大学物理下复习资料
大学物理(下)期末复习
大学物理下归纳总结电学基本要求:1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。
2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。
3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。
主要公式: 一、 电场强度1计算场强的方法(3种)1、点电荷场的场强及叠加原理点电荷系场强:∑=i i i r rQ E 304πε 连续带电体场强:⎰=Q r dQr E 34πε(五步走积分法)(建立坐标系、取电荷元、写E d、分解、积分)2、静电场高斯定理:物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。
对称性带电体场强:3、利用电场和电势关系:x E xU=∂∂-二、电势电势及定义:1.电场力做功:⎰⋅=∆=210l l l d E q U q A2.物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。
3.电势:)0(00=⋅=⎰p p aa U l d E U ;电势差:⎰⋅=∆B AAB l d E U电势的计算:1.点电荷场的电势及叠加原理点电荷系电势:∑=iiir Q U 04πε(四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法⎰⎰⋅=⋅=lv pdr E l d E V 0三、静电场中的导体及电介质1. 弄清静电平衡条件及静电平衡下导体的性质2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定理,求对称或分区均匀问题中的,,D E P 及界面处的束缚电荷面密度σ。
3. 会按电容的定义式计算电容。
磁学 恒定磁场(非保守力场)基本要求:1.熟悉毕奥-萨伐尔定律的应用,会用右手螺旋法则求磁感应强度方向;3.掌握描述磁场的两个重要定理:高斯定理和安培环路定理(公式内容及物理意义);并会用环路定理计算规则电流的磁感应强度; 3.会求解载流导线在磁场中所受安培力;4.理解介质的磁化机理,会用介质中的环路定律计算H 及B.主要公式:1.毕奥-萨伐尔定律表达式1)有限长载流直导线,垂直距离r (其中。
大学物理复习资料
大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。
在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。
大学物理(下)总复习 ppt课件
u 330 m s1 . 试求飞机的飞行高度h.
ppt课件
14
例 如图, 一列沿x轴正向传播的简谐波
方程为 y1 103 cos[200π(t x / 200)](m) (1) 在1,2两种介质分界面上点A与坐标原点O
相距L=2.25 m.已知介质2的波阻大于介质1
的波阻, 反射波与入射波的振幅相等, 求:
(1)振动的周期; (2)通过平衡位置的动能; (3)总能量; (4)物体在何处其动能和势能相等?
ppt课件
3
例 有一单摆在空气(室温为 20C)中来 回摆动. 摆线长l 1.0 m,摆锤是半径r 5.0103 m 的铅球.求(1)摆动周期;(2)振幅减小 10%所需的时间;(3)能量减小10%所需 的时间;(4)从以上所得结果说明空气的 粘性对单摆周期、振幅和能量的影响.
(2)如果一潜水员潜入该区域水下,并向 正上方观察,又将看到油层呈什么颜色?
ppt课件
16
例 为了增加透射率,求氟化镁膜的最
小厚度.已知 空气n1=1.00,氟化镁 n2=1.38 ,
=550 nm
23
nn21
d
玻璃 n3 n2
氟化镁为增透膜
ppt课件
17
例1 在杨氏双缝干涉实验中,用波长
束的角宽度进行比较,设船用雷达波长为
1.57 cm,圆形天线直径为2.33 m .
ppt课件
28
例1 用白光垂直照射在每厘米有6500条 刻痕的平面光栅上,求第三级光谱的张角.
ppt课件
29
例 有两个偏振片,一个用作起偏器, 一
个用作检偏器.当它们偏振化方向间的夹角
为 30时 , 一束单色自然光穿过它们, 出射
大学物理2-2总复习
√
[分析] B
0 I
2R
B
0 I (cos 1 cos 2 ) 4a
B
0 I
2R
0 I 2R
2、一无限长载流直导线,通有电流 I,弯成如图形状。设 各线段皆在纸面内,则P 点磁感应强度B 的大小为 3 0 I 8a I
[分析] B
4a
0
。
(cos 1 cos 2 )
0 I B (cos 1 cos 2 ) 4a
B
0 I
2R
1、无限长直导线在P 处弯成半径为R 的圆,当通以电流 I R 时,则在圆心O点的磁感应强度大小等于 I I I O A) 0 B) 0 C )0 1 0 1 2 R 4R 2 P 2 2 0 I 0 I 1 1 2 D) (1 ) E) (1 ) 2R 4R
合面上场强E处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零.
