基于单片机超声波测距仪

合集下载

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告【文章标题】基于STM32单片机的超声波测距仪设计报告【引言】超声波测距是一种常见且有效的测量方法,被广泛应用于工业控制、自动化、智能家居等领域。

本文将深入讨论基于STM32单片机的超声波测距仪的设计原理、硬件搭建和软件编程,并分享对该设计的观点和理解。

【简介】1. 超声波测距原理简介(可使用子标题,如1.1)- 超声波的特性与应用- 超声波传感器原理及工作方式2. 设计方案(可使用子标题,如2.1)- 系统框图:硬件模块与连接方式- 所需材料清单及器件参数选择【正文】1. 超声波传感器的选型与特性比较(可使用子标题,如1.1)1.1 超声波传感器的种类与特点1.2 STM32单片机与超声波传感器的配合选择理由与原则2. 硬件电路设计与搭建(可使用子标题,如2.1)2.1 超声波发射电路设计与实现2.2 超声波接收电路设计与实现2.3 STM32单片机与超声波传感器的连接方法及引脚映射3. 软件编程实现(可使用子标题,如3.1)3.1 STM32单片机开发环境配置与准备3.2 程序框架和流程设计3.3 超声波信号处理与距离计算算法【总结】1. 设计成果总结与优缺点评价- 设计成果与功能实现总结- 设计过程中的挑战与解决方案- 设计的优点与改进空间2. 对基于STM32单片机的超声波测距仪设计的观点和理解- 本设计在硬件搭建和软件编程方面充分利用了STM32单片机的性能与功能- 超声波测距仪在工业自动化和智能家居等领域具有广阔应用前景 - 未来可以进一步提升设计的灵活性和可扩展性【参考资料】- 张三: 《超声波测距原理与应用技术》,出版社,2018年- 李四: 《STM32单片机与嵌入式系统设计》,出版社,2019年以上是本文基于STM32单片机的超声波测距仪设计报告,对这个主题的观点和理解。

