城市轨道交通CBTC信号系统开通运营前置条件分析
遵循互联互通标准的CBTC 信号系统建设方案(一)
遵循互联互通标准的CBTC 信号系统建设方案一、实施背景随着中国城市轨道交通的快速发展,对于信号系统的要求也越来越高。
传统的信号系统由于设备复杂、维护成本高、不易升级等问题,已经不能满足现代轨道交通的运行需求。
因此,遵循互联互通标准的CBTC(Communication-Based Train Control)信号系统建设方案应运而生。
二、工作原理CBTC信号系统基于无线通信技术,通过车-地双向通信,实现列车与地面设备间的信息交换。
它利用先进的计算机技术、通信技术、控制技术,对列车运行进行实时监控和调整,提高列车运行效率,保障行车安全。
三、实施计划步骤1.需求分析:对城市轨道交通的运营需求进行详细分析,确定CBTC信号系统的功能要求和技术标准。
2.系统设计:根据需求分析结果,设计CBTC信号系统的架构,包括硬件和软件部分。
3.设备采购与安装:按照系统设计要求,采购并安装所需的设备,包括列车控制设备、无线通信设备、轨旁设备等。
4.系统集成与调试:将各个设备集成到CBTC信号系统中,进行系统调试,确保系统的稳定性和可靠性。
5.试运行与评估:在部分线路进行试运行,对CBTC信号系统进行评估,收集反馈意见,进行优化改进。
6.全面推广:经过试运行和评估后,对CBTC信号系统进行全面推广,替换原有的信号系统。
四、适用范围本方案适用于城市轨道交通、城际铁路、有轨电车等公共交通领域。
尤其适用于线路长、车站多、运行间隔小、实时性要求高的场景。
五、创新要点1.遵循互联互通标准:本方案遵循国际通用的互联互通标准,使得不同厂商的设备可以相互兼容,降低了系统集成的难度。
2.车-地双向通信:采用车-地双向无线通信技术,实现列车与地面设备间的实时信息交换,提高了列车运行效率。
3.智能监控与调整:利用先进的计算机技术和控制技术,实现列车运行状态的实时监控和调整,提高了行车安全性和舒适性。
4.节能环保:采用高效的能源管理策略,降低设备能耗,同时采用环保材料和工艺制造设备,降低了对环境的影响。
地铁CBTC系统信号系统分析与故障
地铁CBTC系统信号系统分析与故障1. 引言1.1 介绍地铁CBTC系统信号系统分析与故障地铁CBTC系统信号系统是一种先进的列车控制系统,它采用了计算机技术和无线通信技术,实现了列车之间的实时通信和自动调度。
CBTC系统的信号系统是系统中的关键部分,它负责向列车发送信号和指令,以确保列车能够安全、高效地运行。
对于CBTC系统信号系统的分析和故障排查显得尤为重要。
在实际运行中,CBTC系统信号系统可能会出现各种故障,例如信号传输中断、信号误码等。
为了及时排除这些故障,需要对CBTC系统信号系统进行分析,并采取相应的维修措施。
通过对故障案例的分析,可以总结出一些常见的故障原因和解决方法,为系统的维护和优化提供参考。
本文将重点介绍地铁CBTC系统信号系统的原理、分析方法、故障排查技术,以及相关的案例分析和维护优化策略。
通过对这些内容的深入探讨,可以更好地理解CBTC系统信号系统的重要性,同时也可以为今后地铁CBTC系统信号系统的发展提出建设性建议。
2. 正文2.1 CBTC系统原理CBTC系统通过无线通信技术实现列车与地面控制中心之间的实时数据传输。
列车上搭载有装有通信设备的车载控制器,地面控制中心通过无线信号与车载控制器进行数据交换,实现列车位置、速度等信息的传输。
CBTC系统通过计算机技术实现列车的实时监控和控制。
地面控制中心通过计算机系统对列车所传输的数据进行处理和分析,然后下达相应的指令控制列车的运行,包括限速、停车等操作。
CBTC系统还包括了车载信号系统和地面轨道侧信号系统的配合工作。
车载信号系统通过车载控制器对列车进行控制,地面轨道侧信号系统则通过信号灯等装置向列车发送控制指令,实现列车的安全运行。
CBTC系统原理是通过无线通信技术和计算机技术实现列车运行的实时监控和控制,保障列车运行的安全和高效。
CBTC系统的原理为地铁运行提供了技术支持,是地铁运行的重要保障之一。
2.2 CBTC系统信号系统分析CBTC系统信号系统分析主要是对地铁CBTC系统中信号系统的功能、结构、性能等进行系统的分析和研究。
地铁CBTC信号系统设计分析
地铁CBTC信号系统设计分析丁文君【期刊名称】《《无线互联科技》》【年(卷),期】2019(016)020【总页数】2页(P15-16)【关键词】列车控制信号系统; 移动闭塞; 分时长期演进技术; 信号干扰【作者】丁文君【作者单位】陕西交通职业技术学院陕西西安 710018【正文语种】中文1 CBTC系统的基本构成基于通信的列车控制系统(Communication-Based Train Control,CBTC)源于欧洲连续式列车控制系统,随着计算机、无线通信和自动化控制技术的发展,该系统在技术和应用上得到突破性的发展,并成为国内外城市轨道交通的神经中枢,是确保地铁车辆安全运行的应用支撑。
CBTC系统与轨道电路相互独立,通常采用基于802.11系列协议的无线局域网(Wireless Local Area Networks,WLAN)组网,进行车地的双向、连续、大容量数据通信,该种通信方式具有可移动、成本低、易于部署等特点,便于实现移动闭塞。
整体而言CBTC系统由地面设备和车载设备两大模块构成,且两者可以通过数据通信网络进行车地的双向通信,以此构成整个系统的主体功能框架。
系统中配设了自动列车监控系统(Automatic Train System,ATS),可用于监控列车运行、信号设备等情况,管理运行图、排列进路。
在CBTC系统中还设置了计算机联锁子系统,利用专门的控制软件对车站信号、进路、道岔之间的联锁关系进行处理,并可自动采集、处理相关信号,将地铁车站运行中的操控指令和信息输入计算机,根据内置的计算条件便可实现对联锁关系的逻辑运算和判定,而后,可根据计算结果输出,指令执行设备和机构完成对列车运行的监控。
2 CBTC系统的移动闭塞技术的模式分类CBTC系统可基于车地双向通信,通过连续检测先行列车的位置和速度,实现移动闭塞,其应用设计原理是后续列车以前行列车尾部为追踪目标点,在最小安全追踪间隔距离下,实现安全运行。
