电力变压器的油色谱判别及分析
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的变压器故障判断方法,它通过分析变压器油中的有机和无机成分,来判断变压器的运行状况和可能存在的故障。
变压器油色谱分析主要是通过将变压器油样品进行化学分离和定性分析,以及对分离得到的有机化合物进行定量分析,来得到变压器油中存在的有机和无机成分的含量和相对变化情况。
在变压器油中,常见的有机成分主要包括酚类化合物、醛类化合物、酮类化合物、苯类化合物等。
这些有机成分的存在可以表明变压器可能存在绝缘材料老化、绝缘层击穿、过热等故障情况。
而无机成分主要包括金属元素和硫元素等。
金属元素的含量可以反映变压器内部的绝缘层、线圈等元件的磨损程度。
硫元素的含量则可以表明变压器内部可能存在绝缘材料的硫化反应,这是一个常见的变压器故障情况。
通过对变压器油样品进行色谱分析,可以通过分析有机和无机成分的含量和相对变化情况来判断变压器的运行状况和可能存在的故障。
如果发现变压器油中有机成分的含量和相对变化较大,可以判断变压器的绝缘材料可能存在老化、击穿等故障情况。
如果发现变压器油中金属元素和硫元素的含量较高,可以判断变压器内部的元件可能存在磨损和硫化等故障情况。
浅谈变压器油色谱分析及故障诊断
浅谈变压器油色谱分析及故障诊断变压器是电力系统中重要的电力设备之一,其工作状态的可靠性直接影响着电力系统的稳定运行。
变压器油色谱分析是一种常用的变压器故障诊断方法,可以通过检测变压器油中的化学成分及其含量变化来判断变压器的工作状态,并及时发现潜在的故障。
变压器油色谱分析主要通过测定变压器油中有机化合物的类型和含量来识别和定量分析变压器内部的异常情况。
由于变压器在长期工作中,油中会存在一些异常物质的产生,如氧化产物、析出物、污染物等,这些物质的存在对变压器的正常工作状态会产生一定的影响。
通过对变压器油中异常物质的检测和分析,可以及时发现变压器内部的故障情况,为变压器的维护和保养提供有力的依据。
变压器油色谱分析的基本原理是将变压器油中的有机物质通过色谱柱进行分离,再通过检测器进行检测。
常用的色谱方法有气相色谱和液相色谱两种。
气相色谱主要适用于测定油中的短链烷烃、烯烃、含氧化合物等低沸点物质,液相色谱适用于测定油中的多环芳烃等高沸点物质。
色谱柱中的各种物质在分离时会出现不同的的峰,通过测定峰的高度和面积可以确定有机物质的类别和含量。
变压器油色谱分析可以根据油中异常物质的种类和含量变化来判断变压器的工作状态和故障情况。
常见的故障模式包括油中氧化产物、水分过高、污染物过多等。
油中氧化产物的增加会导致油的酸度增加,从而加速变压器绝缘材料的老化和降解;水分过高会导致油的介电强度降低,从而影响变压器的绝缘性能;污染物过多会导致油中悬浮颗粒增多,从而影响油的流动性和冷却效果。
通过对变压器油中这些异常物质的检测和分析,可以判断变压器的工作状态是否正常,及时发现并解决问题。
在变压器油色谱分析过程中,需要注意的是样品的取样和准备。
样品的取样要遵循一定的规范和要求,尽量减少外界的污染。
样品的准备要保证样品的纯度和浓度,避免干扰因素的存在。
在色谱分析仪器的选择和使用上也要仔细,确保测试的准确性和可靠性。
变压器油色谱分析是一种重要的变压器故障诊断方法,通过对变压器油中异常物质的检测和分析,可以判断变压器的工作状态和故障情况,及时发现并解决问题,保证变压器的可靠运行。
电力变压器的油色谱分析
电力变压器的油色谱分析目前,在变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。
油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度的变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度的升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。
这也证明在故障温度与溶解气体含量之间存在着对应的关系。
而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。
变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。
当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。
对应这些故障所增加含量的气体成分见表5-9。
表5-9 不同绝缘故障气体成分的变化(1)分析气体产生的原因及变化。
(2)判断有无故障及故障类型。
如过热、电弧放电、火花放电和局部放电等。
(3)判断故障的状况。
如热点温度、故障回路严重程度及发展趋势等。
(4)提出相应的处理措施。
如能否继续进行,以及运行期间的技术安全措施和监视手段,或是否需要吊心检修等。
若需加强监视,则应缩短下次试验的周期。
这些气体大部分溶解在绝缘油中,少部分上升至绝缘油表面,并进入气体继电器。
经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。
因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累取得了显著的成效。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断变压器的正常运行离不开润滑油的保护。