希望这篇文章内容全面、深入,并能帮助您对超声波测距仪设计有更深刻的理解。

基于单片机的超声波测距仪设计与实现

基于单片机的超声波测距仪设计与实现

企业组织结构类型1、直线制直线制是一种最早也是最简单的组织形式。

其特点是企业各级行政单位从上到下实行垂直领导,下属部门只接受一个上级的指令,各级主管负责人对所属单位的一切问题负责。

厂部不另设职能机构(可设职能人员协助主管人工作),一切管理职能基本上都由行政主管自己执行。

直线制组织结构的优点是:结构比较简单,责任分明,命令统一。

2、职能制职能制组织结构,是各级行政单位除主管负责人外,还相应地设立一些职能机构。

如在厂长下面设立职能机构和人员,协助厂长从事职能管理工作。

这种结构要求行政主管把相应的管理职责和权力交给相关的职能机构,各职能机构就有权在自己业务范围内向下级行政单位发号施令。

因此,下级行政负责人除了接受上级行政主管人指挥外,还必须接受上级各职能机构的领导。

3、直线—职能制直线-职能制,也叫生产区域制,或直线参谋制。

它是在直线制和职能制的基础上,取长补短,吸取这两种形式的优点而建立起来的。

4、事业部制事业部制最早是由美国通用汽车公司总裁斯隆于1924年提出的,故有“斯隆模型”之称,也叫“联邦分权化”,是一种高度(层)集权下的分权管理体制。

它适用于规模庞大,品种繁多,技术复杂的大型企业,是国外较大的联合公司所采用的一种组织形式,近几年中国一些大型企业集团或公司也引进了这种组织结构形式。

5、模拟分权制这是一种介于直线职能制和事业部制之间的结构形式。

许多大型企业,如连续生产的钢铁、化工企业由于产品品种或生产工艺过程所限,难以分解成几个独立的事业部。

又由于企业的规模庞大,以致高层管理者感到采用其他组织形态都不容易管理,这时就出现了模拟分权组织结构形式。

6、矩阵制在组织结构上,把既有按职能划分的垂直领导系统,又有按产品(项目)划分的横向领导关系的结构,称为矩阵组织结构。

基于单片机的超声波测距仪的设计

基于单片机的超声波测距仪的设计

基于单片机的超声波测距仪的设计超声波测距仪是一种常见的测量距离的仪器,它使用超声波的反射原理来测量被测物体与测距仪之间的距离。

基于单片机的超声波测距仪可以实现更精确、更灵活的测距功能。

本文将详细介绍基于单片机的超声波测距仪的设计。

首先,我们需要选择合适的硬件平台。

单片机作为核心芯片,可以选择AT89C51或者STM32等。

超声波传感器可以选择HC-SR04或者JSN-SR04T等。

此外,我们还需要一块LCD显示屏用于显示测距结果,以及一些电路连接线等。

接下来,我们需要设计电路部分。

首先,将超声波传感器的VCC引脚连接到单片机的5V引脚,将GND引脚连接到单片机的GND引脚。

然后,将超声波传感器的Trig引脚连接到单片机的一些IO口,将Echo引脚连接到单片机的另一个IO口。

最后,将LCD的引脚连接到单片机的相应IO 口,至此电路部分完成。

接下来,我们需要编写相应的软件程序。

首先,我们需要初始化单片机的IO口,将Trig引脚设置为输出模式,Echo引脚设置为输入模式。

然后,我们需要设置中断,以便能够检测到Echo引脚电平的变化。

当超声波传感器发出一次超声波后,Echo引脚将会有一次脉冲输出,该脉冲的宽度与被测物体与测距仪之间的距离成正比。

我们可以通过测量脉冲的宽度来计算出距离。

在进行测距之前,我们需要先发出一段超声波。

通过设置Trig引脚为高电平,持续10us,然后将其设为低电平,即可发出一段超声波。

接下来,我们需要在中断服务函数中记录下Echo引脚电平变化的时间,即可以得到Echo引脚电平变化的时间间隔。

根据声速的传播速度,我们可以将时间间隔转换为距离。

最后,我们将测量到的距离结果显示在LCD屏幕上。

通过调用LCD驱动程序中的相应函数,我们可以将距离结果以字符串的形式显示在LCD屏幕上。

综上所述,基于单片机的超声波测距仪的设计包括硬件电路的设计和软件程序的编写。

硬件电路主要包括超声波传感器、单片机、LCD显示屏等的连接,软件程序则主要包括初始化IO口、设置中断、发出超声波、测量脉冲宽度、计算距离和显示结果等的功能。

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告1. 引言超声波测距仪(Ultrasonic Distance Sensor)是一种常用的测距设备,通过发送超声波脉冲并接收其反射信号来测量目标与测距仪之间的距离。

本报告将详细介绍基于stm32单片机的超声波测距仪的设计过程。

2. 设计原理超声波测距仪的基本原理是利用超声波在空气中的传播速度和反射特性来计算目标物体与测距仪之间的距离。

其中,stm32单片机作为测距仪的控制核心,通过发射超声波脉冲并测量接收到的回波时间来计算距离。

2.1 超声波传播速度超声波在空气中的传播速度约为340m/s,可以通过测量超声波往返的时间来计算出距离。

2.2 超声波反射信号当超声波遇到障碍物时,会产生反射信号,测距仪接收到这些反射信号并测量其时间差,再通过计算即可得到距离。

3. 硬件设计本设计使用stm32单片机作为核心控制器,并搭配超声波发射器和接收器模块。

3.1 超声波发射器超声波发射器负责产生超声波脉冲,并将脉冲信号发送到待测物体。

3.2 超声波接收器超声波接收器负责接收从物体反射回来的超声波信号,并将其转换为电信号。

3.3 stm32单片机stm32单片机作为测距仪的核心控制器,负责发射超声波脉冲、接收反射信号并计算距离。

4. 软件设计本设计涉及的软件设计包括超声波信号发射、接收信号处理和距离计算等。

4.1 超声波信号发射使用stm32单片机的GPIO口控制超声波发射模块,产生一定频率和周期的脉冲信号。

4.2 接收信号处理通过stm32单片机的ADC模块,将超声波接收器接收到的模拟信号转换为数字信号,并对信号进行处理和滤波。

4.3 距离计算根据接收到的超声波反射信号的时间差,结合超声波的传播速度,使用合适的算法计算出距离。

5. 实验结果与分析经过实际测试,基于stm32单片机的超声波测距仪达到了预期的效果。

能够精确测量目标与测距仪之间的距离,并显示在相关的显示设备上。

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计超声波测距仪是一种利用超声波测量距离的装置,具有测量速度快、精度高、非接触等特点,在机器人导航、自动控制、无损检测等领域得到了广泛的应用。

随着单片机技术的不断发展,基于单片机的超声波测距仪设计成为了可能,具有体积小、成本低、易于集成等优点。

本文将介绍一种基于单片机的超声波测距仪的设计与实现方法。

超声波测距仪的工作原理是利用超声波的传输特性来实现距离的测量。

超声波发射器发出超声波,超声波在空气中传播,遇到障碍物或被测物体后反射回来,被超声波接收器接收。

根据超声波的传播速度和传播时间,可以计算出超声波发射器与被测物体之间的距离。

一般来说,超声波的传播速度为340m/s,因此,距离计算公式为:距离 =传播速度×时间 / 2。

本设计选用STM32F103C8T6单片机作为主控制器,该单片机具有高性能、低功耗、丰富的外设接口等特点,满足系统的要求。

超声波测距仪的硬件部分包括超声波发射器、超声波接收器、单片机控制器和显示模块。

具体设计方案如下:(1)超声波发射器:采用HC-SR04模块,该模块集成了超声波发射器和接收器,输出脉冲宽度为5ms,驱动电压为5V。

(2)超声波接收器:同样采用HC-SR04模块,接收反射回来的超声波信号,并将其转换为电信号输出。

(3)单片机控制器:选用STM32F103C8T6单片机,接收超声波接收器输出的电信号,通过计算得到距离值,并将其输出到显示模块。

(4)显示模块:采用液晶显示屏,用于显示测量得到的距离值。

(1)初始化模块:对单片机、HC-SR04模块和液晶显示屏进行初始化。

(2)超声波发射模块:通过单片机控制HC-SR04模块发射超声波,并开始计时。

(3)超声波接收模块:接收反射回来的超声波信号,并输出到单片机。

(4)距离计算模块:根据超声波的传播速度和传播时间,计算出超声波发射器与被测物体之间的距离,并将其存储在单片机的存储器中。

(5)显示模块:将计算得到的距离值输出到液晶显示屏上。

基于51单片机超声波测距仪

基于51单片机超声波测距仪

基于51单片机超声波测距仪基于51单片机的超声波测距仪设计摘要利用超声波进行测距有许多优点比如不受光强度、色彩和电磁场等外界因素的影响,而且超声波传感器的价位较低、结构也较为简单,超声波以声速传播,方便收发与计算。