城市轨道交通CBTC系统可靠性分析与评价
城市轨道交通CBTC系统可靠性分析与评价城市轨道交通CBTC系统可靠性分析与评价一、背景介绍城市轨道交通是现代城市的重要交通工具,而CBTC (Communication-Based Train Control)系统作为一种先进的轨道交通信号控制系统,具有更高的效率和安全性。
因此,对CBTC系统的可靠性进行分析与评价,对于保障城市轨道交通运行的安全和顺畅具有重要意义。
二、CBTC系统可靠性分析方法1. 故障模式与影响分析(Failure Mode and Effects Analysis, FMEA):通过识别CBTC系统可能出现的故障模式及其影响,从而评估系统的可靠性。
2. 可靠性块图分析(Reliability Block Diagram, RBD):根据CBTC系统的物理结构和功能,绘制可靠性块图,通过计算各个功能模块的可靠性指标,评估系统整体的可靠性。
3. 事件树分析(Event Tree Analysis, ETA):对CBTC系统各种故障事件进行建模和分析,根据故障事件发生的概率和影响,评估系统的可靠性。
三、CBTC系统可靠性评价指标1. 平均无故障时间(Mean Time Between Failures, MTBF):指CBTC系统连续运行的平均时间,即系统在正常运行状态中没有发生故障的平均时间。
2. 故障频率(Failure Rate):指CBTC系统在一定时间内发生故障的频率,通常以每小时发生的故障次数表示。
3. 故障恢复时间(Mean Time to Repair, MTTR):指CBTC系统从发生故障到修复完毕的平均时间。
四、CBTC系统可靠性评价案例分析以某城市A地铁线的CBTC系统为例进行可靠性评价。
首先,进行故障模式与影响分析,识别系统可能的故障模式。
然后,绘制CBTC系统的可靠性块图,计算各个功能模块的可靠性指标。
最后,通过事件树分析,建立CBTC系统故障事件的概率模型,从而评估系统的整体可靠性。
城市轨道交通CBTC系统浅析
234学术论丛城市轨道交通CBTC系统浅析牛佳璐北京交通大学海滨学院摘要:随着城市轨道交通的迅速发展,成为居民出行的重要工具。
城市轨道交通系统能够安全快捷的输送乘客,他的这种能力与信号系统关系密切,城市轨道交通信号系统主要的基础是速度控制,本文主要探究的是在城市轨道交通中基于通信的列车运行控制系统(CTBC),在这个系统上进行城市轨道交通信号施工的要点以及防护的具体措施。
关键词:城市轨道交通;基于通信的列车运行控制系统(CTBC)1 引言从90年代到今天,我国的城市轨道交通建设进入了一个快车道。
随着计算机技术以及信息控制技术的快速发展,大批量的高科技引入列车运行的控制系统,对于传统的控制系统提出了挑战,现在一般利用计算机通信技术来代替轨道电路技术,这样构成了新兴的列车控制的技术。
这种新兴的计算机列车控制技术基于通信的列车运行控制系统,简称(CTBC)。
2 CTBC系统的概述CTBC系统是新兴的城市轨道交通系统的简称,这种系统比较安全和可靠。
这种系统由计算机的连锁系统以及闭塞式的列控系统和相关的自动监控系统。
CTBC系统是现代轨道系统的发展趋势,近几年来我国普遍采用的闭塞式模式,这种控制系统在中国的各大城市得到了广泛的应用,对于列车的连续检测和控制起到了积极的效果,同时对于原有的轨道电路也是一种实际的突破,突破了原有的闭塞分区所具有的局限性,相比于以前的技术有了巨大的提高。
3 CTBC系统的施工重点3.1 首先进行施工的调研在进行地铁控制系统的施工时,由于受到工程进度以及地铁内部装饰的影响,因此需要派专业的人员去进行施工前期的调查,这样可以有效的确定施工的顺序,是施工作业顺序确定的重要依据。
主要对于影响地铁控制系统施工的其他因素进行调查,比如说隧道系统和轨道系统等,对于其进行施工进度的调查,整个区域的照明情况以及空调设备情况也要调查明确。
3.2 如何进行设备的安装在进行地铁控制系统的测试时,必须要按照规定的操作规范进行安装和调试。
城市轨道交通CBTC系统关键技术探讨
城市轨道交通CBTC系统关键技术探讨随着计算机和通讯技术的飞速发展,自动控制技术也得以迅猛发展,广泛应用于城市轨道交通行业。
为提高城市轨道交通的运营效率,人们研发出一种基于无线通信的列车自动控制系统,即CBTC系统。
文章主要就轨道交通CBTC系统关键技术进行了相关的分析,以供参考。
标签:城市轨道交通;CBTC系统关键技术;列车自动驾驶子系统(ATO)目前我国城市轨道交通运行速度和运行密度的不断提高,实现高水平列车自动驾驶的系统功能则成为CBTC信号系统的关键。
一、CBTC系统及其构成CBTC系统由ATS子系统、ATP、ATO子系统、联锁子系统、DCS子系统等构成,各子系统均采用模块化设计。
ATP子系统是保证行车安全、防止错误进路、防止列车进入前方列车占用区段和防止超速运行的设备。
ATP负责全部的列车运行保护,是列车安全运行的保障。
ATO即列车自动驾驶,它代替司机操纵列车驱动、制动设备,自动实现列车的启动、加速、匀速惰性、制动等驾驶功能。
在ATP系统的基础上安装了ATO系统,列车就可以采用手动方式或自动方式行驶。
ATS在ATP和ATO系统的支持下,根据运行时刻表完成对列车运行的自动监控,可自动或由人工监督和控制正线(车辆段、试车线除外),及向调度员和外部系统提供信息。
DCS数据通信系统的主要作用是在各个子系统之间传输ATC 报文。
(一)CBTC技术组成CBTC 技术包括:⑴无线通信技术,⑵移动闭塞技术,⑶列车定位技术。
由于CBTC 是基于无线通信的列车控制系统,自然离不开通信技术的支持。
无线通信的种类很多,常见的有基于OFDM(正交频分复用技术)通信、扩展频谱通信、跳频技术、WLAN(无线局域网)技术。
移动闭塞是实现CBTC的关键技术之一,CBTC是这种闭塞方式的应用系统。
它与固定闭塞相比,其最显著的特点是取消了以信号机分隔的固定闭塞区间。
列车在线路上运营的间隔距离由列车在线路上的实际位置和运行情况确定,闭塞区间随列车的形势,不断变化,故称为移动闭塞。
城市轨道交通CBTC系统相关知识培训
3.2.6 自动折返