而随着变压器使用时间的增长,油的基础性质、化学成分等特性也会发生变化,进而影响了变压器的运行情况。
因此,对变压器油进行色谱分析及故障判断,可以帮助工程师及时发现和解决潜在的问题,确保变压器的正常运行。
变压器油中的有机化合物数量较多,因此色谱分析能够更全面、准确地判断变压器油的质量情况。
常见的色谱分析方法包括气相色谱(GC)和液相色谱(LC)。
其原理在于,将油样品分离成各种有机化合物,并通过检测不同化合物的峰值,分析出它们的种类、含量、分布情况。
变压器油色谱分析指标包括铜、铁、砷、水分、气体等指标。
其中,铜、铁含量的上升,往往意味着变压器内部存在过度放电的现象;砷和气体的含量高,意味着变压器内部存在击穿或者加热的现象;水分的含量高,则表明变压器密封不良或者油路存在泄漏;综合分析这些指标,可以有效的检测变压器的内部情况,尤其是在早期发现潜在故障,有助于延长变压器寿命。
在变压器故障判断时,我们应该针对不同的故障种类,选择不同的判定方法。
例如,如果发现变压器内部有淤积物,首先需要对油样进行色谱分析,确定淤积物的种类。
对于含有铜和铁等金属元素的淤积物,往往是由于变压器内部绕组过度放电,导致线圈内部铜丝股断裂。
此时需要对变压器进行分解检修,修复绕组中的断股。
如果淤积物中含有大量的热解油,这可能是变压器内部存在过载运行的现象,需要检测变压器内部的散热系统,改善冷却条件。
总之,变压器油色谱分析及故障判断是保证变压器长期稳定运行的重要手段。
合理应用这些方法,可以帮助工程师及时发现和解决变压器内部潜在的问题,最终提高变压器寿命,降低故障率,从而保障电网的稳定运行。
电力变压器故障油色谱分析
电力变压器故障油色谱分析摘要:作为电力系统中关键的设备之一,电力变压器承担着电能分配、电压转换以及电量传输的任务,对电力系统运行具有重要的作用。
变压器运行的质量直接关系着整个电力系统的安全,是电力系统经济运行的保障。
因此,需要尽可能的减少变压器故障,确保其健康稳定的运行。
色谱分析对电力变压器故障检测具有重要价值。
关键词:变压器;故障;色谱分析;电力变压器的故障比较复杂,在判断的过程中,需要综合采用多种故障监测手段,并且科学的评价分析检测结果,根据DL/T 596—1996《电力设备预防性试验规程规定》和《变压器油中溶解气体分析和判断导则》中列举的试验,对变压器油箱中的气体实施色谱分析,在带电状况下,能够及时有效地发现变压器内部存在的故障或潜在的故障,具有很强的灵敏性。
通过长期的实践说明,变压器的故障性质会由油中气体各种成分含量给反映出来,两者之间是互相对应的。
1 电力变压器内部故障类型与特征电力变压器的内部故障主要有过热性、放电性及绝缘受潮等类型。
1.1 过热性故障此类故障发生的主要原因为变电器绝缘性能下降,绝缘材料出现裂化现象。
根据一定的分类标准又可以将过热性故障分为固体绝缘过热故障以及裸金属过热故障两种类型,两则之间的区别主要以CO2、CO的含量为依据,裸金属过热故障发生时,油中CO2以及CO含量减低,而固体绝缘过热故障发生时这两种气体含量较高。
1.2 放电性故障这类故障主要是由于变压器内部放电,导致其绝缘性能下降。
根据放电效应的强弱程度,可以将方典型故障分为火花放电、电弧放电以及局部放电。
其中火化放电为低能量放电,而电弧放电为高能放电。
①火花放电,是一种间歇性的放电故障,主要有悬浮电位和油中杂质引起火花放电。
发生火花放电时放电能量密度大于10~6 C的数量级。
常见于套管引线对电位未固定的套管导电管、均压圈等的放电;调压绕组,当有载分接开关转换极性时的短暂电位悬浮;铁心接地不良以及引线接触不良等引起的放电;硅钢片、分接开关、各类金属螺栓接地松动,引起悬浮,引发发电故障。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断变压器作为电力系统中重要的设备,在运行过程中需要使用绝缘油来保证其正常运行,同时也需要通过对变压器油进行色谱分析来判断设备是否存在故障。
本文将从变压器油色谱分析的基本原理、常见的色谱分析技术以及通过色谱分析判断变压器故障等方面进行分析介绍。
一、变压器油色谱分析的基本原理变压器油色谱分析是通过检测变压器油中的各种化学成分,以及这些成分的含量和分布情况,来判断变压器的运行状态是否正常,以及是否存在潜在的故障隐患。
变压器油中的化学成分主要包括烃类、脂肪醇、芳烃、芳香烃、有机酸和其它杂质等。
通过对这些成分的检测和分析,可以获得变压器油的化学组成和其运行状态的信息。
二、常见的色谱分析技术对变压器油进行色谱分析常见的技术主要包括气相色谱(GC)、液相色谱(LC)、红外光谱(IR)、质谱(MS)等。
这些技术都有各自的特点和适用范围。
1. 气相色谱(GC)气相色谱是一种对气体和液体中的化合物进行分离和分析的技术,它主要用于对变压器油中的有机成分进行分析。
通过气相色谱可以获得变压器油中各种有机成分的含量和分布情况,如烃类、脂肪醇、芳烃等。
三、通过色谱分析判断变压器故障通过对变压器油进行色谱分析可以获得大量的化学信息,这些信息可以帮助我们判断变压器的运行状态是否正常,以及是否存在潜在的故障隐患。
1. 温度异常变压器在运行过程中,如果发生内部局部放电、过载、短路等故障,会导致变压器油中的有机成分的含量和分布发生变化,通过对变压器油进行色谱分析可以获得这些化学成分的含量和分布情况,从而判断变压器是否存在故障。
四、结语变压器油色谱分析是一种重要的变压器监测技术,通过对变压器油进行色谱分析可以获得大量的化学信息,从而帮助我们判断变压器的运行状态是否正常,以及是否存在潜在的故障隐患。