在汽车倒车雷达、移动机器人的避障、特别是测量距离等许多方面都已有了非常普遍的应用。

本次毕业设计的超声波测距仪是在STC89C51单片机的基础上设计的,在分析和了解了超声波的一些优点和特性后,又查看了利用超声波测距的基本原理。

最后决定使用51单片机系统和超声波传感器共同组成。

设计的超声波测距仪的硬件部分主要包括电源及复位模块、单片机与超声波模块组成的超声波发射模块、超声波接收模块、LED数码显示模块和扩展报警模块。

软件部分主要包括单片机主程序、根据超声波发射与接收计算距离程序、LED距离显示程序、按键控制程序和蜂鸣器报警程序,这样安排使得系统具有模块化的特点。

系统容易进行控制,具有可靠地的性能,具有较高的测量精度,最重要的是能对距离进行实时测量。

关键词:单片机,测距仪,超声波,实时测量Design of Ultrasonic Distance Meter Based on 51 MCMABSTRACTUsing ultrasonic ranging has many advantages for example, from the effects of light intensity, color and electromagnetic field and other external factors and price lower ultrasonic sensors, the structure is simple, ultrasonic sounds velocity, convenient transceiver and calculation. In the car reverse radar, mobile robot obstacle avoidance, especially measuring distance and many other aspects have been very common application.The graduation design of ultrasonic range finder based on STC89C51 MCU design, analysis and understanding of the some advantages and characteristics of ultrasonic and looked at the use of the basic principle of ultrasonic distance measurement. Finally, the composition of the 51 single-chip microcomputer system and ultrasonic sensor is decided.. The design of ultrasonic rangefinder hardware part consists of the power and reset module, SCM and ultrasonic module consists of ultrasonic emission module, ultrasonic receiving module, LED digital display expansion module and alarm module. Software part mainly includes MCU program, according to the ultrasonic transmitting and receiving computing program distance, the distance of LED display program, key control procedures and buzzer alarm procedures, this arrangement enables the system to have the characteristics of modular. The system is easy to control and has the reliable performance, and has the higher accuracy, and the most important is the real-time measurement of the distance.KEY WORDS: Single chip microcomputer,Range finder,Ultrasonic,Real-time measurement目录摘要 (I)目录 (III)第1章绪论 (1)1.1 研究背景 (1)1.2 研究的主要意义 (1)第2章系统电路设计 (3)2.1 系统结构设计 (3)2.2 电路总体设计方案 (3)2.2.1 发射与接收电路设计方案 (3)2.2.2 显示电路设计方案 (5)2.2.3 报警电路设计方案 (6)2.2.4 系统复位电路设计 (6)第3章系统硬件设计 (8)3.1 单片机概述 (8)3.1.1 STC89C51主要性能 (8)3.1.2 STC89C51外部结构及特性 (8)3.1.3 STC89C51内部组成 (11)3.2 超声波测距模块 (12)3.2.1 超声波传感器介绍 (12)3.2.2HC-SR04超声波测距芯片的性能特点 (12)3.2.3 超声波时序图 (15)3.3 驱动显示电路及报警电路 (15)3.3.1LED数码管显示电路 (16)3.3.2 蜂鸣器报警电路 (17)3.4HC-RS04超声波测距原理 (17)3.5 按键设置电路 (18)第4章系统软件设计 (21)4.1 系统主程序 (21)4.2 显示距离子程序 (22)4.3 报警子程序 (22)4.4 按键子程序 (23)第5章系统仿真 (25)5.1 系统仿真环境——Proteus (25)5.2 仿真 (25)5.3 误差及特性分析 (26)结论 (28)谢辞 (29)参考文献 (30)第1章绪论1.1 研究背景超声波测距法是通过超声波测量从已知位置到被测物体表面的距离的利用超声波的方法。

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计设计一个基于单片机的超声波测距仪的基本原理是利用超声波在空气中的传播速度固定的特性来测量距离。