根据需要,在现地控制工作站可将折返 站设置为自动折返模式或手动折返模式, 当折返站被设置为自动折返模式时自动办 理折入进路,在列车通过折入进路进入折 返轨后,自动办理折出进路。 存在双库线折返的折返站设置全自动折 返功能,以先进先出为办理原则,满足双 库线折返要求。
3.3 信号机
4.2 联锁机与ATP/ATO逻辑部接口
通过100M光LAN接口,将联锁机、 驱采机、ATP/ATO置于同一个LAN中。
4.3 联锁机与现地控制工作站的接口
通过RS422接口,与既有站相同。
4.4 与轨旁设备的接口
4.4.1 与信号机接口
(1)三灯位列车信号机 a)驱动继电器 信号继电器LXJ; 点灯继电器DDJ(用于区分CBTC模式和 后备模式点灯灭灯); 道岔直向继电器ZXJ; 引导信号继电器YXJ。 b)采集继电器 信号继电器LXJ; 点灯继电器DDJ; 灯丝继电器DJ、2DJ; 道岔直向继电器ZXJ; 引导信号继电器YXJ。
3.7.3 上电锁
CI系统初始化后,须锁闭管辖范围内的 道岔区段,经人工确认后在8分钟内办理上 电解锁,则道岔区段全部解锁,8分钟后需 逐段解锁,解锁后才能排列进路。
注:联锁对PSD(屏蔽门)、ESB(站 台紧急关闭按钮)的处理逻辑的接口部分 描述。
4.联锁系统接口
4.1 两联锁站间接口 4.1.1 站间透明
3.4 道岔
当道岔区段故障时,联锁可执行强转道 岔命令转换道岔。 后备模式下需对进路前方第一区段内的 道岔进行过走防护处理,并可通过人工选择 来将过走道岔锁闭在定位或反位。 控制电路与既有线交流多机牵引道岔相 同,SJ须提前DCJ或FCJ两秒吸起。
地铁CBTC系统信号系统分析与故障
地铁CBTC系统信号系统分析与故障我们将对 CBTC 系统的信号系统进行分析。
CBTC 系统主要由列车控制中心(TCC)、地面设备(Trackside Equipment)和列车设备(On-board Equipment)三部分组成。
列车控制中心(TCC)是 CBTC 系统的核心部分,负责控制列车的运行和监控整个地铁系统的运行状况。
TCC 通过无线通信系统与所有列车进行实时通信,实时掌握列车位置,调度车辆的运行。
地面设备主要包括信号机、轨道电路、无线通信装置等。
信号机负责向列车发送指令,控制列车的运行速度和停车位置,确保列车的安全运行。
轨道电路用于监控轨道上的列车位置,并向TCC发送实时信息。
无线通信装置负责和列车进行通信,保证列车设备和列车控制中心之间的信息交换。
接下来,我们将分析 CBTC 系统信号系统可能遇到的故障。
首先是TCC故障。
TCC出现故障会导致无法实时掌握列车位置和运行状态,进而会影响到列车的调度和运行。
其次是地面设备故障。
如果信号机、轨道电路或无线通信装置出现故障,可能会导致列车无法及时收到指令,影响列车的运行安全。
再次是列车设备故障。
如果车载信号装置或车载通信装置出现故障,列车将无法及时响应地面设备的指令,可能会造成列车的失控或者停车故障。
除了应对CBTC系统信号系统可能遇到的故障外,我们还需要做好CBTC系统的预防和维护工作。
首先需要对 CBTC 系统进行定期的检修和维护,保证各个部件的正常运行。
其次是加强对 CBTC 系统的监控,建立完善的监控系统,及时发现 CBTC 系统可能存在的问题,做好预防措施。
还需要做好故障处理的培训和应急预案的制定,提高人员对 CBTC 系统故障处理的能力和技术水平。
城市轨道交通CBTC信号系统分析
城市轨道交通CBTC信号系统分析发表时间:2018-09-29T18:55:01.117Z 来源:《防护工程》2018年第16期作者:李昂[导读] 城市轨道交通工程是城市中的专业性、单位性的系统工程,同时也是一个城市展现其面貌的途径成都地铁运营有限公司四川成都 610000 摘要:城市轨道交通工程是城市中的专业性、单位性的系统工程,同时也是一个城市展现其面貌的途径。
一般情况下,城市轨道交通的工程设计、项目的成本以及涉及系统设备的可靠性、可用性等各方面都需要经过慎重的研究和论证;信号系统工程作为其中涉及运营安全相关的系统工程,便成为整个轨道交通建设过程中的重要组成部分,因为信号系统工程的接口(含内部接口和外部接口)较多且复杂,故加强信号系统工程接口方面的管理,实现信号系统工程与其他系统工程的“无缝”连接,将会为城市轨道交通的建设、运营安全,成为优秀的城市交通工具打下坚实的基础。
在本篇文章中,笔者通过对城市轨道交通信号控制系统方面的阐述和分析发展趋势,来去对城市轨道交通CBTC信号系统进行分析。
关键词:城市轨道;交通信号;控制系统1 城市轨道建设工程信号系统的工程概况我国大多数普速铁路的闭塞方式是固定闭塞,而移动闭塞更多地应用于高铁、地铁和轻轨。
随着通信技术的应用,采用开放空间无线方式是车地通信的发展方向。
目前城市轨道交通中最常用的信号系统为两大类:准移动闭塞和移动闭塞信号系统。
两者都是基于传统的电气集中联锁控制技术发展而成,区别在于后者在外部传输媒介上采用的是无线通信技术。
CBTC系统得益于计算机技术和通信方式的发展,信号的概念已经改变:从被动反应到主动检测,从轨旁设备控制到列车自我控制,车地通信具备了思考和对话的能力。
城市轨道交通工程信号系统主要通过列车自动控制子系统(automatic control systems,ATC)实现对列车的自动控制,该自动控制系统又分为三个组成部分:列车自动监测系统(automatic test system,ATS)、列车自动防护系统(automatic test programm,ATP)和列车自动驾驶系统(automatic test operating,ATO),该控制系统能够有效地、实时地监控(监视和控制)列车的运行情况。
城市轨道交通CBTC信号系统开通运营前置条件分析
城市轨道交通CBTC信号系统开通运营前置条件分析李法刚 (北京现代通号工程咨询有限公司,北京 100166 ) 〔摘要〕:在城市轨道交通CBTC信号系统设备安装阶段完成后,通过“单项设备、子系统设备、系统设备”等不同层级的设备软、硬件测试、调试与试验过程,以及通过“模拟实验、综合试验、144小时不间断系统稳定性试验、空载试运行试验、载客试运行试验”等一系列不同阶段的系统功能测试、试验与调试工作,以验证从系统单项设备本身性能指标的符合性到实际运营环境下系统整体功能指标的稳定与可靠程度以及与设计要求的符合程度,最终判定系统是否能够按照既定功能安全可靠地投入运营。