E d S 0故闭
S
答 (1) 正确.
(2) 错误,虽然有 E d S 0 ,
Sቤተ መጻሕፍቲ ባይዱ
-q +q S
但本题中闭合面上各点场强均不为零。
(3)错误,通过整个闭合面的电场强度通量为零,而通 过任一面元的电场强度通量不一定为零(本题中任一面元 上都不为零)。
上底 下底
2 0 ③电荷分布是球对称
E
S
Φ E d S E 4r 2
E
E
Q 4 r 2
图示闭合面包围了两个等量异号点电荷±q.下列说法是 否正确?如有错误请改正. (1) 高斯定理 E d S q / 0 成立. S (2) 因闭合面内包围净电荷∑q i=0,得到
大学物理(下)期末复习题
大学物理(下)期末复习题一、填空题1、 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, 位置势能与动能相等。
2.有一平面简谐波沿x 轴正方向传播,波速为6s m /,已知在0=x 处的质点的振动方程为))(23cos(1.0m t y ππ-=,则波动方程为 ;质点在x 轴上m x 3-=处的振动方程为 ,m x 3-=处的振动加速度为 。
3.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =______,波速u =________,波长λ = 。
4. 一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为________________。
5. 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________。
6. 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
如果两滚珠之间的距离L 变大,则在L 范围内干涉条纹的数目 ,条纹间距 (填变化情况)。
7. 如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,若薄膜厚度为e ,而且321n n n >>,则两束透射光的位相差为 。
8. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长 。
9.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为 个半波带,沿第三级暗纹的衍射方向狭缝可分为 个半波带,若用波长为λ的单色光照射时沿衍射角为θ方向,宽度为b 的单缝可分为 个半波带。
大学普通物理B(下)复习资料。
x − x0 y( x, t ) = Acos ω (t m ) +ϕ u
说明: 说明: 1) “±”反映波的传播方向; 反映波的传播方向; ± 反映波的传播方向 2) x0 是波源坐标; 是波源坐标; 是波源的振动初相位。 3) ϕ 是波源的振动初相位。
波函数物理意义: 波函数物理意义:
时的波形曲线, 例:如图为一平面简谐波在t=0时的波形曲线,波 如图为一平面简谐波在 时的波形曲线 线上x=1m处P点的振动曲线如图所示,求波函数。 点的振动曲线如图所示, 线上 处 点的振动曲线如图所示 求波函数。 y(m) u y(m) 0.2 0.2 P o 1 2 x(m) o 0.1 0.2 t(s) 解:由波形曲线 由P点振动曲线 点振动曲线
x 若 y = Acosωt − u
λ
∆x
x
∂y x v= = −Aωsin ωt − ∂t u ∂2 y x 2 a = 2 = −Aω cosωt − ∂t u
一般计算类型: 一般计算类型 1、比较标准波动表达式得到: A, ω, 、比较标准波动表达式得到:
C
5m
B A
x0 = 5
9m
D
x
yA振 = 3cos 4πt
(2) 以 B 为原点 )
波函数: 波函数:
x − x0 y = Acosωt − +ϕ u
x x −5 y = 3cos 4π t − = 3cos4π t − +π 20 20
Ek = Ep = 0
平衡位置处 y = 0, Ek = Ep
⇒ Emax
波的能量密度和能流密度 能量密度: 能量密度:单位体积中的波动能量
大学物理下复习题(附答案)
大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。
()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。
()错电荷电量是量子化的。
()对物体所带电量可以连续地取任意值。
()错物体所带电量只能是电子电量的整数倍。
()对库仑定律只适用于真空中的点电荷。
()对电场线稀疏处的电场强度小。
()对电场线稀疏处的电场强度大。
()错静电场是有源场。
()对静电场是无源场。
()错静电场力是保守力。
()对静电场力是非保守力。
()错静电场是保守力场。
()对静电场是非保守力场。
()错电势是矢量。
()错电势是标量。
()对等势面上的电势一定相等。
()对沿着电场线的方向电势降落。
()对沿着电场线的方向电势升高。
()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。
()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。
()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。
()错电荷在电场中某点受到电场力很大,该点场强E一定很大。