当超声波发射器发送一个特定频率的信号波到目标物体,目标物体会反射回来,然后由接收器接收到反射信号。

通过计算信号经过的时间差,并结合超声波在空气中的传播速度,可以精确计算出距离。

这个基于单片机的超声波测距仪的设计可以分为以下几个部分:1.超声波发射器和接收器:这两个部分负责发射和接收超声波信号。

通常使用压电晶体作为超声波传感器,压电晶体能够将电能转化为声能,并将声能转化为电能。

发射器会以一定的频率产生电信号,压电晶体将电信号转化为超声波信号发射出去。

当接收器收到反射信号时,压电晶体将超声波信号转化为电信号。

2.单片机:单片机作为主控制器,连接超声波发射器和接收器,并负责控制测距过程。

单片机会发出触发信号,触发发射器发送超声波信号,并计时,当接收到反射信号后,停止计时。

然后,单片机会根据计时结果和超声波在空气中传播速度进行距离计算。

3.显示模块:为了方便用户查看测量结果,可以连接一个显示模块,例如LCD屏幕。

单片机会将距离计算结果发送到显示模块,并在屏幕上显示出来。

4.电源模块:这个模块负责为整个测距仪提供电源。

可以使用电池、直流电源或者通过交流电转换得到合适的电压。

设计上要考虑以下几个要点:1.界面设计:设计一个用户友好的界面使用户可以方便地与设备交互。

可以使用按钮或者触摸屏幕来触发测距操作。

2.外围电路设计:需要设计一个适当的外围电路来滤除噪音干扰,并确保超声波信号的传递质量。

3.算法设计:为了提高测量的精度,需要考虑多次测量和数据处理算法的设计。

可以通过多次测量去除异常值,并采用滤波算法来平滑测量结果。

4.安全设计:为了确保使用过程的安全,需要加入一些保护措施。

例如,当测量距离超过设定范围时,可以发出警告信号。

总结:基于单片机的超声波测距仪设计需要考虑硬件、软件、算法等多方面的因素。

基于单片机超声波测距仪的设计

基于单片机超声波测距仪的设计

基于单片机超声波测距仪的设计一、引言随着科技的进步和应用的广泛,超声波测距技术在各个领域中得到了广泛的应用。

超声波测距技术通过发送超声波并接收其反射信号,利用声波在空气中传播速度恒定的特性,可以精确地测量目标与传感器之间的距离。

基于单片机的超声波测距仪是一种常见的应用,本文将介绍该测距仪的设计原理、硬件和软件实现。

二、设计原理基于单片机的超声波测距仪的设计原理主要包括超声波发射与接收、信号处理和距离计算三个部分。

1. 超声波发射与接收该测距仪通过发送一定频率的超声波脉冲,并接收其反射信号来实现测距功能。

超声波发射器将电信号转换为超声波信号,并经过超声波传感器发射。

当超声波信号遇到目标物体后,一部分信号会被目标物体反射,经超声波传感器接收并转换为电信号。

2. 信号处理接收到的电信号经过放大、滤波和波形整形等处理,使信号能够被单片机准确识别和处理。

放大电路将微弱的接收信号放大到单片机能够处理的范围,滤波电路则去除掉噪声干扰,波形整形电路将信号整形为单片机可读取的数字信号。

3. 距离计算通过测量超声波的发射和接收时间,可以计算出目标物体与传感器之间的距离。

超声波在空气中传播速度恒定,通过测量超声波的往返时间,可以得到距离的数值。

三、硬件设计基于单片机的超声波测距仪的硬件设计主要包括超声波发射与接收电路、信号放大电路、滤波电路、波形整形电路和单片机控制电路等部分。

1. 超声波发射与接收电路超声波发射与接收电路由超声波发射器和超声波传感器组成。

超声波发射器将单片机输出的电信号转换为超声波信号,超声波传感器将接收到的超声波信号转换为电信号。

2. 信号放大电路信号放大电路用于放大传感器接收到的微弱信号,使其能够被后续的电路准确处理。

一般采用放大器电路来实现信号放大功能。

3. 滤波电路滤波电路用于去除信号中的噪声干扰,使后续处理的信号更加准确。

可以采用滤波器电路来实现滤波功能。

4. 波形整形电路波形整形电路将接收到的信号整形为单片机可读取的数字信号。

基于单片机的超声波测距仪设计毕业设计(论文)

基于单片机的超声波测距仪设计毕业设计(论文)

本科毕业设计(论文) 题目基于单片机的超声波测距仪设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

基于单片机的超声波测距仪

基于单片机的超声波测距仪

目录第一章绪论 (1)1.1 嵌入式系统简介 (1)1.2 研究背景及意义 (1)第二章超声波测距仪简介 (2)第三章原理图设计............................................... .3第四章 PCB设计 (6)第五章程序设计及作品展示................. (7)5.1 程序设计框图 (7)5.2 作品展示 (8)5.3 源代码 (9)总结 (19)第一章绪论1.1 嵌入式系统简介随着电子技术的快速发展,特别是大规模集成电路的产生而出现的微型机,使现代科学研究得到了质的飞跃,而嵌入式微控制器技术的出现则给现代工业控制领域带来了一次新的技术革命。

由嵌入式微控制器组成的系统,最明显的优势就是可以嵌入到任何微型或小型仪器、设备中。

嵌入式系统被定义为:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统,对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统[1]。

嵌入式系统是将先进的计算机技术、半导体技术、电子技术和各个行业的具体应用相结合后的产物,这一点就决定了它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。

嵌入式系统是以嵌入式计算机为技术核心,面向用户、面向产品、面向应用,软硬件可裁减的,适用于对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统[2]。

和通用计算机不同,嵌入式系统是针对具体应用的专用系统,目的就是要把一切变得更简单、更方便、更普遍、更适用;它的硬件和软件都必须高效率地设计,量体裁衣、去除冗余,力争在同样的硅片面积上实现更高的性能。

嵌入式系统通常由嵌入式处理器、外围设备、嵌入式操作系统和应用软件等极大部分组成1.2 研究背景及意义超声波是一种在弹性介质中的机械振荡,它是由与介质相接触的振所引起的,其频率在20kHz以上,是人耳听不到的一种声波,传播速度仅为光波的百万分之一,纵向分辨率较高。