〔关键词〕:单项设备测试、调试、试验;子系统设备功能试验;综合联调;安全认证与评估;空载试运营;载客试运营;软件的测试、试验与验收;员工培训;正式运营前的其他准备工作。
1引言在我国轨道交通建设领域,随着轨道交通运行控制技术的快速发展,基于通信技术的CBTC列车运行控制系统因其具备安全可靠性高、运输效率高、运营组织与控制自动化程度高以及较佳的系统稳定性和可维护性等一系列突出优点,已获得越来越广泛的认可和推广应用。
在具体项目的建设过程中,如何保证系统工程从施工安装阶段平稳过渡到安全可靠地投入正式运营并逐步实现其应有功能,也越来越成为广大建设者和运营管理者高度关注的一项工作。
本文从系统工程完成施工安装、开始系统试验至正式投产前的运营准备阶段需要完成并获得系统性评估、验证的一系列测试、调试、试验工作过程,以及运营组织方面需要做好的其他准备工作,浅析城市轨道交通CBTC信号系统投入正式运营前需要具备的基本前置条件。
2系统测试、试验、调试、试运行及验收2.1系统调试与试验2.1.1 单项设备的调试与试验单项设备的试验包括单项设备的安装验收试验和调试验收试验,其试验内容包括:◆安装验收试验,以验证单项设备本身的电气性能指标和安装工艺标准的符合性;◆调试验收试验,以验证单项设备所具备的基本功能满足要求的程度。
地铁CBTC系统信号系统分析与故障
地铁CBTC系统信号系统分析与故障首先,CBTC系统的信号系统由多个子系统组成,如进路控制系统、列车控制系统、信号设备系统和轨道电场检测系统等。
其中,进路控制系统是最重要的子系统之一,它负责控制车辆的行驶速度和位置,以保证行车安全。
在CBTC系统中,进路控制系统通过给定的进路号、速度限制和位置指令来控制车辆的行驶。
进路号是指车辆行驶的进路区段,速度限制是指车辆的最大行驶速度,位置指令是指车辆的具体位置和方向。
如果进路控制系统出现故障,则车辆无法正常行驶,这将直接影响系统的正常运行。
例如,当车辆接近信号点时,进路控制系统将发送指令给车辆,要求其停车等待。
如果信号系统故障,指令无法正常发送给车辆,车辆将无法及时停车,从而导致事故发生。
因此,CBTC系统的信号系统故障需要及时排除。
其次,CBTC系统的信号系统故障原因可以分为硬件故障、软件故障和通信故障三种类型。
硬件故障主要包括设备故障、连接器松动、线路故障和保护电路故障等。
软件故障则包括程序错误、配置错误和接口错误等。
通信故障则包括网络故障和信号干扰等。
针对CBTC系统的信号系统故障,可以采用以下解决方法。
首先,当出现故障时,应该及时排查故障原因,并根据故障类型采取相应的解决方法。
例如,在硬件故障时,需要检查设备状态并更换故障设备或修复线路;在软件故障时,需要对CBTC系统进行重新配置或者升级;在通信故障时,需要检查网络状态并修复通讯设备。
其次,为了确保CBTC系统的正常运行,需要对信号系统进行定期维护和检查。
例如,可以每年对CBTC系统进行一次全面检查,包括设备状态、联锁系统、接口状态和网络通信等。
在检查过程中,必须及时发现并解决问题,以保证系统的可靠性和安全性。
总之,CBTC系统的信号系统是地铁信号控制系统的重要组成部分,它对地铁系统的安全性、效率性和可靠性都有着重要的影响。
因此,必须对CBTC系统的信号系统进行精细管理和维护,及时排查故障并进行解决,为地铁公司提供良好的服务质量和安全保障。
城市轨道交通CBTC系统关键技术探讨
城市轨道交通CBTC系统关键技术探讨一、CBTC系统概念及特点CBTC系统的主要特点包括以下几个方面:1. 实时性强:CBTC系统通过无线通信技术实时传输列车位置、速度、跟随间距等信息,使得列车之间的运行更加协调和安全。
2. 灵活性高:CBTC系统采用分布式控制方式,灵活的运行管理模式使得列车运行更加灵活和高效,能够应对复杂的运行情况。
3. 安全性强:CBTC系统通过实时监测列车位置和速度,对列车进行全程跟踪和监控,可以实时调整列车运行速度和跟随间距,提高列车运行安全性。
4. 可扩展性强:CBTC系统能够方便地扩展和升级,可以根据城市轨道交通系统的发展需求进行相应的调整和优化。
二、CBTC系统的工作原理CBTC系统通过无线通信技术实现列车之间、列车与信号系统之间的实时信息传输和互动控制。
其工作原理主要包括以下几个方面:1. 列车位置和速度检测:CBTC系统通过安装在列车上的位置传感器和速度传感器实时监测列车的位置和速度,将监测数据通过无线通信传输到控制中心。
2. 控制指令发送:控制中心根据接收到的列车位置和速度数据,通过无线通信向列车发送相应的控制指令,包括调整列车速度、保持安全跟随间距等。
4. 紧急处理和故障排除:CBTC系统能够实时监测列车的运行情况,一旦发现异常情况,能够及时采取紧急处理措施,保证列车运行的安全和稳定。
三、CBTC系统关键技术探讨1. 无线通信技术:CBTC系统依赖于无线通信技术实现列车之间、列车与控制中心之间的实时信息传输,而且要求通信信号稳定、可靠、实时性强。
如何选择适合的无线通信技术成为CBTC系统关键技术之一。
3. 实时数据处理技术:CBTC系统需要对接收到的列车位置、速度等数据进行实时处理,并根据处理结果发送相应的控制指令,因此需要具备高效的实时数据处理技术。
4. 故障诊断和排除技术:CBTC系统需要具备自我诊断和故障排除能力,一旦出现故障情况能够通过系统自身进行诊断和排除,保证系统的稳定和安全。
解析城市轨道交通CBTC信号系统互联互通设计
解析城市轨道交通CBTC信号系统互联互通设计作者:钟恒来源:《科技资讯》2020年第14期摘; 要:CBTC信号系统,是数字化技术在城市建设中融合的具体表现形态。
随着国内城市交通产业发展规模逐步扩大,城市轨道交通CBTC信号系统规划结构创新实践方式也在不断提升。
为此,该文结合CBTC信号系统及特征,着重从程序宏观设计、CBTC信号系统关键技术等方面,分析城市轨道交通CBTC信号系统互联互通设计的要点,以达到明晰技术实践形式,促进城市建设与结构优化的目的。
关键词:城市轨道交通; CBTC信号系统; 互联互通1; CBTC信号系统及特征CBTC信号系统,是列車数字化控制程序,它主要是通过自动化程序监控与运行实现信息传输与规划。