()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。
()对在以点电荷为中心,r为半径的球面上,场强E处处相等。
()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。
()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。
()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。
()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。
()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。
对导体达到静电平衡时,导体内部的场强处处为零。
()对第一章填空题已一个电子所带的电量的绝对值e= C。
1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。
8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。
大学物理下册总复习(可拷)全篇
0
可见光波长范围 3900 ~ 7600 A
干涉
nr为介质中与路程 r 相应的光程。
位相差与光程差: 2
两相干光源同位相,干涉条件
a· b· n
r 介质
k ,
k 0,1,2…加强(明)
(2k 1)
2
杨氏干涉
k 0,1,2…减弱(暗)
分波阵面法
等倾干涉、等厚干涉 分振幅法
杨氏干涉
缺级
单缝衍射 a sin =n
极小条件 n=0,±1, ±2,···
即:
k nab a
光栅主极大 (a+b)sin =k k 就是所缺的级次
k=0,±1, ±2, ···
偏振
I I0 cos2
自然光透过偏振片
1 I 2 I0
起偏角
tgi0
n2 n1
i0
2
载流直导线的磁场:
B
0 I 4a
(cos1
cos2 )
无限长载流直导线:
B 0I 2a
直导线延长线上: 载流圆环 载流圆弧
B0
B 0I
2R B 0I
2R 2
B
R
I
无限长直螺线管内部的磁场
B 0nI
磁通量 磁场中的高斯定理
m
B
dS
B
cos
dS
B dS 0
安培环路定理
磁介质中安培 环路定理
M L1L2
自感磁能 磁场能量
磁场能量密度
W 1 LI 2 2
W 1 BHV 2
w W 1 B2 1 H 2 1 BH
V 2 2
2
任意磁场总能量
W
V
wdV
大学物理复习提纲(下)
《大学物理》(下)复习提纲第6章 恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐一拉普拉斯定律。
(2) 掌握安培环路定律,应用安培环路定律计算磁场.(3)掌握安培定律,会用安培定律计算磁场力。
会判断磁力矩的方向。
会判断霍尔效应电势的方向。
1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为________________.则P 点磁感强度B的大小为4. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P点的磁感强度B.5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )R I πμ20 (B )240RIμ6.如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小 为________________________,方向___________________.7. 真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8.均匀磁场的磁感强度B 与半径为 r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.9.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll d B 等于10.如图,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中哪一个是正确的?11.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) 0d=⎰⋅LlB,且环路上任意一点B = 0.(B) 0d=⎰⋅LlB,且环路上任意一点B≠0.(C) 0d≠⎰⋅LlB,且环路上任意一点B≠0.(D) 0d≠⎰⋅LlB,且环路上任意一点B =常量.[]12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R1处磁感强度大小为________________.(2) R1< r< R2处磁感强度大小为________________.(2) 在r > R3处磁感强度大小为________________.13. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅L l dB等于:_______________________(对环路a)._______________________(对环路b)._______________________(对环路c).14. 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) =⎰⋅1d Ll B⎰⋅2d L l B, 21P P B B ≠.