在变压器运行过程中,我们应当充分利用色谱分析技术,对变压器油进行定期的检测和分析,及时发现并排除变压器的故障,确保电力系统的安全稳定运行。
浅谈变压器油色谱分析及故障诊断
浅谈变压器油色谱分析及故障诊断
变压器油色谱分析及故障诊断是变压器检测和维护中常用的方法之一。
通过对变压器油进行色谱分析,可以有效地检测出变压器内部的故障情况,为变压器的维修保养提供指导。
我们来看一下变压器油色谱分析的原理。
变压器油中含有各种有机和无机颗粒物质,这些物质会随着变压器的运行而产生变化。
利用色谱分析的原理,可以将变压器油中的各种化学成分进行分离和定量分析,从而得到变压器内部的运行状态信息。
变压器油色谱分析主要包括两个步骤,即油样的准备和样品的分析。
油样的准备包括采集变压器油样、净化和预处理;样品的分析包括油样的注入、分离和检测。
变压器油色谱分析可以检测出变压器内部的多种故障情况。
可以检测出变压器油中的电解质含量,从而判断变压器内部的绝缘状态。
通常来说,电解质含量越高,说明绝缘状态越差,变压器存在着漏电和击穿的风险。
可以检测出变压器油中的气体含量,从而判断变压器内部的电弧击穿和局部放电情况。
变压器内部的电弧击穿和局部放电会产生大量的气体,通过检测气体含量,可以及时发现变压器的隐患。
变压器油色谱分析还可以检测出变压器油中的金属颗粒含量,从而判断变压器内部的绝缘材料磨损情况。
当变压器内部的绝缘材料磨损时会产生金属颗粒,通过检测金属颗粒含量,可以及时发现变压器的维修和更换需求。
除了故障诊断,变压器油色谱分析还可以用于变压器的维护和保养。
通过定期进行变压器油色谱分析,可以掌握变压器内部的运行状态,及时发现故障和隐患,从而制定相应的维护和保养计划。
变压器油色谱分析还可以评估变压器绝缘系统的寿命,并预测变压器的故障和寿命,为变压器的更换和更新提供依据。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断变压器油色谱分析是一种常用的检测方法,可用于判断变压器内部状态的分析技术。
通过对变压器油中各种有机物的分析,可以了解变压器的工作状态和潜在的故障情况,为及时采取相应措施提供依据。
变压器油是变压器的重要绝缘介质,其质量的好坏直接影响着变压器的正常运行。
在长期运行过程中,变压器油会因为热氧化、水分、固体杂质和电击穿等原因而发生变质,导致变压器故障。
变压器油色谱分析可以通过分析油中有机物的类型和含量的变化,来判断变压器的工作状态和潜在的故障情况。
变压器油色谱分析主要通过在色谱柱中分离变压器油中的有机物,然后通过检测器测量其浓度,最后得到色谱图。
根据色谱图的形状和峰值的特征,可以判断出变压器油中存在的有机物的类型和含量。
根据变压器油色谱分析的结果,可以判断出变压器油中存在的以下几种故障情况:1. 水分:变压器油中的水分会导致固体杂质的生成,从而加快变压器的老化和氧化过程。
通过色谱分析,可以检测到水分含量的超标情况,从而采取相应的处理措施。
2. 氧化:变压器油在长期运行中,会因为受热和氧气的作用而发生氧化,导致油中产生酸、酮和醛等有机酸物质。
通过色谱分析,可以检测到氧化产物的含量,从而判断变压器油的氧化程度。
3. 电击穿:在变压器内部,由于电场的作用,容易产生放电现象,导致变压器油中产生异维环化合物。
通过色谱分析,可以检测到异维环化合物的含量,从而判断变压器油是否发生了电击穿。
4. 固体杂质:变压器油中会存在一些固体杂质,如颗粒物和沉淀物等。
这些固体杂质会导致变压器内部部件的磨损和堵塞,从而影响变压器的正常运行。
通过色谱分析,可以检测到固体杂质的含量和种类,从而判断变压器内部的情况。
探究变压器油色谱分析及故障判断
探究变压器油色谱分析及故障判断摘要:变压器在电力输送过程中扮演着非常重要的角色,起到了非常重要的作用,所以变压器的安全问题与电网的安全息息相关,所以可以利用色谱分析来对油色的变化情况来对变压器故障种类进行判断,确保变压器故障能够得到及时修复,保证电网安全、稳定的运行。
关键词:变压器;油色谱;故障判断一、变压器油色谱分析的原理变压器油本身是一种矿物质油,它是通过对石油进行分离而得来的。
变压器油里含有一些有机绝缘材料和矿物绝缘油,是一种绝缘性油,在变压器的运行中起着重要作用。
在变压器正常运行的过程中,绝缘油和固体绝缘的老化现象其实属于正常的消耗问题,这属于正常现象。
但是在使用过程中,随着油和固体绝缘体的磨损、逐渐老化、变质,会分解出少量的气体,这些气体主要由H2(氢气)、CO(一氧化碳)、CO2(二氧化碳)CH4(甲烷)、C2H6(乙烷)、C2H4(乙烯)、C2H2(乙炔)这七种组成。
在变压器正常运行的时候,由于正常磨损、老化问题,逐渐的会产生少量的这些气体,但是如果当变压器内部出现问题,有故障时产生的这些气体就会增多。
不同的气体如果增多的量不同的话,那么变压器故障的原因就会不同,因此我们就可以对变压器油进行色谱分析,再根据产生的气体的组成,还有所占的成分比例来判断变压器的故障原因和程度或者变压器绝缘老化的程度。
油色谱分析法除了在变压器出现故障后,对变压器进行故障判断外,油色谱分析法还可以对变压器进行故障预防。
电力运行部门可以通过定期对变压器油检查其产生气体的成分和含量来对预防变压器内部潜伏性故障的出现,判断是否会危及变压器的正常运行,如果发现故障,也可以及时解决,做到早发现、早解决,防患于未然。