按其结构组合要素,可将其分为承载控制器、计算机联锁、区域控制以及关键数据通信系统5个部分[1]。
从CBTC信号系统程序结构规划的基本情况而言,系统处理特征可归纳为:(1)信号结构应用相同限制管理条件,进行数据信息的统筹安排,为此,新创建的CBTC信号系统就体现出了最具代表的统一性特征;(2)新形成的信号处理系统,能够随时依据地区城市轨道结构设计需要,适当地进行生产控制条件的灵活调整,这是其多样性特征的表现形态;(3)CBTC信号系统运用了专业程序进行关键因素的统筹安排;(4)CBTC信号系统内设计了多层次的安全控制保障,它能够最大限度地保障程序结构运行的安全性。
为了将CBTC信号系统结构的优势发挥出来,就应综合对该技术的特征进行解析。
2; 解析城市轨道交通CBTC信号系统互联互通设计笔者将城市轨道交通CBTC信号系统互联互通设计要点归纳为以下几方面。
2.1 CBTC信号系统框架宏观把握城市轨道交通结构体系下包含了地铁、轻轨等多样化的交通形式。
为将城市轨道交通CBTC信号系统互联互通工作安排控制在最佳,首要环节是对CBTC信号系统宏观控制要点进行综合分析。
第一,城市轨道交通CBTC信号系统主要包括承载控制器、计算机联锁、区域控制以及关键数据通信系统5个部分,进行城市交通互联互通设计时,需要遵守信号传输体系的基本需求,合理进行信号框架结构的科学规划;第二,在CBTC信号系统运用时,应注重各类城市轨道交通结构之间的兼容和区别对待[2]。
城市轨道交通信号系统分段开通调试的探究
30Internet Technology互联网+技术一、引言现阶段,我国城市轨道交通包括了轻轨、地铁、城际线、有轨电车等,无论哪一种轨道交通,都要将安全性和运输有效性作为建设重点,这就需要由高技术含量的信号控制系统进行控制。
城市轨道交通建设复杂,建设工期长且造价高,为了尽快使工程投入运行并缓解市政压力,一些城市采取了分段建设的方式,而分段开通带来的城市轨道交通信号系统也需要进行分段开通调试。
在分段开通线路中,信号调试是一项艰巨、复杂、安全性要求高且非常重要的工作任务,因此,信号系统专业的分段开通调试技术对于整个城市轨道工程建设管理而言是至关重要的。
二、城市轨道交通信号系统分段开通介绍城市轨道交通信号分段开通是指在城市轨道交通线路规划施工中,根据相关政策要求和实际施工需求,将原本的工程分为2段或多段,逐段投入开通和试运营,这种方式还包括后期线路的延伸和开通。
对于很多城市轨道交通信号系统建设来说,经常会有多种制式并存、多方主体并存的情况[1]。
本文研究的工程13号线包括了东、西、中3段,信号系统按照全线规模的方式进行设计施工,当东、西两段线路开通时,需要进行贯通调试,而中段线的信号系统采用独立或系统互联方式,在调试过程中形成了2条线路的贯通运营。
三、城市轨道交通信号系统分段开通调试技术特点和难点介绍(一)城市轨道交通信号系统分段开通调试技术特点介绍在城市轨道交通信号系统分段开通技术中,最为明显的特点就是实现了线路分段、功能分段,并且这种分段开通的方式在工程开始阶段的工期紧张、压力较大;而在后期的开通过程中,工期相对宽松,开通的环境和条件相对较好,但是调试贯通技术要求高,有效作业捯接作业时间短,既有线运营压力大。
常规CBTC 系城市轨道交通信号系统分段开通调试的探究统在分段开通的前段通常采用“后备模式联锁级+点式ATP”开通的方式,但国内也有不少线路采用CBTC 全功能开通的,即采用“联锁级+点式ATP”并结合CBTC 模式为主的方式来进行后期阶段的线路开通。
城市轨道交通信号系统介绍
应答器 无线传输
应答器
应答器
无线传输
发送器/ 接收器 ATP数据 ATP控制单元
ATS命令
列车定位信息
ATS计算机
11
2 CBTC的车地通信方式
• CBTC系统在系统结构和功能日趋一致或接近的情况下,车-地双向连续通信方式是系统 的关键技术之一和主要区别。目前移动闭塞的车-地通信媒介方式主要有两类:
施工单位采购,其余设备由集成商提供;施工单位采购的设备由设
计院提供安装图,集成商提供的设备由集成商提供安装图。 • 室内信号设备安装:室内装修完成,集成商供货;一般设备由集成 商提供,主材由施工单位采购;施工图一般由集成商提供。
32
交 融 天 下 建 者 无 疆
轨旁设置无线接入点AP和定向天线 采用冗余配置,AP之间的间隔平均 200~400m。 在频率覆盖方面相邻AP点之间设计 为重叠覆盖,使得任何一个AP点的 故障均不影响整个系统的正常运行 。 隧道侧壁或立柱安装,对轨道及附 近设备无影响。
•
•
方向性天线
•
轨旁设备
14
5 漏泄电缆方式
• • • • 特点是场强覆盖较好、均匀,抗干扰能力强。 通信采用专用扩频通信标准,也可采用IEEE802.11标准,通信速率较高。 单点AP的控制距离通常达600~800m。 可安装在线路顶部,也可安装在道床中间和侧壁。
远端馈电盒 (RTB) 馈电设备 (FID) 远程终端盒 (RTB)
•
至 VCC
远程终端盒 (RTB)
走行轨
13
4 自由空间无线方式
• 自由空间传播的无线方式是目前 CBTC系统研发、应用的主流方向。
•
地铁CBTC信号系统的分析及研究
地铁CBTC信号系统的分析及研究摘要:CBTC,即列车运行控制系统,是现今城市地铁运行的重要系统。
在本文中,将就地铁CBTC信号系统进行一定的分析与研究。
关键词:地铁;CBTC;信号系统1 引言CBTC是现今地铁运行中非常重要的系统类型,在实际运行中,该系统并不通过轨道电路对列车相关设备信息进行传递,而是通过车地通信方式的应用对列车运行中的相关信息进行传递,即通过轨旁设备、车载设备的应用对控制中心同运行列车间对信息进行交换,以此以更为稳定、高效的方式对速度控制功能进行实现。
在该系统中,系统在对车地联系进行建立之后,使列车运行中的状态以及命令等能够在地面、列车间实现交换,在对列车相对距离以及准确位置进行确定的同时对列车的安全间隔作出保证。
2 CTBC系统原理CTBC是一种支持移动闭塞的控制系统。
对于该闭塞技术来说,其在实际应用中主要靠轨旁设备同车载设备的不间断通信来实现,即列车在运行的过程中时刻地向地面发送代表位置、方向、标识以及速度等信息,而控制中心在接收到这部分信息之后,则能够在对列车动态位置、目前速度等参数进行一系列计算之后获得其最大制动距离。