基于51单片机超声波测距仪设计

基于51单片机超声波测距仪设计

个性化实验基于51单片机超声波测距器设计摘要传统地测距方法存在不可克服地缺陷.例如,液面测量就是一种距离测量,传统地电极法是采用差位分布电极,通过给电或脉冲来检测液面,电极由于长期浸泡于水中或其他液体中,利用超声波测量距离就可以解决这些问题,因此超声波测量距离技术在工业控制、勘探测量、机器人定位和安全防范等领域得到了广泛地应用.本设计以STC89C52单片机为核心控制定时器产生超声波脉冲并计时,计算超声波自发射至接收地往返时间,从而得到实测距离.并且在数据处理中采用了温度补偿对声速进行调整,用1602液晶显示速度和测量距离.整个硬件电路有超声波电路、电源电路、显示电路等组成.个探头地信号经单片机综合分析处理,实现超声波测距器地功能.在此基础上设计了系统地总体方案,最后通过硬件和软件实现了测距功能.此系统具有易控制、工作可靠、测距准确度高、可读性强和流程清晰等优点,即过系统扩展和升级,可以有效地解决汽车倒车,建筑施工工地以及一些工业现场地位置监控.关键词:STC89C52;超声波;温度补偿;测距目录绪论 (3)设计目地和意义 (3)设计任务和要求 (3)系统方案设计 (4)设计原理 (4)设计框图 (5)主要元器件介绍 (5)STC89C52 (5)LCD1602液晶显示器 (6)HC-SR04超声波模块 (8)DS18B20温度传感器 (9)系统硬件结构设计 (10)单片机电路 (10)LCD显示电路 (11)温度补偿电路 (11)电源电路 (12)系统软件设计 (12)主程序流程 (12)测距流程图 (13)测试 (14)测试结果 (14)误差分析 (15)总结 (15)附录 (17)整体电路图 (17)PCB布线图 (18)实物图 ......................................................................................................错误!未定义书签。

基于单片机的超声波测距仪系统设计

基于单片机的超声波测距仪系统设计

基于单片机的超声波测距仪系统设计一、本文概述随着科技的不断发展,超声波测距技术因其非接触性、高精度和快速响应等优点,在机器人导航、工业自动化、智能家居等领域得到了广泛应用。

本文旨在设计一种基于单片机的超声波测距仪系统,通过深入研究超声波测距原理,结合单片机控制技术,实现一种低成本、高性能的超声波测距解决方案。

文章首先介绍了超声波测距的基本原理和常用方法,然后详细阐述了基于单片机的超声波测距仪的硬件设计,包括超声波发射电路、接收电路、信号处理电路等关键部分的设计思路和实施方法。

接着,文章对测距软件算法进行了深入探讨,包括超声波传播时间的测量、距离计算等关键步骤的实现。

文章对设计的系统进行了测试,验证了系统的可靠性和稳定性。

通过本文的研究,希望能为相关领域提供有益的参考,推动超声波测距技术的发展。

二、超声波测距原理超声波测距是一种非接触式的距离测量方式,其基本原理是利用超声波在空气中的传播速度以及回声的时间差来计算距离。

超声波测距仪主要由超声波发射器、接收器和控制电路组成。

在超声波测距仪中,单片机发出控制信号给超声波发射器,使其发射出一定频率的超声波。

当超声波在空气中传播遇到障碍物时,会发生反射,反射波被接收器接收。

由于超声波在空气中的传播速度已知(约为340m/s),单片机可以通过测量发射信号和接收反射信号之间的时间差,即回声时间,来计算出超声波从发射到接收所经过的距离。

具体计算公式为:距离 = (超声波速度×回声时间) / 2。

需要注意的是,由于超声波在传播过程中会受到空气温度、湿度、风速等因素的影响,因此实际测量中需要对这些因素进行补偿,以提高测距的精度。

为了避免测量误差,还需要在硬件设计中考虑超声波发射和接收的角度、距离以及环境噪声等因素。

在单片机系统中,通过编程实现超声波发射、接收以及回声时间的测量。

单片机可以根据实际需要选择合适的计时器或定时器,对发射和接收信号进行精确的时间记录,并通过算法计算出距离值。

(完整word版)基于单片机超声波测距仪

(完整word版)基于单片机超声波测距仪

前言随着我国科学技术的迅速发展,许多场合都需要测距仪器的应用,如汽车倒车,建筑工地的施工以及一些工业现场的位置监控,还有矿井深度、水位位置、管道长度等场合都需要用到测距仪器。

要求仪器简单,方便,易操作控制,而超声波测距仪,就能实现以上的要求。

它测量范围在0.10-1.20m,测量精度1cm,测量时仪器与被测物体不会直接接触,而且能够清晰稳定的在液晶显示屏上显示出测量结果。

但就目前整体的技术水平来说,人们可以具体利用的测距技术还十分有限。

因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。

展望未来数十年,超声波测距仪作为一种新型的非常重要且有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。

本设计采用以AT89C51单片机为控制器核心的高精度、低成本、微型化数字显示超声波测距仪的硬件电路和软件设计方法。

整个电路采用模块化设计,由主程序、中断程序、发射子程序、接收子程序、显示子程序等模块组成。

各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。

在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。

1总体方案设计介绍所谓的超声波就是指频率高于20MHZ的机械波。

既然是以超声波为检测工具,那么肯定要产生超声波和接受超声波的工具,这就需要用到我们的传感器,俗称探头。

它有发射器和接收器之分,主要原理就是利用电效应把电能和超声波相互转换,利用声波介质对被检测物进行非接触式无磨损的检测。

超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。

本文所研究的超声波测距仪利用超声波指向性强、能量消耗缓慢、传播距离较远、中长距的高精度测距等优点,即用超声波发射器向某一方向发送超声波,将电能转换,发射超声波,同时在发射的时候单片机就开始计时,在超声波遇到障碍物的时候反射回来,超声波接收器在接收到反射回来的超声波回波时,将超生振动转换成电信号,同时单片机停止计时。