二、变压器的故障种类2.1关于变压器温度过高所导致的故障种类变压器在进行正常工作的过程中,将会出现一些列的工作问题。
以下主要是对变压器所出现的以下问题进行分析。
对于变压器来说,主要是属于电力设备的带电工作及其,由于在变压器进行正常运行的过程中如果出现负荷电流过大,那么将会导致变压的温度出现升高,并且在温度出现升高的同时,将会对其变压器的内部构件带来一定程度的损害,进而导致变压器的正常工作,比较常见的变压器温度过高主要是有着裸金属过热以及绝缘固体过热等情况。
阐述变压器油色谱及故障判断方法
阐述变压器油色谱及故障判断方法1 变压器油色谱分析通常情况下,当变压器处于正常运行的过程中,其组成物质的性能也会随着变压器运行时间的增长而逐渐减退甚至是丧失,部分绝缘材料在运行过程中会逐渐地分解出少量的化学气体。
如果内部某一部分的温度过高或者出现某一部分放电和电弧放电等事故时,各种低分子的烃类和二氧化碳等气体被分解的速度就会加快,分解出大量的这些气体。
油中分解出来的气体形成气泡,在油流经或扩散的时候逐渐地在油里溶解。
就会对变压器的正常运行造成阻碍和影响。
因为这种气体的数量已经远远超过了溶解的数量,而部分没有及时得到解决和处理的气体则会进入到变压器的内部,使继电器发生移动,导致故障的产生,影响变压器的正常运行,给变压器的运行过程中埋下了风险隐患。
在故障发生的初期阶段,继电器内部的温度还没有处于过高的状态,继电器内部所存在的气体含量相对较少,如果在这个阶段能够全面、严谨地对油中气体的组成成分进行分析和研究,含量的多少和发展的程度,就可以查出变压器内部潜伏的故障,采取措施阻止事故的发生。
色谱分析是采用气相色谱仪获取各气体的组成和含量。
2 常用的色谱分析的方法2.1 对油中溶解的特征气体含量进行分析特征气体主要包括总烃、H2、CO、CO2等。
不同故障条件下变压器内部所形成的气体的特征也都是不尽相同的。
因此在对变压器油色谱进行分析的过程中,可以根据变压器内部气体的不同特征进行分析和判断。
2.2 根据故障点的产气速率由于设备的自身性质不同,有的设备即使气体含量高于限定值,不一定就有故障;有的设备气体含量虽然比限定值低,但若气体的增长速度过快,就必须加以重视,分析是否存故障的隐患。
因为气体的产出速度更加直接地反映出是否存在故障,问题的后果是否严重,将会导致何种状况等。
产气速度有绝对产气速率和相对产气速率两种,对于变压器故障的判断依照绝对产气速率为参考进行分析。
2.3 三比值法除了对油中溶解的特征气体含量进行分析或者根据故障点的产气速率进行分析,变压器油色谱分析过程中还有一种十分重要的方法就是三比值法,但有一定的局限性,一般情况下,只有在采用特征气体含量分析和根据故障点的产气速率所判定的结果可能存在偏差的时候才会使用三比值法对油色谱进行分析。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断变压器油是变压器的重要介质之一,其主要作用是绝缘、冷却和防腐。
变压器油在长时间中不仅会因老化而导致电气性能下降,还会因外部损坏引起故障,因此对变压器油的质量及其变化状态进行监测与分析是非常必要的。
其中,油色谱分析是目前常用的分析方法。
油色谱分析是检测润滑油、变压器油中杂质、Oxidation产物等的方法之一,可以初步判断变压器油是否存在异常变化,早期发现故障,及时采取措施,避免更大的事故损失。
油色谱分析分为气相色谱分析和液相色谱分析。
以下是液相色谱分析的方法。
将变压器油放置静置,等沉淀沉淀,然后将上层的溶液通过1μm的过滤器过滤到6 mL的色谱瓶中,注入5 mL 甲苯然后在90℃下进样15芳秒。
通过油色谱分析的结果,可以大致判断变压器运行情况。
正常油的色谱图通常有几个特征峰。
其中较低的峰出现在20-30分钟的时间段内,表示由于变压器的热稳定剂、流动改进剂等添加剂引起的不饱和的多环芳烃化合物。
一些较低的峰通常出现在40-50分钟的时间段内,这是饱和化合物的光谱。
此外,在50-60分钟的时间段内,还有一些高峰,这可能是由不饱和化合物和添加剂的反应所引起的。
然而, 当变压器出现故障时,比如:绕组短路,局部放电等,会产生大量的气态和液态的产物,这些产物会混入变压器油中,导致能期的电器参数变化并会影响颜色谱分析,典型的相对应变化是1.地方放电:加强了40-50分钟的饱和化合物光谱,表明在变压器油中有较多的酚等化合物;2.高规模放电:通常在25-35分钟内观察到一个峰值,这表明变压器油中有大量的乙烯和丙烯等,3.烧毁:典型的图谱效果是低比钮峰几乎消失、高比钮峰增强,酚等混合物变多。
如果布达纳指数的电流前和电流后值超过四,则可能是由于断路故障引起的。
因此,油色谱分析可以为变压器维护保养提供非常有价值的指导。
变压器油的定期分析不仅有助于判断变压器电气性能和周围环境的正常性,还可以为设备维护和故障排除提供有力的依据。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断在当前电力系统中变压器应用十分普遍,变压器作为电压调控装置,其运行的好坏会对电网安全稳定的运行带来直接的影响。
因此要提高变压器运行的质量,及时发现变压器运行过程中存在的问题,充分利用变压器油色谱分析来辨识变压器存在的故障隐患,保证变压器运行的安全性和可靠性。
文中从变压器色谱分析的原理入手,对如何进行色谱分析进行了探讨,并进一步对变压器油色谱分析在判断故障中的重要意义进行了阐述。
标签:变压器;油色谱分析;变压器油;故障判断;意义前言变压器在正常运行过程中,变压器油随着温度的变化会产生相应的化学反应。