该制动距离加上列车的长度,再加上列车的防护距离,则共同对其同步移动虚拟分区进行了实现。
在对安全距离良好保证的情况下,对于两个距离较近的闭塞分区,在实际运行中则能够以较小的间隔前进,使列车在较小间隔、较高速度的情况下获得运营效率的提升。
3 CTBC系统分类3.1 交叉感应环线技术在该技术中,通过敷设在钢轨间的交叉环线作为传输媒介,在现今我国城市轨道建设中得到了较为广泛的应用。
而对于该技术来说,也存在着一定的不足,即其安装位置处于钢轨中间,在实际安装时存在着一定的困难,且在日常钢轨维修工作中也具有一定的难度。
优点方面,该技术使用的时间较长,经验相对成熟,且具有着投资成本少以及应用寿命长等优点。
3.2 无线电台通信技术随着我国无线技术的发展,无线技术目前也较为广泛的应用到了地铁系统建设中。
《城市轨道交通基于通信的列车运行控制系统(CBTC)互联互通系统规范》编制说明
城市轨道交通基于通信的列车运行控制系统(CBTC)互联互通系统规范编制说明一、任务来源和协作单位本系列规范由中国城市轨道交通协会技术装备专业委员会牵头,组织部分城市轨道交通业主单位、北京交通大学、交控科技股份有限公司、北京全路通信信号研究设计院集团有限公司、中国铁道科学研究院、株洲中车时代电气股份有限公司、浙江众合科技股份有限公司等设备厂商,于2014年开展组织规范编制工作。
本标准由中国城市轨道交通协会技术装备专业委员会提出,由中国城市轨道交通协会归口。
参编单位:重庆市轨道交通(集团)有限公司重庆市轨道交通设计研究院有限责任公司北京城建设计发展集团股份有限公司北京交通大学交控科技股份有限公司北京全路通信信号研究设计院集团有限公司中国铁道科学研究院集团有限公司株洲中车时代电气股份有限公司浙江众合科技股份有限公司中铁检验认证中心本系列规范从2014年起,组建了部分业主单位和设计院组成的专家评审组,审核了规范编制各个阶段的文稿和对做出重要的技术决策进行评审,这些单位包括:北京地铁运营有限公司北京市轨道交通建设管理有限公司上海申通地铁集团有限公司上海申通轨道交通研究咨询有限公司广州地铁集团有限公司深圳市地铁集团有限公司重庆市轨道交通(集团)有限责任公司南京市地铁建设有限责任公司武汉地铁集团有限公司青岛地铁集团有限公司长沙市轨道交通集团有限公司中铁第四勘探设计院集团有限公司规范编制人员按组织架构划分,每个组别配有组长、副组长及组员若干。
组织架构图如下:该城市轨道交通信号系统系列规范包括系统、接口、测试、工程实施等内容,要求做到整体规划,点面结合,分步实施;依托重庆轨道交通二轮建设4号线、5号线、10号线、环线互联互通国家示范工程项目,分阶段逐步推行。
二、标准编制的目的和意义我国的城市轨道交通已进入了一个快速发展期,从运营方面看,截至2016年末,中国大陆地区共30个城市(开通城轨交通运营,运营线路133条,总长度达4152.8公里。
复杂条件下地铁CBTC信号系统接入既有线的解决方案
复杂条件下地铁CBTC信号系统接入既有线的解决方案陈 通(大连公共交通建设发展有限公司,辽宁大连 116000)摘要:地铁线网规模的逐步扩大,受限于规划、审批、需求变化等因素,分期建设、分期开通的地铁建设工程越来越多。
如何在不影响既有线正常运营条件下完成信号系统的全功能接入是线路开通的关键。
结合大连地铁2号线二期北段信号系统工程项目实施经验,提出复杂条件下CBTC 信号系统的接入方案,该方案降低安全风险并减少调试时间,可以提供类似项目借鉴和实施经验。
关键词:信号系统;系统接入;动车调试中图分类号:U231+.7 文献标志码:A 文章编号:1673-4440(2024)03-0069-04Solution for Connecting CBTC System toExisting Line Under Complex ConditionsChen Tong(Dalian Public Transport Construction Development Co., Ltd., Dalian 116000, China)Abstract: With the gradual expansion of subway networks, more and more subway lines are constructed and opened in stages due to such constraining factors as planning, approval and requirement change. How to achieve the full-functional access of the signal system without aff ecting the normal operation of an existing line is the key issue for the opening of the subway line. Based on the implementation experience accumulated in the signal system engineering project for the northern section of Phase II of Dalian Metro Line 2, this paper proposes a system access plan for the CBTC system under complex conditions. The proposed plan can reduce both the safety risks and the commissioning time, and provide reference and practical experience for similar projects.Keywords: signal system; system access; train commissioningDOI: 10.3969/j.issn.1673-4440.2024.03.013收稿日期:2023-09-22;修回日期:2024-01-26作者简介:陈通(1984—),男,高级工程师,硕士,主要研究方向:铁路信号系统,邮箱:****************。