基于单片机的超声波测试仪的制作

基于单片机的超声波测试仪的制作
3. 实时性和快速性: 1. 单片机测距仪能够实时、快速地完成距离测量,并将结果输出给控制系统。这使得它能够在需要快速响应的场合(如车 辆避障、自动生产线等)中发挥重要作用。
4. 适应性强: 1. 超声波测距仪不受光线、被测物体颜色、电磁干扰等因素的影响,因此具有较强的适应性。这使得它能够在各种复杂环 境中进行准确的距离测量。
基于单片机的超声波测试仪的制作
单片机超声波测距仪检测方法研究
超声波的物理知识 超声波测试仪 系统的硬件 系统的设计 电路的调试
Page 2
单片机超声波测距仪检测方法研究
研究的背景和意义:超声波是一种频率高于20,000赫兹的声波,具有 方向性好、穿透能力强、易于获得较集中的声能等特点,这些特性使 得超声波在测距、测速、清洗、焊接、碎石等多个领域都有重要的应 用价值。其中,超声波测距作为一种非接触式的检测方式,与其他非 接触式的检测方式(如电磁或光学的方法)相比,不受光线、被测对 象颜色、电磁干扰等因素的影响,因此具有更高的适应性和准确性。
5. 智能化和自动化: 1. 单片机测距仪可以与其他传感器和执行器配合使用,实现智能化和自动化的测量与控制。例如,在机器人导航中,单片 机测距仪可以与视觉传感器、陀螺仪等配合使用,实现机器人的自主定位和导航。
6. 成本低廉: 1. 相比于其他高精度测距技术(如激光测距、雷达测距等),单片机超声波测距仪的成本较低,易于普及和推广。这使得 它能够在广泛的应用领域中发挥重要作用,特别是在一些对成本敏感的场合(如智能家居、智能玩具等)。
• 设计信号处理电路,包括放大电路、滤波电路等,以优化接收到的超 声波信号。
• 设计显示电路,以便将测量结果显示给用户。
Page 5
单片机超声波测距仪检测方法研究

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计1系统要求我们组选择制作了一套超声波测距系统,功能有:倒车雷达测量的显示距离在手机APP上显示,设定阈值,若小于设定的距离数值,蜂鸣器发出报警声。

2研究目的为了深层次的巩固学习的单片机的知识,更加熟悉的使用Proteus和Keil C51这两个软件。

能够综合所学的单片机的知识进行系统设计,将所学习的知识运用到生活中。

我们组选择制作了这样一套超声波测距系统。

3 设计方案及原理框图3.1 系统概述在汽车倒车中存在的困难之一也会影响到驾驶员的驾驶情况,在驾驶员在驾驶座位上无法完全了解到四周特别是后方环境时,只能依赖后视镜来观察后方障碍物,而这种环境因素也会限制驾驶员的视野狭窄和清晰度,从而驾驶员导致倒车会遇到危险。

其二是驾驶员在进行倒车过程中,要观察左右环境,同时也要兼顾到汽车后侧与障碍物的距离,这样会使驾驶员过于分心和费力费神。

其三是驾驶员会依赖自己长久以来的驾驶技术,以此来停靠车位,这样会引起驾驶员无法准确的倒入准确位置。

解决这种问题是在汽车生产行业中重中之重要解决的一个技术性难题,我们可在汽车内部安置一个汽车倒车预报警系统,显示器可装置在汽车内部,驾驶员能看到的有利位置,而感应器则可以装置在汽车后侧内部,从而接受到后方的障碍物情况,传输到显示器当中。

这个设计可避免驾驶员在倒车时候频繁看后视镜去判断汽车与障碍物的距离,从而避免发生事故发生。

汽车倒车预报警系统在很大程度上解决了汽车倒车的难题,同时也为驾驶员的驾驶提供了安全的保障。

该设计由超声波传感器、STC89C52系列单片机、HC-SR04超声波传感器模块、蜂鸣器组成。

总体设计方案如图1所示。

障碍物超声波发射传感器发射电路超声波接收传感器接收电路STC89C52单片机电源电路APP显示报警电路图1 总体设计方案3.2 系统总体电路图单片机系统的电路图如图2所示。