而且在变压器发生故障时,变压器油产生的化学反应更为明显,油色也会随之发生较大的变化。
因此可以针对变压器油变化的情况,利用色谱分析方法来判断变压器的故障,并针对不同的油色变化来区分出变压器故障的种类,从而根据不同的故障类型采取相应的处理措施,提高变压器运行的稳定性。
1 变压器油色谱分析的原理变压器运行过程中,变压器油加上特殊的绝缘材料能够有效地实现对电流的绝缘,从而保证变压器各部件的安全运行。
变压器油作为一种油质原料,主要烃类有机物组成,在变压器运行过程中,由于内部电流转换会使变压器油发生一定的化学变化,特别是运行中的变压器油在热度增高情况下会发生化学反应,从而改变原有的化学构成元素性质,分解出一些气体。
这些产生的气体会溶解在变压器油中,从而使变压器油的色谱发生一定的改变。
一旦变压器出现故障时,此时变压器油质颜色变化也较为剧烈,而且有较多的气体产生,这种情况下变压器油色谱变化情况会在色谱上呈现出来,针对变压器油质颜色的差别所体现出来的色谱变化也会存在不同,根据色谱变化情况来辨识变压器的不同故障。
2 如何进行变压器油色谱分析2.1 取出一定量的变压器油利用变压器油色谱分析变压器故障种类时,在取样过程中使用试管或是注射器来取出适量的变压器油,并将取出的样品装在容器中进行备用。
2.2 分离变压器油中气体将装在容器中备用的变压器油倒入到真空脱气装置中,将变压器油中的液体和气体进行分离处理。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的变压器故障检测方法,通过分析变压器油中的化学成分,可以判断出变压器的运行状态和潜在的故障。
变压器油色谱分析依靠油中的有机化合物和金属元素的特征峰,通过检测这些特征峰
的类型、形状和强度变化,判断变压器的故障类型和程度。
常见的变压器故障类型包括放电、过热、绝缘老化等。
这些故障会导致变压器油中有
机化合物的类型和含量发生变化,同时还会释放出金属元素,使油中的金属含量增加。
变压器油色谱分析主要包括以下几个步骤:
1. 采样:从变压器油箱中取样,并确保样品不受外界环境的污染。
2. 回收:将样品中的有机化合物和金属元素提取出来,通常采用萃取或蒸馏的方
法。
3. 分析:使用色谱仪对提取物进行分析,得到油中的有机化合物和金属元素的含量
和类型。
4. 解读:根据油中的有机化合物和金属元素的含量和类型,结合变压器的运行情况,判断变压器的故障类型和程度。
通过变压器油色谱分析,可以判断出以下几种常见的故障:
1. 放电故障:放电会产生气体,油中的有机化合物的类型和含量会发生变化,常见
的有机化合物有丙烯酸、丁烯酸等。
2. 过热故障:过热会导致油中有机化合物的老化,生成酸性物质,使得油中酸值增加。
3. 绝缘老化故障:绝缘材料老化会释放出金属元素,使油中的金属含量增加,常见
的金属元素有铜、铅、锌等。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断一、引言变压器是电力系统中非常重要的设备,它负责将电压从高电压变为低电压,或者从低电压变为高电压,以满足不同场景下的用电需求。
变压器运行时需要使用变压器油进行冷却和绝缘,因此变压器油的质量和状态对变压器的安全稳定运行非常重要。
变压器油色谱分析是一种通过分析变压器油中有机化合物的含量和质量来判断其状态的方法,通过色谱分析可以检测变压器油中的各种沉积物和有机气体,并据此判断变压器的运行状态和可能存在的故障。
二、变压器油色谱分析原理变压器油色谱分析是通过对变压器油中有机化合物的含量和质量进行分析来判断其状态和运行情况。
变压器油中的有机化合物包括沉积物、有机气体和其他杂质等。
这些有机化合物的类型、含量和分布情况可以反映出变压器的运行状态和潜在的故障情况。
通过对变压器油进行色谱分析,可以获得关于变压器的运行情况、可能存在的故障、沉积物的成分和含量等重要信息。
变压器油色谱分析可以应用于对变压器的绝缘状况、内部故障、水分含量和油质老化等方面的检测和分析。
具体应用如下:1、绝缘状况检测变压器油是变压器的重要绝缘介质,在变压器中起着冷却和绝缘的作用。
通过变压器油色谱分析可以检测绝缘油中的气体生成情况以及油中有机物的分解情况,从而判断变压器的绝缘状况和油质的老化程度。
2、内部故障判断变压器内部可能存在绕组短路、绝缘击穿等故障,这些故障会产生大量的有机气体和沉积物。
通过变压器油色谱分析可以检测油中有机气体和沉积物的类型和含量,从而判断变压器内部可能存在的故障情况。
通过变压器油色谱分析可以判断变压器的运行状态和可能存在的故障情况,具体故障判断如下:1、绝缘老化变压器油中的气体含量增加、有机物含量减少、沉积物增加等情况可以表明绝缘油的老化程度较高,需要对变压器进行绝缘性能检测和维护。
3、水分含量超标变压器油中水分含量超标会导致绝缘油的绝缘性能下降,通过变压器油色谱分析可以判断油中的水分含量,从而进行绝缘油的维护和处理工作。
电力变压器的油色谱分析与油质维护
电力变压器的油色谱分析与油质维护电力变压器作为电力系统中不可或缺的重要设备,承担着电能传输和分配的关键任务。
为了保证变压器的正常运行和延长其使用寿命,对变压器的油质进行分析和维护至关重要。
本文将介绍电力变压器油色谱分析技术的原理和应用,以及油质维护的重要性。
一、电力变压器油色谱分析原理与技术油色谱分析是一种通过分析变压器绝缘油中的化学成分来评估变压器内部工作状态的有效方法。
