在那里。
国王把他叫到自己的跟前,问道:“你为什么端着空花盆呢?”雄日抽咽着,他把他如何种花,但花种又长期不萌芽的经过告诉给国王,并说,这可能是报应,因为他在别人的果园里偷摘过一个苹果。
国王听了雄日的回答,高兴地拉着他的双手,大声地说:“这就是我的忠实的儿子。
”“为什么您选择了一个端着空花盆的孩子做接班人呢?”孩子们问国王。
于是,国王说:“孩子们,我发给你们的花种子都是煮熟了的。
”12、雄日这个孩子整天用心培育国王发给的花种子,又按照母亲的指点更换了土壤,可是这些花的种子仍然不发芽。
其原因是:“”(用文中语句填写)。
然而,其他的小孩都能把国王发给的花种子培育出盛开着的鲜花,其原因又是(请根据文意合理地想象出)(4分)13、与安徒生写的《皇帝的新装》一文相比较,这两个国王的思想性格明显不同。
《皇帝的新装》中那位国王的思想性格是;而本文中这位国王的思想性格是。
(4分)14、“当国王环视花朵,从一个个孩子面前走过去时,他的脸上没有一丝高兴的影子。
”你能从国王的脸上“没有一丝高兴的影子”猜想出国王当时的心理活动吗?( 4分)简答:15、国王开始说“要选培育出最美丽的花朵”的孩子做他的继承人,但最终为什么却选择了“端着空花盆的孩子做接班人”?(4分)简答:(三)阅读《早春之恋》一文,完成16—20题。
(计27分)早春之恋(1)在残冬的余威中,早春细微的信息已从很不起眼的角落里渗露出来。
春天最初的脚步,轻盈地踏过冬日的叹息,向世人展示先行的姿态和渐进发展的决心。
(2)温湿的小南风,刚刚突破严冬的防线,便像涓涓细流一般向冰冻的土地温溢。
大地渐渐暖和并苏醒,丝丝温馨湿润的水气从泥土的毛孔中蒸发弥散出来,宛如绵延不尽的袅袅炊烟,昭示着生命的存在与勃发。
高山上的皑皑积雪,在凛冽的冬天里出尽了风头,而春风在她的胳肢窝只温柔地一抓一挠,她便再也不能严肃不能正经,忍俊不禁地噗嗤一笑,霜冷的脸融化成粉红的花面,澌澌然地从山顶到山麓,再到村落,再淙淙地流入溪河湖海,醉心于横跨千里的春天的旅程。
春雨细细地蒙蒙地飘洒,像冰凉的薄翼一般的纱巾,盖在人们的脸上和身上,迷离了极目远跳的视线。
早春的雨,从不刻意地张扬,也不赤裸地显露。
她像一个温文尔雅盈盈细步的小家碧玉,悄无声息地做着自己的份内之事。
在这样的时节夜卧听雨,滴滴答答絮絮密密的天簌之声,将会洇湿无数浪漫的关于早春的梦境。
早春的梦,其实就是封闭已久的窗户被猛地推开,沉寂麻木的心灵迎着清新的空气自由地放飞;就是新孵的蝴蝶飞飞停停翩跹起舞,撩起红男绿女们郊游远足的浓浓兴致;就是在湖畔溪边浣纱的江南女子,纤纤的素手触摸到温温的水流的血脉,粉红的脸颊上荡漾的那份惊喜。
早春就是这样,总在人们不经意的时候,悄悄地挪移和靠近,洋溢着生命萌动的灵气。
(3)广袤的原野上,早春的景致新鲜而纯粹,充满生命成长的欲望。
早春尚不是百花竞艳百鸟鸣啭的时节,早春的标志模糊而暖昧,浅浅淡淡的草色,总让人们轻易地忽略她那轻盈而神秘的脚步,忽略那刚刚萌发的、若有若无的春意。
放眼远望,野草已经始发,但还没有完全显绿,猛地一看,依然是冬天的枯色。
粗心大意的人,也许就这样放弃了探春的努力,在早春已经来临的时候,仍然怀着沉重的冬天的心情。