图2 系统设计图4 硬件实现4.1 STC89C52单片机STC89C52是基于51系列的单片机发展过来的。

基于51单片机超声波测距仪设计

基于51单片机超声波测距仪设计

基于51单片机超声波测距仪设计超声波测距仪是一种应用较为广泛的测量设备,可以用于测量物体与超声波传感器之间的距离。

本文将基于51单片机设计一个简单的超声波测距仪,并介绍其原理、硬件电路和程序设计。

一、原理介绍:超声波测距仪的工作原理是利用超声波传感器发射超声波,并接收其反射回来的波,通过计算发射和接收之间的时间差,从而确定物体与传感器之间的距离。

超声波的传播速度在空气中近似为331.4m/s,根据速度与时间关系,可以通过测量时间来计算距离。

二、硬件电路设计:1.超声波模块:选用一个常见的超声波模块,包括超声波发射器和接收器。

2.51单片机:使用51单片机作为控制器,负责控制超声波模块和处理测距数据。

3.LCD显示屏:连接一个LCD显示屏,用于显示测距结果。

4.连接电路:将超声波发射器和接收器分别连接到单片机的引脚,将LCD显示屏连接到单片机的相应引脚。

三、程序设计:1.初始化:包括初始化单片机的GPIO引脚、定时器以及其他必要的设置。

2.发送信号:发射一个超声波信号,通过超声波模块的引脚控制。

此时,启动定时器开始计时。

3.接收信号:当接收到超声波的反射信号时,停止定时器,记录计时的时间差。

根据超声波传播速度,可以计算出距离。

4.显示结果:将测得的距离数据显示在LCD显示屏上。

四、实现效果:通过以上设计,可以实现一个简单的超声波测距仪。

在实际应用中,可以根据需求扩展功能,例如增加报警功能、计算速度等。

总结:本文基于51单片机设计了一个超声波测距仪,包括硬件电路设计和程序设计。

通过该设备可以实现对物体与超声波传感器之间的距离进行测量,并将结果显示在LCD显示屏上。

该设计只是一个基本的框架,可以根据需要进行进一步的改进和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言随着我国科学技术的迅速发展,许多场合都需要测距仪器的应用,如汽车倒车,建筑工地的施工以及一些工业现场的位置监控,还有矿井深度、水位位置、管道长度等场合都需要用到测距仪器。

要求仪器简单,方便,易操作控制,而超声波测距仪,就能实现以上的要求。

它测量范围在0.10-1.20m,测量精度1cm,测量时仪器与被测物体不会直接接触,而且能够清晰稳定的在液晶显示屏上显示出测量结果。

但就目前整体的技术水平来说,人们可以具体利用的测距技术还十分有限。

因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。

展望未来数十年,超声波测距仪作为一种新型的非常重要且有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。

本设计采用以AT89C51单片机为控制器核心的高精度、低成本、微型化数字显示超声波测距仪的硬件电路和软件设计方法。

整个电路采用模块化设计,由主程序、中断程序、发射子程序、接收子程序、显示子程序等模块组成。

各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。

在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。

1总体方案设计介绍所谓的超声波就是指频率高于20MHZ的机械波。

既然是以超声波为检测工具,那么肯定要产生超声波和接受超声波的工具,这就需要用到我们的传感器,俗称探头。

它有发射器和接收器之分,主要原理就是利用电效应把电能和超声波相互转换,利用声波介质对被检测物进行非接触式无磨损的检测。

超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。

本文所研究的超声波测距仪利用超声波指向性强、能量消耗缓慢、传播距离较远、中长距的高精度测距等优点,即用超声波发射器向某一方向发送超声波,将电能转换,发射超声波,同时在发射的时候单片机就开始计时,在超声波遇到障碍物的时候反射回来,超声波接收器在接收到反射回来的超声波回波时,将超生振动转换成电信号,同时单片机停止计时。

超声波测距原理一般采用渡越时间法TOF,设超声波在空气中的传播速度为C,从发射到遇到障碍物反射回来在空气中的传播时间为T,声源与障碍物的距离为L,则易知L=C*T/2,这样可以测出声源与障碍物之间的距离,然后在LED显示屏上稳定的显示出来[1]。

传感器的工作机理是依据压电材料的正逆压电效应,利用逆压电效应产生超声波,即逆压电效应是在压电材料上加上某种特定频率的交变正弦信号,材料就会产生随所加电压的变化规律而变化的机械形变,这种机械形变推动周围介质振动,产生疏密相间的机械波,如果其振动频率在超声范围内,这种机械波就是超声波[1]。

根据设计要求并综合各方面因素考虑,本文决定采用AT89C52单片机作为主控制器,超声波发射电路、超声波接收放大电路、显示电路,并用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成。

超声波测距仪的系统硬件原理框图如图1-1所示。

图1-1超声波测距系统硬件原理框图超声波在标准空气中的传播速度为331.45M/秒,由单片机驱动产生12MHZ晶振,所以此系统理论上可以达到毫M级。

由发射器发送超声波出去,在遇到障碍物反射回来时的回波由接收器检测到信号,然后经过滤波、放大、整形之后送入AT89C52单片机进行计算,并将计算结果显示到LED液晶显示屏上。

超声波发生器可以分为两大类:一类是用电气方式产生超声波;另一类是用机械方式产生超声波。

电气方式包括压电型、电动型等;机械方式有加尔统笛、液和气流旋笛等。

它们所产生的超声波的频率,功率和声波特性各不相同,因而用途也各不相同。

本文属于近距离测量,适合汽车的倒车雷达,故可采用常用的压电式超声波换能器[2]。

2超声波的相关知识2.1超声波测距仪的主要功能概述[3]:★实时稳定显示当前测量距离;★实时稳定显示当前测量温度;★具有近距离和远距离两种测量模式;★能够实时报警功能;★具有开机系统自检功能;★耗电量低;★可靠性高;★高灵敏度和高声压2.2超声波测距仪的主要技术指标测量距离:0.20m-1.3m测温范围:-10℃~115℃测量距离精度:1cm实时功率:0.05W标准频率:40kHz声压级:120±3<公式:S.P.L.= 20logP/Pre (dB>)系统发射功率:1mW(max>工作电流:80mA(min>、90mA(max>输入电源电压:5V3系统设计原理[4]超声波测距其实有很多的方法,包括声波幅值检测法、相位检测法、以及往返时间检测法等等,声波幅值检测法容易受到反射波损耗的映像,相位检测法虽然精度高,但是检测范围有限,所以本系统采用往返时间检测法,其原理就是利用超声波在空气介质中的传播速度,测量声波从发射到遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离,进而达到测距的效果。

测距的公式表示为:L=C*T/2 (3-1>式中L为被测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收之间时间数值的两倍>。