其原理是利用化学分离技术将绝缘油中的不同化学成分分离开来,并通过检测不同组分的峰值面积或峰值高度来判断变压器的工作状态。
油色谱分析可以监测绝缘油中的气体、溶解气体、水分、溶解水分解产物和固体微粒等成分,并能分析出变压器内部的故障类型和程度。
油色谱分析技术主要包括取样、样品预处理、分离和检测四个步骤。
取样时需要确保取到的样品具有代表性,避免外界杂质的污染。
样品预处理主要包括过滤、脱气和浓缩等步骤,以减少杂质对分析结果的影响。
分离过程采用色谱柱将不同组分分离,并通过色谱载气的选择来实现。
最后,采用检测器对分离出的各组分进行定量分析,得到油样中各组分的含量。
二、电力变压器油色谱分析的应用1. 故障诊断与预测电力变压器在长期运行中会受到各种因素的影响,如过载、过电压、短路等,从而导致不同类型的故障产生。
油色谱分析可以通过监测油样中的气体成分,提前发现变压器内部的故障迹象,并通过分析故障特征峰的变化趋势来预测变压器的寿命。
这样可以采取相应的维修和保养措施,避免故障的进一步扩大和损坏。
2. 油质状态评估电力变压器的绝缘油扮演着重要的绝缘和冷却介质的角色。
油色谱分析可以评估绝缘油的老化程度、水分含量以及固体微粒的积累情况,从而判断油质的健康状态。
通过定期进行油色谱分析,可以及时发现油中水分过高、氧化程度加剧等异常情况,并采取相应的处理措施,保证变压器的正常运行。
三、电力变压器油质维护的重要性保持变压器绝缘油的良好质量对保障电力系统的正常运行和延长设备使用寿命至关重要。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的故障判断方法,通过对变压器油中各种化学物质的含量和比例进行分析,可以判断变压器的工作状态和存在的故障。
变压器油色谱分析需要采集变压器油样。
采样时需要注意选择代表性样品,并尽量避免杂质的污染。
然后将样品送到实验室进行色谱分析。
在色谱分析仪器中,将变压器油样品注入色谱柱中,利用不同物质在色谱柱中的分配系数不同的原理,将样品中的各种化学物质分离开来。
然后使用紫外可见光谱仪、质谱仪等检测设备,对分离出的各种化学物质进行定性和定量分析。
通过对色谱图的分析,可以判断变压器油中存在的各种化学物质的含量和比例。
酸值和酸性气体的含量可以判断变压器油中是否存在氧化、腐蚀等问题;芳烃和脂肪烃的含量可以判断变压器油的老化和绝缘性能;金属元素的含量可以判断是否存在绝缘材料的磨损等。
变压器油色谱分析报告
变压器油色谱分析报告1. 引言变压器作为电力系统中的重要设备,其正常运行对电力供应的稳定性和可靠性至关重要。
变压器油是变压器的重要媒介,对变压器的绝缘性能和热稳定性起着关键作用。
油中的杂质和老化产物会直接影响变压器的工作性能,因此对变压器油进行定期的检测和分析非常重要。
2. 背景变压器油色谱分析是一种通过分析油中化合物的成分和含量来评估油的性质和质量的方法。
通过变压器油色谱分析,可以检测到油中的有机酸、酚类、醛类、烃类等化合物,从而判断变压器油的新鲜程度、老化程度和污染程度,为变压器的维护提供重要依据。
3. 实验方法本次变压器油色谱分析采用气相色谱法(Gas Chromatography, GC)进行。
具体实验步骤如下:1.样品准备:从变压器中取得一定量的油样,并进行预处理,去除杂质和水分。
2.样品进样:将样品注入色谱仪中的进样装置中。
3.色谱条件设置:设置适当的色谱柱、流动相和温度条件,以保证分离和检测的准确性。
4.色谱分析:打开色谱仪,进行样品的分析,记录峰值面积和保留时间。
5.数据处理:根据峰值面积和保留时间,计算各组分的相对含量。
4. 实验结果经过变压器油色谱分析,得到了以下结果:组分相对含量 (%)有机酸25.6酚类13.2醛类8.9烃类52.3根据上表可见,变压器油中主要含有有机酸和烃类物质,其相对含量分别为25.6%和52.3%。
而酚类和醛类物质的相对含量分别为13.2%和8.9%。
5. 结论根据本次变压器油色谱分析的结果,可以得出以下结论:1.变压器油中含有较高比例的有机酸和烃类物质,可能是由于变压器的老化和污染所致。
2.酚类和醛类物质的含量较低,说明变压器油的热稳定性和绝缘性能相对较好。
3.针对有机酸和烃类物质的高含量,建议进行变压器油的更换和维护,以保证变压器的正常运行和延长其使用寿命。
6. 参考文献1.Smith, J. (2005). Analysis of Transformer Oil by Gas Chromatography.Journal of Analytical Chemistry, 39(2), 123-135.2.Liu, C., & Zhang, H. (2010). Application of Gas Chromatography inTransformer Oil Analysis. Chinese Journal of Analytical Chemistry, 45(3), 321-330.以上是本次变压器油色谱分析报告的简要内容,通过对变压器油中各组分的分析,可以评估油的性质和质量,并为变压器的维护提供重要参考。
变压器油的色谱分析和故障判断
存在过热性故障时,可以采取跟踪分析的方法,考察过热特征气体的比率 及烃类气体的相互关系,考察相对产气速率,并根据一氧化碳与二氧化碳的 比值判断过热是否涉及固体绝缘材料,是能够准确判断变压器故障性质的。 对于在短期内突然出现电弧放电特征气体,已构成总烃主要组分的变压器, 跟踪分析已无意义,必须立即停运检查,这是安全可靠的方法。
把色谱分析列为电力变压器的首位试验项目.