(D)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ]15.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A) 不动. (B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁. [ ]16. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为____________,方向_________________.17.如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω转动时,圆环受到的磁力矩为 ___ _________, 其方向__________________________.L 1 2I 3(a)(b)⊙18.有两个半径相同的环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19.如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈的运动将是 ______________________ _________; 若线圈平面与直导线垂直,见图(b),则圆线圈将 __________________________________________________。
《大学物理教学资料》大物复习资料.doc
总加速度:1 .牛顿第一定律:当豆外=0时, V =怛矢量O2 .牛顿第二定律:F = ma =m— dtdPdt期末考试说明第1章质点运动学9分,重点:求导法和积分法,圆周运动切向加速度和法向加速度;第2章质点动力学3分,重点:动量定理、动能定理、变力做功;第3章刚体6分,重点:转动定律、角动量守恒定律、机械能守恒定律;第5章振动17分,重点:旋转矢量法、振动方程、速度方程、加速度方程、振动能量、振动合成。
第6章波动14分,重点:波动方程以及波动方程的三层物理意义、相位差与波程差的关系;大学物理1期末复习提纲第一•章质点运动学主要公式:1.质点运动方程(位矢方程):r(t) = x(t)i + y(t)j + z(t)k(x = x(t)参数方程:y = y(f) T消去f得轨迹方程。
Z — Z(02.速度:v =K,加速度:a = ^dt dt3.平均速度—Ar:V =——,平均加速度:5 =—4.角速度:口 =岑,5.线速度与角速度关系:v 角加速度:/3(a)=—dt =0)r6.切向加速度:a T = — = r(3 ,dt ra =』a;第二章质点动力学主要公式:3.牛顿第三定律(作用力和反作用力定律):F = -F^4.动量定理:I = \ 2 F dt = mAv = m(v2~v{) = AP5.动量守恒定律:当合外力理外力=O,AP = Ocx口16 动能定理:W= -dx = \E k =-m(v22-vf)J*】口 27.机械能守恒定律:当只有保守内力做功时,AE =08.力矩:M = rxF大小:M = Fr sin 0方向:右手螺旋,沿了x产的方向。
9.角动量:L = rxP大小:L = mvr sin 3方向:右手螺旋,沿rxP的方向。
淤质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
大学物理下学期期末总复习 (1)
r 2 (1 2
r1 r2
)
6. 三根长直同轴导体圆柱面A、B和C,半径分别为
Ra、Rb、Rc 圆柱面B 带电荷, A和C都接地(如下图)。
试求: 圆柱面B 的内表面上电荷线密度1和外表面上电荷
线密度2 之比。(08.1)
Rc
解:设圆柱面B 带正电荷,由于
Rb
A和C都接地。 所以, A和C上
Ra
(5). 环行载流螺线管
. 典型例题
1. 如图所示,两根导线沿半径方向引到铁环上的A、B 两点,并在很远处与电源相连,求环中心的磁感应强度.
解: 环中心的磁感应强度为 1、2、3、4、5段载流导线 在此点产生的磁感应强度 的矢量和.
O点在3和4的延长线上,5离O 点可看作无限远,故:
设1圆弧弧长l1,2圆弧弧长l2, 圆的周长为l
方向向上
4、 一长直导线通有电 流I1=20A , 其旁有一载流 直导线ab , 两线共面ab长 为L=9.010-2m , 通以电流 I2=10A , 线段ab垂直于长 直导线 , a端到长直导线
的距离为d=1 10-2m
d
L 9.0102 m
求 1)导线ab所受的力; 2)导线ab所受作用力对O点的力矩.
都将感应等量的负电荷。 由高斯定理分别求得A、B
ABC
E1 E2
和 B、C间场强分布:
B 、A 间的电势差: B 、C 间的电势差:
U BA U BC
Rc Rb
Ra
ABC
E1 E2
稳恒磁场(11-12)主要内容回顾
1. 几个重要的物理量
(1) 磁感应强度Bo (真空中) 有磁介质时的磁感应强度B (总磁场)
描述电磁波的波函数:
大学物理下册复习完整版总结