对于早春的虔诚的恋者,却不会因为冬天设置的迷障,而错失一睹为快的赏心悦目的感受。
春风乍起的时候,他们必定会应和季节的脉搏,扑进大自然的怀抱。
这时是否能看到野草所渗透出来的绿色。
早春望草,须有一种望草的心情和敏锐的感觉。
古诗云“草色遥看近却无”,与其说古人“看见”草色,不如说古人以一种观赏的姿态感知到了野草生机始发的势头。
这种若有若无却漫山遍野的绿意,这种看似柔弱其实咄咄逼人的气势,让人们看到了早春的活力,从而对一年的生活充满希望。
(4)春天是四季的发轫(轫rèn,发轫:比喻新事物或某种局面开始出现 ),而早春则是一段最宝贵最美好时光的起点。
早春时节,播下希望的种子,那么在开花结果的时候,我们一定会得到丰厚的回报。
16、第(3)段中,作者引用了古诗“草色遥看近却无”,这是唐代韩愈《早春呈水部张十八员外》中的诗句,请你写出这首诗的后两句:“,”。
本文作者引用韩愈的诗句,突出了春草具有“”的特点。
而朱自清在《春》中写出了春草的特点却是“”。
(4分)17、第(2)段中,有两句话描写出春雨“温柔”的特点,这两句话是:“”。
而朱自清在《春》中描写了春雨“细密”的特点,其句子是:“。
”(4分)18、与朱自清的《春》相比较,本文少描写了哪两幅春景图?但是,本文作者已从春风、春雨、春草图中体味出生命成长的活力,在本文第(1)—(3)段中哪些语句能直接表达出这种活力?(写出3处的句子即可)(6分)简答:①少描写的两幅春景图:②直接表达这种活力的句子:19、本文语言优美生动,多处运用了比喻、拟人的修辞手法来描写春风、春雨、春草的景致。
请你从文中任选一个比喻句或拟人句进行赏析,写出你的理解。
(赏析得见解独到、语句流畅,可获奖励2分)(5分)简答:20、作者在文末写道:“早春时节,播下希望的种子,那么在开花结果的时候,我们一定会得到丰厚的回报。
”读了这段话,你定会产生感想。
请你联系我们初一学生的学习实际,谈一点自己的体会。
(限100字)(8分)第三部分作文 (共40分)21、进入初中,已近半年了,与同学们朝夕相处这么长时间,你一定了解到本班同学中一些不为众人所知的事情。
请你从中选取一件有意义且有趣味的事情,用小故事的形式把它写出来。
要求:①看谁编写的小故事最能吸引人、打动人。
②600字左右。
附:本卷参考答案第一部分积累与运用(共23分)1、①迸②篝③煦④瑟2、①zhù②chèn ③mèi④zhì⑤hàn ⑥nìng 3、①地→蒂②害→骇③契→锲4、持之以恒(1分),造句(略),只要该成语运用恰当,句子通顺,就算对,给2分。
5、①江春入旧年②便引诗情到碧霄③思而不学则殆④山岛竦峙百草丰茂6、将“肆无忌惮”改为“毫无拘束”;将“顽固”改为“固执”。
(改对一个给1分)7、略(这是一道开放性试题,答案可多元。
只要能紧扣语境规定的要求来答,写出“婉转拒绝”同桌抄袭现成数学作业的请求,语句通顺,就算对。
内容大意3分,语言表达2分)第二部分阅读(共57分)㈠8、①才②嫌,担心③只④通“服”,佩服9、①(匠师)就秘密地派他的妻子去见喻皓的妻子,拿金钗送给她。
②工匠师傅遵照他的话去办,塔身就稳定了。
10、B 11、第一问:面对“塔动如初”的问题,匠师为了不失面子,才这样做。