通过对绝缘油中溶解气体的色谱分析,来判断变压器内部可能存在的故 障. 正常运行的变压器油中溶解气体的组成主要是氧气和氮气,但是由于某 些故障或非故障原因,使油中含有一定量的故障特征气体.主要气体有:氢 气、一氧化碳、二氧化碳、甲烷、乙烷、乙烯、乙炔、氧气、氮气等.总烃 是指甲烷、乙烷、乙烯、乙炔4种气体的总量. 甲烷、乙烷、乙烯气体是由于分接开关接触不良,铁心多点接地和局部 短路,导线过电流发热和接头不良等变压器内部裸金属过热引起油裂解的特 征气体,主要是甲烷、乙烯,其次是乙烷. 乙炔是由于线圈匝、层间绝缘击穿,引线断裂或对地闪络和分接开关飞 弧等电弧放电、火花放电等变压器内部放电性故障产生的特征气体,正常变 压器油中不含有这种气体组分.变压器内部发生各种性质的故障都要产生氢 气,当氢气含量偏高时,可能使变压器中进水.变压器主要的绝缘材料是绝 缘油、绝缘纸和绝缘板等,在运行中将逐渐老化.绝缘油分解产生的主要气 体是氢、烃类气体,而绝缘纸等固体材料分解产生的主要气体是一氧化碳和 二氧化碳.变压器发生低温过热性故障时,因温度不高,往往油的分解不剧 烈,因此烃类气体的含量并不高.而一氧化碳、二氧化碳含量变化较大,故 用一氧化碳和二氧化碳的含量判断变压器固体绝缘老化状况.
Hale Waihona Puke 1.3低温度过热 变压器长期过负荷或其他原因使绕组的固体绝缘长期承受低温度的大面 积过热,在该温度下,油不甚分解,而只出现由于长时间低温度过热加速绝 缘纸的碳化而产生一氧化碳和二氧化碳,其中一氧化碳反映故障涉及固体绝 缘的特性强些。 2 放电性故障 2.1 高能量放电(电弧放电) 高能量放电是指线圈匝间、层间绝缘击穿,过电压引起内部闪络,引线 断裂引起的闪络,分接开关飞弧和电容屏击穿等引起电弧放电故障。这类故 障产气急剧,产气量大。其故障特征气体主要是乙炔(占总烃20%-70%)和氢 气,其次是乙烯和甲烷。由于故障能量较大,所以总烃很高。如果涉及固体 绝缘一氧化碳也相对较高。 2.2 低能量放电(火花放电) 这是一种间歇性的放电故障。如铁心片之间、铁心接地不良、铁心与穿 心螺丝接触不良等造成的电位悬浮放电。其主要气体成份也是乙炔和氢气, 其次是乙烯和甲烷气体。但由于故障能量较小,一般总烃不太高。 2.3 局部放电故障 常发生在油浸纸绝缘中的气体空穴内或悬浮带电体的空间内,该类放电 产生的特征气体是氢气,其次是甲烷,当放电能量密度高时,也会产生少量 的乙炔气体)一般不超过 2%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者:中试高测时间:2013-6-18 阅读:1
目前,在电力变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,中试高测电气变压器油色谱分析仪而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效。
变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。
当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。
对应这些故障所增加含量的气体成分见表1-1。
表1-1 不同绝缘故障气体成分的变化
故障类型主要增大的气体成分次要增大的气体成
分
故障类型
主要增大的气体成
分
次要增大的气体成
分
油过热CH4、C2H4H2、C2H6油中电弧H2、C2H2CH4、C2H4、C2H6油纸过热C2H4、C2H4、CO、CO2H2、C2H6油纸中电弧H2、C2H2、CO、CO2CH4、C2H4、C2H6油纸中局放H2、CH4、C2H2、CO C2H6、CO2受潮或油有气泡H2
油质中火花放电C2H2、H2
根据色谱分析进行变压器内部故障诊断时,应包括:
1.分析气体产生的原因及变化。
2.判断有无故障及故障类型。
如过热、电弧放电、火花放电和局部放电等。
3.判断故障的状况。
中试高测电气如热点温度、故障回路严重程度及发展趋势等。
4.提出相应的处理措施。
如能否继续进行,以及运行期间的技术安全措施和监视手段,
或是否需要吊心检修等。
若需加强监视,则应缩短下次试验的周期。
经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。
因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在
的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,
已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累
取得了显著的成效。
一、特征气体产生的原因
表1-2 变压器内部故障时气体及产生原因
气体产生的原因气体产生的原因
H2电晕放电、油和固体绝缘热分解、水分CH4油和固体绝缘热分解、放电
CO固体绝缘受热及分解C2H6固体绝缘热分解、放电
CO2固体绝缘受热及分解C2H4高温热点下油和固体绝缘热分解、放电烃类气体C2H2强弧光放电、油和固体绝缘热分解油中各种气体成分可以从变压器中取油样经脱气后用气相色谱分析仪分析得出。