《大学物理》下册复习课复习提纲▪电磁学▪振动和波▪光学▪量子物理电磁学●稳恒磁场:●磁介质:●电磁感应:●电磁场:B 的定义,毕奥-萨伐尔定理,安培环路定理及其计算,高斯定理,载流线圈在均匀磁场中受到的磁力矩,安培力的功,洛仑兹力,带电粒子在均匀磁场中的运动,霍尔效应描述磁介质磁化强度的物理量,有磁介质存在时的安培环路定理,铁磁质电磁感应的基本定律,动生电动势,感生电动势和涡旋电流,自感和互感,磁场能量位移电流,麦克斯韦方程组θ霍耳效应BAA ′I+F 洛+-(霍耳电压);dIB R nqb IB U H H ==nqR H 1=(霍耳系数))(=⨯-+-B v e eE H 平衡条件:d vBE H =nbdqv I =vBdd E U H H ==E载流导体产生磁场磁场对电流有作用一.磁场对载流导线的作用大小:方向:由左手定则确定任意形状载流导线在外磁场中受到的安培力(1) 安培定理是矢量表述式(2) 若磁场为匀强场在匀强磁场中的闭合电流受力磁场对电流的作用讨论安培力RBI F 2 ⋅=方向向右=F I受力≠F 练习:1.求下列各图中电流I 在磁场中所受的力1I Io Rb a BI⨯⨯⨯⨯⨯⨯⨯⨯⨯B II ⨯⨯⨯⨯⨯⨯⨯⨯⨯总结:安培定律Bl I F F Lm Lm ⨯==⎰⎰d d 整个载流导线所受的磁场作用力为P m=I S =I S nn I对任意形状的平面载流线圈:BP M m ⨯=磁力矩:磁矩电流元I d lN·A-2并分解;计算分量积分,求得B。
B总结:描述稳恒磁场的两条基本定律(1)磁场的高斯定理(2)安培环路定理用安培环路定理计算磁场的条件和方法磁场是无源场(涡旋场)0sB ds =⎰⎰01n i i LB dl I μ==∑⎰L1I 2I 3I 4I 正负的确定:规定回路环形方向,由右手螺旋法则定出∑iI积分路径或与磁感线垂直,或与磁感线平行.说明(1)这是计算感应电动势的普遍适用公式,但必须在闭合回路情况下计算(2)公式中“”号表示电动势的方向,是楞次定律的数学表示,它表明总是与磁通量的变化率的符号相反i (3)电动势方向可采用电磁感应定律中负号规定法则来确定,也可以由楞次定律直接确定ABCD)对于各向同性的顺、抗磁质:HH B r μμμχμ==+=00)1(,0=M 在真空中:,r μχ=+1顺磁质抗磁质铁磁质1>r μ1<r μ,1>>r μ,,10μμμr ==表示磁介质的磁化率。
大学物理复习题(下)
大学物理复习题(下册)第八章 振 动一.单项选择题1、一个轻质弹簧竖直悬挂,弹簧系数为k ,簧的下端悬挂一质量为m 的物体。
则此系统作简谐振动时振动的固有角频率为( )A .k m =ωB .k m =ωC .m k =ωD .mk =ω 2、一质点作简谐振动,其振动表达式为x=0.02cos(4)2t π+π(SI),则其周期和t=0.5s 时的相位分别为( )A .2s 2πB .2s π25C .0.5s 2πD .0.5s π25 3、一弹簧振子作简谐振动,初始时具有动能0.6J ,势能0.2J 。
1.5个周期后,弹簧振子振动的总能量E=( )A .0.2JB .0.4JC .0.6JD .0.8J4、简谐振动的运动方程为x=Acos (ωt+ϕ),相应的x 一t曲线如图所示,则其初相ϕ为( )A.2π-B.0C.2πD.π 5、质点作简谐振动,振动方程x=0.06cos(3πt-2π)(SI)。
质点在t=2s 时的相位为( ) A .61π B .31π C .21π D .65π 6、简谐振动的位移曲线x —t ,速度曲线V 一t ,加速度曲线a-t 在图中依次表示为( )A .曲线I 、II 、IIIB .曲线II 、I 、IIIC .曲线III 、II 、ID .曲线I 、III 、II7、两个同方向简谐振动的运动学方程分别为x 1=2×10-2cos ⎪⎭⎫ ⎝⎛π+3t 10(SI) x 2=2×10-2cos ⎪⎭⎫ ⎝⎛π-3t 10(SI) 则合振动的运动学方程为( )A .x=4×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) B .x=4×10-2cos10t(SI) C .x=2×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) D .x=2×10-2cos10t(SI) 8、一个单摆,其摆长为l ,悬挂物体的质量为m ,则该振动系统的周期为( )。
大学物理(下)期末复习题
练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S面内的P 点移到T 点,且OP =OT ,那么(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
3. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )12121221(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。
4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
二、填空题:1. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为 方向 。
2. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为ρ。
则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。
大学物理期末复习知识点
CV ,m T
200J
M R T 200J M mol
CV
,m
i 2
R
3 2
R(单)
CV
,m
i 2
R
5 2
R(双)
Q 500J 单
Q 700J 双
例题
例题:一定质量的理想气体的内能E随体积V的变化关系为一直线, 其延长线过E-V图的原点,如图,试判断此直线表示什么过程?