地铁CBTC系统信号系统分析与故障
地铁CBTC系统信号系统分析与故障地铁CBTC系统是一种先进的列车控制系统,可以实现列车间距的精确控制,提高地铁运行的安全性和效率。
CBTC系统也存在着一些潜在的问题和故障,需要及时进行分析和处理。
CBTC系统的信号系统是整个系统的核心,它负责发送控制指令和接收列车位置信息,以实现列车间的精确控制。
如果信号系统出现故障,将会影响地铁的运行安全和效率。
常见的信号系统故障包括信号灯故障、通信故障和设备故障等。
CBTC系统的信号灯故障是比较常见的一种故障。
信号灯故障可能导致列车无法准确判断行进方向和速度,增加了列车之间的安全距离,降低了列车运行的效率。
信号灯故障还会对乘客的乘坐体验造成不良影响,增加候车时间和拥挤程度。
CBTC系统的通信故障也是常见的一种问题。
通信故障可能导致列车间无法准确传输位置信息和控制指令,进而影响列车的跟踪和调度。
通信故障的原因主要有设备故障、信号干扰和网络故障等。
为了避免通信故障带来的严重后果,地铁CBTC系统通常会采用冗余网络和备用设备,以确保系统的可靠性和稳定性。
CBTC系统的设备故障也是需要重视和解决的问题。
设备故障可能导致列车控制系统无法正常工作,进而影响列车的运行安全和效率。
设备故障的原因可能包括设备老化、电力供应问题和操作失误等。
为了及时排除设备故障,地铁CBTC系统需要进行定期的设备检修和维护工作,确保系统的正常运行。
地铁CBTC系统信号系统的分析与故障处理对于保障地铁运行的安全和效率至关重要。
在分析系统故障时,需要关注信号灯故障、通信故障和设备故障等问题,并采取相应的措施进行排查和修复。
只有保持系统的可靠性和稳定性,才能更好地提高地铁的运行效率和乘客的出行体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城市轨道交通CBTC信号系统开通运营前置条件分析李法刚 (北京现代通号工程咨询有限公司,北京 100166 ) 〔摘要〕:在城市轨道交通CBTC信号系统设备安装阶段完成后,通过“单项设备、子系统设备、系统设备”等不同层级的设备软、硬件测试、调试与试验过程,以及通过“模拟实验、综合试验、144小时不间断系统稳定性试验、空载试运行试验、载客试运行试验”等一系列不同阶段的系统功能测试、试验与调试工作,以验证从系统单项设备本身性能指标的符合性到实际运营环境下系统整体功能指标的稳定与可靠程度以及与设计要求的符合程度,最终判定系统是否能够按照既定功能安全可靠地投入运营。
〔关键词〕:单项设备测试、调试、试验;子系统设备功能试验;综合联调;安全认证与评估;空载试运营;载客试运营;软件的测试、试验与验收;员工培训;正式运营前的其他准备工作。
1引言在我国轨道交通建设领域,随着轨道交通运行控制技术的快速发展,基于通信技术的CBTC列车运行控制系统因其具备安全可靠性高、运输效率高、运营组织与控制自动化程度高以及较佳的系统稳定性和可维护性等一系列突出优点,已获得越来越广泛的认可和推广应用。
在具体项目的建设过程中,如何保证系统工程从施工安装阶段平稳过渡到安全可靠地投入正式运营并逐步实现其应有功能,也越来越成为广大建设者和运营管理者高度关注的一项工作。
本文从系统工程完成施工安装、开始系统试验至正式投产前的运营准备阶段需要完成并获得系统性评估、验证的一系列测试、调试、试验工作过程,以及运营组织方面需要做好的其他准备工作,浅析城市轨道交通CBTC信号系统投入正式运营前需要具备的基本前置条件。
2系统测试、试验、调试、试运行及验收2.1系统调试与试验2.1.1 单项设备的调试与试验单项设备的试验包括单项设备的安装验收试验和调试验收试验,其试验内容包括:◆安装验收试验,以验证单项设备本身的电气性能指标和安装工艺标准的符合性;◆调试验收试验,以验证单项设备所具备的基本功能满足要求的程度。
2.1.2 子系统调试及试验在单项设备试验完成后,进行子系统测试,以验证各个子系统的技术指标满足设计要求。
对各子系统须进行主副电源倒换测试,以验证是否满足电源倒换要求;对各子系统须进行冗余测试,以验证是否满足安全要求、功能要求和可靠性要求。
2.1.3 联锁设备功能试验通过下列试验,验证系统接口和系统逻辑关系的正确性,硬件设备及系统软件的运行可靠性和稳定性。
包括以下主要内容:硬件设备性能测试;设备冗余切换试验;联锁人机接口试验;联锁逻辑及功能试验;室内、外设备状态的一致性测试;故障报警、记录、诊断试验;子系统干扰试验;与动态信标接口测试;与其它子系统接口试验;传输通道的测试;其它必要的试验。
2.1.4 ATP/ATO地面设备功能试验通过下列试验,验证ATP/ATO子系统能够实现的基本功能以及硬件设备性能与设计要求的符合性。
包括以下主要内容:连续式ATP功能及点式ATP功能试验;硬件设备性能试验;设备冗余切换试验;与联锁的接口试验;命令执行试验;紧急停车试验;与其它子系统的接口试验;车地通信试验;保护区段试验;计轴子系统测试;设计行车间隔的试验;折返间隔的试验;停车精度和门控试验;故障报警、记录、诊断试验;子系统干扰试验;其它必要的试验。
2.1.5 ATP/ATO车载信号设备功能试验通过下列试验,验证ATP/ATO车载信号设备能够实现的基本功能以及设备性能与设计要求的符合性。
包括以下主要内容:连续式ATP功能及点式ATP功能试验;设备冗余切换试验;硬件设备性能试验;车地通信试验;列车安全制动距离及安全保护距离试验;列车速度保护试验;车载设备人机接口试验;列车紧急和常用制动试验;牵引加速试验;列车的动态试验;列车制动率实验;保护区段试验;停车精度与车门/屏蔽门控制试验;各种驾驶模式试验;列车倒溜防护试验;列车检测设备试验;列车节能运行模式试验;与其它系统的接口试验;列车故障报警、记录、诊断试验;其它必要的试验。
2.1.6 ATS设备功能试验通过下列试验,验证该ATS子系统设备能够实现的基本功能以及设备性能与设计要求的符合性。