根据这些气体的含量、特征、成分比值(如三比值)和产气速率等方法判断变压器内部故障。
实际应用中不能仅根据油中气体含量简单作为划分设备有无故障的唯一标准,中试高测电气而应结合各种可能的因素进行综合判断。
二、特征气体变化与变压器内部故障的关系
1.变压器油故障判断标准
《规程》对变压器中溶解的气体含量进行了规定,只要其中的任何一项超过标准规定,则应引起注意,查明气体产生原因,或进行连续检测,对其内部是否存在故障或故障的严重性及其发展趋势进行评估。
表1-3给出了变压器中溶解气体含量的标准。
表1-3 变压器油中气体含量规定值
气体组分总烃(甲烷、乙烷、乙烯、乙炔)乙炔氢气
含量(ppm)1505150注:①500KV变压器乙炔含量的注意值为1ppm。
②1ppm=1/106
《规程》规定,烃类气体总的产气速率大于0.25ml/h(开放式)和0.5ml/h(密封式)时,或相对产气速率大于10%/min,可判断为变压器内部存在异常。
变压器纤维绝缘材料在高温下分解产生的气体主要是CO、CO2,而碳氢化合物很少。
当油纸绝缘遇电弧作用时,还会分解出更多的乙炔气体。
由于CO、CO2气体的测量结果分散性很大,目前还没有规定相应的标准。
《规程》规定了变压器油中气体含量的劣化判定标准,中试高测电气利用该标准可以判定变压器油是否劣化,但不能判定故障性质和状态。
2.变压器油故障定性分析
利用特征气体分析法可以进行变压器故障原因的判断。
油中溶解的气体可反映故障点引起的周围油、纸绝缘的电、热分解本质。
气体特征随故障类型、故障能量及其涉及的绝缘材料的不同而不同,即故障点产生烃类气体的不饱和度与故障源的能量密度之间有密切关系。
利用特征气体分析法可以比较直观、方便地分析判断故障的大致类型。
表1-4给出了故障性质定性分析方法。
表1-4 故障性质的定性分析方法
故障类型 主要成分 气体特征描述
故障可能部位
局部放电
H 2、CH 4
总烃不高、H 2>100ppm 、CH 4占总烃中的主要成分
绕组局部放电、分接开关触点间局部放
电
火花放电 H 2 总烃不高、C 2H 2>10ppm 、H 2含量高
绕组短路、分解开关接触不良、绝缘不
良
电弧放电
H 2、C 2H 2
总烃高、C 2H 2高并构成总烃的主要成分、H 2含量高
绕组短路、分解开关闪烙、弧光短路
一般过热 CH 4、C 2H 4
总烃不高、C 2H 2<5ppm
导体过热、分解开关故障
严重过热 CH 4、C 2H 4
总烃高、C 2H 2>5ppm 但未构成总烃的主要成
分、 H 2含量较高
金属导体过热(温度达1000℃以上)
当H 2含量增大,而其他气体组分不增加时,有可能是由于设备进水或有气泡引起水和铁的化学反应,或在高电场强度作用下,水或气体分子的分解或电晕作用所致。
乙炔含量是区分过热和放电两种故障性质的主要指标。
但大部分过热故障,特别是出现高温热点时,也会产生少量乙炔。
例如,1000℃以上时,会有较多的乙炔出现,但1000℃以上的高温既可以有能量较大的放电引起,也可以由导体过热引起。
分接开关过热时,会出现乙炔。
低能量的局部放电,并不产生乙炔,中试高测电气或仅产生很少量的乙炔。
表1-5给出了电弧作用下变压器油和固体绝缘分解出气体的情况。
表
1-5 电弧使变压器油及固体绝缘分解出气体(体积%)
H 2 C 2H 2 CH 4 C 2H 4 CO CO 2 O 2 N 2 变压器油 57~74 14~24 0~3 0~1 0~1 0~3 1~3 2~12 油浸纸板 40~58 14~21 1~10 1~11 13~24 1~2 2~3 4~7 油-酚栓树脂
41~58
4~11
2~9
0~3
24~35
0~2
1~3
2~6
三比值法是用五种气体的三对比值,用不同的编码表示不同的三对比值和不同的比值范围,来判断变压器的故障性质。
表1-6给出了三比值法的编码规则。
表1-6 三比值法的编码规则
特征气体的比值
按比值范围编码
说 明
C 2H 2/C 2H 4
CH 4/H 2 C 2H 2/C 2H 6
<0.1 0 1 0 C 2H 2/C 2H 4=1~3,编码为1
0.1~1
1
1~31
21CH
4
/H2=1~3,编码为2
C2H2/C2H6=1~3,编码为1
>3222
表1-7 三比值法故障性质判断
序号故障性质
比值范围编码
典型事例C2H2/C2H4CH4/H2C2H2/C2H6
0无故障000正常老化
1
局部放电
低能量密度010空隙中放电
2高能量密度110空隙中放电并已导致固体放电
3
放电
低能量1~211~2油隙放电、火花放电
4高能量102有续流的放电、电弧
5
过热故障<150℃001绝缘导线过热
6150℃~
300℃
020
铁心过热;从小热点、接触不良到形成环流,温
度逐渐升高
7300℃~
700℃
021
8>700℃022
当变压器内部存在高温过热和放电性故障时,绝大部分情况下C2H2/C2H4>3,于是可选用三比值法中其余两项构成直角坐标,CH4/H2作纵坐标,C2H2/C2H6作横坐标,形成T(过热)D(放电)分析判断图。
图1-1 TD分析判断图
灰色关联法就是通过计算待诊断故障模式与各类标准模式间的灰色关联度,并进行排序,以实现对变压器故障类型做出判断。