❖ 分析:内能变化公式为:
Q E W
dQ dE pdV
Q E V2 pdV V1
分析:一定量的理想气体,经历某过程后,温度升高了,则说明( D ): A.吸了热; B.外界对系统做功;C. 系统对外界做功;D.内能增加。
知识点2:等值过程
过程 过程方程 热一律 内能增量ΔE 做功W 吸放热Q 摩尔热容
等容 dV=0 等压 dp=0
卡诺循环(理想热机):两绝热+两等温 ❖ 卡诺热机循环(卡诺正循环) 热机效率的理想值:
1 T2 T1 T2 T1 T1
❖ 卡诺制冷机机循环(卡诺负循环)
制冷系数
e T2 T1 T2
供暖系数: Q1 1 e
W
例题
例:一卡诺热机在1000K和300K的两热源之间工作,求热机效率。
若低温热源不变,要使热机效率提高到80%,则高温热源温度需提 高多少?
平均动能与势能
Ek
Ep
1 4
kA2
1 2
E
思考: 1、当质点以频率ν 做简谐振动时,其动能的变化频率为多少? 2ν 2、简谐振动过程中,动能和势能相等的位置的位移在何处?
sin2 (t 0 ) cos2 (t 0 ) t 0 45或135 x Acos 45或Acos135
大学物理II期末复习
大学物理II 期末复习1、图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势.解法1: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均 为U . 在球层内取半径为r r dr →+的薄球层.其电荷为24dq r dr ρπ=该薄层电荷在球心处产生的电势为()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()21220002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 解法2:由高斯定理可知1r R <,10E =, 2分12R r R <<,331220()r R E r ρε-=, 2r R >,3321320()R R E rρε-= 若根据电势定义⎰⋅=l E Ud空腔内任一点电势为:12121230R R R R U E dr E dr E dr ∞=++⎰⎰⎰()222102R R ρε=- 2、如图所示,两个共面的平面带电圆环,其内外半径分别为1R 、2R 和2R 、3R ,外面的圆环以每秒钟2n 转的转速顺时针转动,里面的圆环以每秒钟1n 转的转速反时针转动.若电荷面密度都是σ,求1n 和2n 的比值多大时,圆心处的磁感强度为零.解:(1) 在内圆环上取半径为r 宽度为dr 的细圆环,其电荷为σr r q d 2d π= 由于转动而形成的电流 r rn q n i d 2d d 11σπ==di 在O 点产生的磁感强度为r n r i B d )2/(d d 1001σμμπ==其方向垂直纸面向外.(2) 整个内圆环在O 点产生的磁感强度为==⎰11d B B ⎰π21d 10R R r n σμ)(121R R n -π=0σμ其方向垂直纸面向外.(3) 同理得外圆环在O 点产生的磁感强度)(23203R R n B -π=σμ 其方向垂直纸面向里. (4) 为使O 点的磁感应强度为零,B 1和B 2的量值必须相等, 即 )(121R R n -π0σμ)(232R R n -π=0σμ于是求得n 1和n 2之比122312R R R R n n --=3、一电子以0.99v c =(c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少焦耳?(2) 电子的相对论动能是多少焦耳?(电子静止质量319.1110kg e m -=⨯)解:(1) 222)/(1/c c m mc E e v -===5.8×10-13 J(2) 22k e E mc m c =-= 4.99×10-13 J4、两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率0dI dt a =>.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势ε,并指出线圈中的感应电流是顺时针还是逆时针方向.解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:300123d ln222ddIIdd r rμμφ=⋅=⎰ππ与线圈相距较近的导线对线圈的磁通量为:2002d ln 222ddIIdd r r μμφ=-⋅=-ππ⎰总磁通量 0124ln 23Id μφφφ=+=-π 2分感应电动势为: 00d 4d 4(ln )ln d 23d 23d d I a t t μμφε=-==ππ (2) 线圈中的感应电流是顺时针方向.5、用波长00.1nm λ=的光子做康普顿散射实验.(1) 散射角o 90ϕ=的康普顿散射波长是多少? (2) 反冲电子获得的动能是多少焦耳? (普朗克常量346.6310h -=⨯J ·s ,电子静止质量319.1110kg e m -=⨯)解:(1) 康普顿散射光子波长改变: ()(1cos )e hm cλϕ∆=-=0.024×10-10 m =+=∆λλλ0 1.024×10-10 m(2)根据能量守恒: 220e h m c h mc νν+=+即 220k e E mc m c h h νν=-=-0//k E hc hc λλ=-故k E =4.66×10-17 J =291 eV6、电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0 )的点电荷,求带电细棒对该点电荷的静电力.解:沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a xx a q E -π=-π=ελε ()⎰--π=2/2/204d L L x a xE ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ 方向沿x 轴正向. 点电荷受力:==qE F ()2204πL a qQ-ε方向沿x 轴正方向.7、图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1) 推导出x 轴上P 点处的磁感强度)(x B 的表达式.(2) 求P 点在x 轴上何处时,该点的B 取得最大值.解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:r I B π=201μ2/1220)(12x a I +⋅π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2/1220)(12x a I +⋅π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B )()(220x a Iax B +π=μ,i x a Iax B)()(220+π=μ(2) 当 0d )(d =x x B ,0d )(d 22=<xx B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.8、如图所示,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感).解:长直带电线运动相当于电流λ⋅=)(t I v . 正方形线圈内的磁通量可如下求出d d 2Ia x a x μφ=⋅π+000d ln 222ax Ia Ia a x μμφ==⋅π+π⎰0d d ln 2d 2d i a It tμφε=-=π2ln d )(d 20t t a v λμπ=d ()()ln 22d it i t aRRtεμλ==πv9、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少?(2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7s10、已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ (0 ≤x ≤a )求发现粒子的概率为最大的位置.解:先求粒子的位置概率密度)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=当 1)/2c o s(-=πa x 时, 2)(x ψ有最大值.在0≤x ≤a 范围内可得 π=πa x /2 ∴ a x 21=.a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B2
任意磁场的能量
Wm
V wmdV
1 B2 dV
V2
位移电流 I dD
dt
位移电流密度
Jd
D t
麦克斯韦方程组
SDdSq内
S BdS 0
Edl BdS
L
Sห้องสมุดไป่ตู้t
H dl
L
D I0 S t dS
平面电磁波的性质
(1)电磁波的传播速度为 v 1
(2)电磁波是横波, E, H , v 构成正交右旋关系. (3)电磁波是偏振波, E, H 都在各自的平面内振动,且
环形螺线管内
L B dl 2 rB
B 0I 2 r
B
0nI
0
内 外
B
0NI 2 r
内
0 外
洛伦兹力 FmqvB
回旋半径 R mv 0 qB
周期 T 2R 2m
v0
qB
回旋半径 回旋周期
R mv qB
T 2 m
qB
螺距 h v//T
霍耳效应
IB U H RH b
安培力 df IdlB
电场强度
F
E
q0
电场强度的大小: 单位电荷在该处所受到的电场力
电场强度的方向: 正电荷在该处所受电场力的方向
电场强度叠加原理 点电荷的电场
n
E Ei i 1
E
1
4 0
q r2
er
dE
dq
40r 2
er
E dE
点电荷的电场强度大小 呈球对称分布.
带电体在外电场中所受的作用力 点电荷在外场中受力
F qE
连续带电体在外场中受力
F Edq
电偶极子在均匀电场中所受的合力矩
MpeE
电通量 通过电场中任一给定面的电场线数.
e
E dS
S
EdS cos
S
闭合曲面电通量
e
E dS
S
静电场的高斯定理
e
E dS 1
s
0
q内
静电场的环路定理 Edl 0
高斯定理的应用 (1)利用高斯定理求电通量
电源电动势方向:
电源内部由负极到正极方向
非静电场强
Ek
Fk q
法拉第电磁感应定律
i
N
dm
dt
N
d dt
B dS
S
动生电动势
Fm e(v B)
Ek
Fm e
vB
i Ek dl
a
b (v B) dl
i
1 2
B L2
i
0vI 2
ln
d d
l
感生电动势
i
B L Ε涡 dl S t dS
磁矩
f L df L Idl B
pm NISn 磁力矩
M pm B
磁力的功
A m2 Id m1
m
磁介质 (1) B B0 顺磁质. (2) BB0 抗磁质. (3) B B0 铁磁质.