包括以下主要内容:系统硬件设备性能试验;设备冗余切换试验;系统人机接口试验;识别号跟踪及生成试验;自动进路排列试验;列车运行自动调整/人工调整试验;时刻表编辑试验;时刻表在线修改试验;按时刻表自动指挥列车运行试验;运行图显示试验;授权、职责功能验试;自动生成各种报表试验;系统故障记录、诊断试验;同联锁设备及ATP/ATO子系统的联合试验;折返间隔的试验;设计行车间隔的试验;系统响应时间试验;与其它系统的接口试验;列车运行仿真模拟试验;其它必要的试验。
2.1.7培训设备功能实验通过下列试验,验证培训子系统能够实现的基本功能与设计要求的符合程度。
包括以下主要内容:列车运行仿真模拟试验;操作培训模拟试验;维护培训模拟试验;其它必要的试验。
2.1.8 信号维护监测子系统功能实验通过下列试验,验证信号维护监测子系统能够实现的基本功能与设计要求的符合程度。
包括以下主要内容:各种诊断功能试验;各种报警功能试验;监测功能试验;监测报警的人机界面功能试验;行车显示信息画面调用功能试验;硬件性能试验;各种统计及图表输出试验;其它必要的试验。
2.1.9 电源设备的功能试验通过下列试验,验证电源子系统能够实现的基本功能以及电源设备性能指标与设计要求的符合程度。
包括以下主要内容:两路倒换功能试验;UPS的输出特性试验;各种交直流模块的输出品质试验;对地漏泄监测试验;电池放电试验;各种报警及输出试验;其它必要的试验。
2.1.10 信号系统联调信号系统联调主要包括:ATS子系统、ATP子系统、联锁子系统、ATO子系统、电源设备、停车场联锁及微机监测设备的联合调试及其与其它子系统的综合联调;信号系统的联调主要测试系统对列车的控制能力,达到设计功能要求。
2.1.11 144小时连续系统试验单项、子系统及系统联调工作完成,经验证各子系统设备软、硬件指标及各子系统功能符合设计标准(或建设合同约定功能)要求后,进行全系统144小时不间断联合功能试验。
在144小时连续系统试验期间,信号系统应达到以下指标要求:在联锁、ATP安全功能正常的基础上,系统必须提供100%的安全运行;联锁、ATP/ATO、ATS各子系统的可用性不得低于设计标准;设备的MTBF必须满足设计要求;列车因信号系统的原因产生的非期望(不正常)紧急制动发生率须小于设计标准限值;列车停车精度范围及概率符合设计标准;正线最小行车间隔、折返站最小折返间隔、出入段的最小间隔符合设计标准;实际时刻表与计划时刻表的平均差距符合设计标准;列车在中间站到达或发车时间与时刻表偏差符合设计标准;列车在终点站到达或发车时间与时刻表偏差符合设计标准;因信号系统引起的大于15秒的晚点率符合设计标准;主要技术指标其它相关要求符合设计标准。
2.1.12 试验结果及评估在144小时连续试验期间,如安全性和可用性指标不达标,则进行系统修正后,重新组织试验,直到规定指标实现;在144小时连续试验期间,如折返时间、运行间隔和节能的指标不达标,则进行系统修正后,重新组织功能试验,直到规定的指标实现。
在144小时连续试验期间,没有完成的或不能满足要求的其它指标,须在联调及后续的工作中继续完成。
2.2综合联调2.2.1综合联调包括两个阶段:即信号系统与其它系统的接口功能试验和联合调试试验。
通过接口功能试验以验证所有与其它系统的接口功能符合要求。
2.2.2通过信号系统的调试及与其它有关系统的接口检查,以验证所需联调的每组设备通过其接口达到的系统功能满足合同要求。
2.2.3试验内容可包括144小时连续试验中未完成的或未成功的项目以及与其它系统接口的稳定性指标。
2.3安全认证与评估综合联调完成后,由独立的第三方安全评估认证单位,提交具有法律效力的安全评估报告和安全认证证明文件,明确信号系统设备是否能够投入空载试运行和载客运营。
2.4空载试运行2.4.1预验收和安全评估完成后,设备将在实际环境下进行试运行。
2.4.2在实际运营环境中,通过试运行把全部系统设备作为一个不可分割的系统进行综合检测,以验证设计规定功能的满足情况。
2.4.3在试运行期间,所有系统设备均按实际操作模式无故障连续运行。
2.4.4 空载试运行试验内容、试验要求必须符合国家、行业现行标准、规范以及经各方批准的试验大纲有关规定。
2.5竣工初验载客试运营前,进行信号系统的竣工初验,竣工初验合格后,进行载客试运营。
2.6载客试运营2.6.1 应确保系统在试运营期间能安全载客运行。
2.6.2 根据工期的要求,在系统投入载客运营之前,必须提供允许载客的安全认证报告。
2.6.3在系统载客试运营期间,及时分析并排除系统设备故障。
2.7竣工验收2.7.1系统全功能开通运营一段时间后,组织系统竣工验收。
2.7.2 竣工验收通过后签署竣工验收证书。
2.7.3 对于车载信号设备,应根据车辆出厂情况,根据车地联调、综合联调及上道试运行各阶段安排,逐一进行车载设备的试验、验证和验收。
2.8竣工资料移交工程竣工验收通过后,系统集成商应按照建设单位文档管理部门及地方城建档案管理部门要求,将工程竣工资料进行移交归档。
有关资料除了按要求应当存档的项目建设阶段形成的管理类文件、技术类文件外,还应当包括国家或地方档案管理部门或地方建管单位要求归档的其它资料。
3软件的安装、测试、验收及交付运营与维护3.1软件安装、测试及验收3.1.1 系统集成商应对提供的软件进行测试,按照规定步骤对软件进行严格的检查、验证,以证明软件已达到规定的要求,能够在现场安装、验收、交付并能够连接其它接口系统使用。
3.1.2 系统集成商提供的软件应当完成的功能测试主要包括:工厂验收测试和现场验收测试。
3.1.3 系统集成商在软件工厂验收测试及现场验收测试过程完成后,应当向建设方提交可验证的全过程测试记录和验收报告。
3.1.4 系统集成商应对所有进行验收测试的软件建立基线并应准确地在软件配置管理中记录版本控制情况。
3.1.5 除了同时测试硬件软件配合表现功能的整体系统验收外,系统集成商亦须满足个别软件独有用户需求,例如:软件系统维护性、边界测试、强度测试、软件系统保留余度等,并提供软件测试验收书。
3.1.6 所有安装的软件须无病毒及有合法使用许可证及安全认证证书。
3.2软件交付、运行和维护3.2.1 系统集成商应按照合同约定办理系统软件移交手续,明确产权归属、使用权限与许可范围。
3.2.2 系统集成商须按买方要求更改所有系统密码,按合同约定交付所有与现场安装软件版本一致的电子版,确保买方能对新更换的计算机设备成功进行软件安装。