要想利用超声波准确的测得发射点与障碍物之间的实际距离,那么就应该准确的测得超声波在空气介质中得实际传播速度。

我们知道超声波是要随环境中的气压和介质温度的变化而变化,一般情况下受大气压力的影响非常小,但是受温度的影响确实非常大的,例如在摄氏0度时其传播速度为331.45m/s,在摄氏20度时其传播速度为343.869m/s,在摄氏30度时其传播速度为349.176m/s,具体参考表1。

故要考虑到温度给实际测量带来的影响,尽量使测距准确性大大提高,本方案中采用测量温度的方法来补偿声速,即用测温元件测量实际环境的温度来校正声速,这就是温度补偿法。

其中超声波在空气中的传播速度和温度有如下的关系:V=331.4+0.607T m/s T-℃ (3-2>其中V为超声波在该温度下的实际传播速度<单位为 m/s),T为摄氏温度。

当温度知道的情况下,通过该式就可以知道该温度下超声波的传播速度了。

表1 不同温度下的超声波传输速度4 超声波测距系统的硬件组成4.1控制芯片的选择[5]一般情况下采用AT89C51单片机,但是他的资源有限,只有4K的程序存储空间和两个定时器,而它的兄弟模块AT89C52单片机兼容MCS51指令系统,内部集成了8K 的可反复擦写的程序存储空间<Flash ROM),四个8位的双向I/O口,256x8bit内部RAM,2个串行中断,可编程UART串行通道,中断源增加一个,即额外增加了一个定时器/计数器 T2,而且有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品的需求。

AT89C52支持串口程序下载,具有操作简便、价格便宜、应用简单等许多优点。

因此我们选用这一型号的单片机作为控制器实现对超声波模组进行控制,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。

单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,占空比50%,连续发10个波<3-15个波都可以),然后拉低<或拉高)50mS以上,接着再输出,如此循环。

利用外中断0口监测超声波接收电路输出的返回信号。

采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差,是后面计算的基础。

计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

控制电路如图4.1-1所示。

图4.1-1 超声波控制电路4.2超声波发射电路[6]MAX232是美国MAXIM公司专为串口路通信设计的芯片,它能将TTL电平和RS232电平相互转换,具有功耗低,只需要单一 +5V电源供电,供电电流5mA;内部集成2个RS-232C驱动器,高集成度,片外最低只需4个电容即可工作,所以这里超声波发射电路采用基于MAX232的方波发射电路。

电路前级主要由一块反向器芯片74LS04和超声波发射探头T构成,74LS04内部具有6个独立的反相器,通过将外部管脚的组合连接来实现对单片机发出的超声发射探头激励信号进行功率放大处理;单片机P1.0端口输出超声波转化器所需的40KHz方波信号,占空比为50%的方波信号,一路通过74LS04内部一级反向器后送到超声波发射探头T的一个电极,另一路经两极反向器后送到超声波换能器的另一个电极。

用这种推挽形式将方波信号反相叠加到超声波换能器的两端,可以将超声波发射强度提高一倍。

同时输出端两路信号都采用两个反向器并联得方式,这样可以提高超声脉冲的驱动能力。

上拉电阻R10、R11一端接上正5V 电源,另一端连接超声波发射探头T的一极,一方面可以提高反向器74LS04输出高电平的驱动能力,使发射探头发射超声波的能力更强;另一方面还可以增加超声波发射探头T的自身阻尼效果,缩短其自由振荡的时间得到更加完整的超声脉冲波形,这样驱动MAX232实现从TTL电平到RS232电平的转换,具体电平转换图4.2-1所示[10]图4.2-1 MAX232电平转换图图4.2-2 基于MAX232的超声波发射电路因为发射到换能器的电压高,波形比较完整,因此可以达到很高的发射功率与效率,可以测量到比较远的距离,同时用这个电路发射方波,电路工作稳定,适合单电源供电,功耗也非常小。

所以我们采用这个方案作为发射电路。

电路图如图 4.2-2所示。

4.3超声波接收电路[7]超声波接收电路所用的芯片,我们采用SONY公司生产的红外接收专用芯片CX20186A<内部结构如图4.3-1所示),它采用集成接收芯片对超声波回波信号进行放大和整形,因为红外线的载波频率和测距超声波频率40MKz非常接近,且具有很高的灵敏度和较强的抗干扰能力,可以利用它作为超声波接收电路。

外围电路简单易于实现,同时减少了生产调试的麻烦,因此我采用这个接收方案。

图4.3-1 CX20186内部结构当超声波接收头收到发射信号时,便通过CX20186进行前置放大、限幅放大、带通滤波、峰值检波和比较、积分及施密特触发比较得到解调处理后的信号。

7脚为信号输出口,没收到信号时为高电平,收到后变为低电平,之后又恢复高电平。

<a)为接收信号,<b)为有源峰值检波,如图4.3-2所示。

图4.3-2 信号图CX20186A内部集成了前置放大与限幅放大,总增益可达80dB,带通滤波电路,峰值检波,噪声抑制电路,自动增益控制电路和波形整形电路。

芯片CX20186A的2引脚与GND之间连接RC串联网络,它们是负反馈串联网络的一个组成部分,改变它们的数值便能改变芯片内部前置放大器的增益和频率特性,调整外部电阻R6可以的调整它的接收中心频率与增益,当R6阻值越大时,滤波器的中心频率越低。

相关文档
最新文档