磁介质中的安培环路定理
LHdl I0
真空磁介质
0 0r B0 rB0
传导电流
电源的电动势
E _电源内 kdl
i
1 2
hL
dB dt
rR
E涡
r 2
dB dt
rR
E涡
R2 2r
dB dt
自感系数
L
I
互感系数
M 12
I2
M 21
I1
自感电动势
L
d
dt
L dI dt
互感电动势
12
d 12
dt
M
dI2 dt
21
d 21
dt
M
dI1 dt
自感磁能
WL
1 2
LI 2
磁场能量密度
wm
Wm V
1 2
毕奥-萨伐尔定律的应用
载流直导线的磁场
B
0 I 4 r
(cos1
cos2
)
无限长载流直导线
B 0I 2 r
直导线延长线上
B0
圆形电流圆心处的磁场
B 0I
2R
B 0I 2R 2
运动电荷的磁场
B
0 4
qv r r3
安培环路定理 Bdl0 Ii
轴对称
长直载流螺线管
L B dl 2 rB B dl B ab
E, H 是同位相的,同频率的.
(4) 在同一点的E,H值满足: E H
电磁场能量密度
1
w we wm 2
E2 H2
能流密度矢量 (坡印廷矢量)
S EH
S EH
1 S 2 E0 H0
黑体辐射
(1) 斯特藩-玻尔兹曼定律
M(T)T4
(2) 维恩位移定律
mT b
光电效应
1 2
E2
任意电场的电能
We
V dWe
1 E2dV
V2
电流密度 J
J
dI dS
en
电流强度:单位时间内通过某截面的电量.
dI J dS
I SJdS
磁感应强度
大小: B Fmax q0v
方向:小磁针在该点的N 极指向.
磁通量 m B dS B cosdS
磁场中的高斯定理 BdS0
Vb )
电势能
电势差
电势
静电力做功= 静电势能增量
的负值
Wa a q0E dl
b
Uab
Edl
a
Va
Wa q0
a E dl
电势的计算
叠加法
n
V Vi
i1
q V P 4 0r
V
Vi
qi
40ri
dq
V dV 40r
定义法
Va= a Edl
均匀带电球面电场中的电势
V
●q ●q
• q2 • q1
高斯定理的应用
(2)利用高斯定理计算具有对称性的电场
球对称
轴对称
E dS E4 r2 E dS E(2 rl)
面对称
E dS=2ES
E
q
4 0r 2
,r
R
E ,r R 20r
E
2 0
电场力的功
b
Aab
Wa Wb
q0
Edl
a
q0 (Va
EV
导体表面外 侧的场强
E
0
注意:与 E 的区别. 2 0
介质中的高斯定理
DdS S
q0自由电荷
真空电介质
0 0r
E0
E0
r
,
V0
V0
r
孤立导体 的电容
C q V
电容器的电能
电容器 的电容
C
q
U AB
平行板电容器 C 0S
d
We2QC 2 12QU12CU2
电场能量体密度
we
1
2
q ,
4 0R q,
r R r R
4 0 r
电场强度与电势梯度的关系
E(Ui UjUk) x y z
静电平衡性质
(1)导体内部任意点的场强为零.
(2)导体表面附近的场强方向处处与表面垂直.
(3)导体是等势体,导体表面是等势面,且导体内部电势
等于导体表面电势.
电荷守恒定律 静电平衡条件
新的电荷分布
mvm2 ax
eUa
遏制电压
Ua =K U0
爱因斯坦光电效应方程
h
1 2
mvm2
W
红限频率
0
W h
光子能量 电子最大 逸出功 初动能
光的波粒二象性
光子能量 h
光子质量 光子动量
h
m c2 c2
p mc h h
c
康普顿效应
康普顿散射公式
0
h m0c
(1
cos
)
反冲电子动能
mc2
m0c 2
hc
0
hc
氢原子的玻尔理论
波数 1R (k 12n 12)T(k)T(n)
R 1.096776107 m1
玻尔理论的基本假设
(1) 定态假设
(2) 频率假设 hEnEk
(3)轨道角动量量子化假设
Ln h n
2
氢原子的玻尔理论
定态能量的量子化
基态能级
E1
En
1 n2