2020年高考数学总复习第五章第5课时数列的综合应用随堂检测(含解析)新人教版
2019-2020年高考数学一轮复习 5.5数列的综合应用课后自测 理
2019-2020年高考数学一轮复习 5.5数列的综合应用课后自测 理A 组 基础训练一、选择题1.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }中连续的三项,则数列{b n }的公比为( )A.2 B .4 C .2 D.12【解析】 设数列{a n }的公差为d(d≠0),由a 23=a 1a 7得(a 1+2d)2=a 1(a 1+6d),解得a 1=2d ,故数列{b n }的公比q =a 3a 1=a 1+2d a 1=2a 1a 1=2.【答案】 C2.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( )A .1+ 2B .1- 2C .3+2 2D .3-22【解析】 设等比数列的公比为q ,由题意知a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q , ∴q 2-2q -1=0,解得q =1+2或q =1-2(舍去). ∴a 9+a 10a 7+a 8=a 7+a 8q 2a 7+a 8=q 2=(1+2)2=3+22,故选C. 【答案】 C3.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n (n≥1,n ∈N *),第k 项满足750<a k <900,则k 等于( )A .8B .7C .6D .5【解析】 由a n +1=3S n 及a n =3S n -1(n≥2), 得a n +1-a n =3a n ,即a n +1=4a n (n≥2), 又a 2=3S 1=3,∴a n =⎩⎪⎨⎪⎧ 13×4n -2n =1,n≥2,又750<a k <900,验证得k =6. 【答案】 C4.(xx·海淀模拟)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25【解析】 由a 2n +1-a 2n =1(n ∈N *)知,数列{a 2n }是首项为1,公差为1的等差数列,则a 2n =1+(n -1)×1=n ,由a n <5得n<5,∴n<25,故选C.【答案】 C5.(xx·浙江高考)设S n 是公差为d(d≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d<0,则数列{S n }有最大项B .若数列{S n }有最大项,则d<0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列【解析】 设{a n }的首项为a 1,则S n =na 1+12n(n -1)d =d 2n 2+(a 1-d2)n.由二次函数性质知S n 有最大值时,则d<0,故A 、B 正确;因为{S n }为递增数列,则d>0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d>0,{S n }必是递增数列,D 正确.【答案】 C 二、填空题6.从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒________次后才能使纯酒精体积与总溶液的体积之比低于10%.【解析】 设倒n 次后纯酒精与总溶液的体积比为a n , 则a n =⎝⎛⎭⎫12n,由题意知⎝⎛⎭⎫12n <10%, ∴n≥4. 【答案】 47.已知数列{a n }为等差数列,公差为d ,若a 11a 10<-1,且它的前n 项和S n 有最大值,则使得S n <0的n 的最小值为________.【解析】 根据S n 有最大值知,d<0,则a 10>a 11,由a 11a 10<-1知,a 10>0>a 11,且a 11<-a 10即a 10+a 11<0,从而S 19=19a 1+a 192=19a 10>0,S 20=20a 1+a 202=10(a 10+a 11)<0,则使S n <0的n 的最小值为20. 【答案】 208.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x n =________,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.【解析】 ∵y =x n +1,∴y′=(n +1)x n ,它在点(1,1)处的切线方程为y -1=(n +1)(x -1), 与x 轴交点的横坐标为x n =1-1n +1=nn +1,由a n =lg x n 得a n =lg n -lg(n +1), 于是a 1+a 2+…+a 99=lg 1-lg 2+lg 2-lg 3+…+lg 99-lg 100 =lg 1-lg 100=0-2=-2. 【答案】nn +1-2 三、解答题9.(xx·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.【解】 (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n ,即a n =2n. (2)由(1)可得S n =na 1+a n 2=n 2+2n2=n(n +1). 因为a 1,a k ,S k +2成等比数列, 所以a 2k =a 1S k +2.从而(2k)2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.10.(xx·武汉模拟)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则需在第n 年初对M更新.证明:需在第9年初对M 更新.【解】 (1)当n≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n ,n≤6,70×⎝⎛⎭⎫34n -6,n≥7.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n≤6时,S n =120n -5n(n -1),A n =120-5(n -1)=125-5n ;当n≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6,A n =780-210×⎝⎛⎭⎫34n -6n.因为{a n }是递减数列,所以{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫3428=824764>80,A 9=780-210×⎝⎛⎭⎫3439=767996<80,所以需在第9年初对M 更新.B 组 能力提升1.已知数列{a n },{b n }满足a 1=1且a n ,a n +1是函数f(x)=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64【解析】 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2.所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列,而a 1=1,a 2=2.所以a 10=2·24=32,a 11=1·25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.【答案】 D2.已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N *),设其前n 项和为S n ,则使S n <-5成立的最小自然数n =________.【解析】 ∵a n =log 2n +1n +2=log 2(n +1)-log 2(n +2),∴S n =a 1+a 2+…+a n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2),由S n <-5,得log 2(n +2)>6,即n +2>64,∴n>62,∴n 有最小值63. 【答案】 63图5-5-13.(xx·潍坊一模)已知数列{a n }的各项排成如图5-5-1所示的三角形数阵,数阵中每一行的第一个数a 1,a 2,a 4,a 7,…构成等差数列{b n },S n 是{b n }的前n 项和,且b 1=a 1=1,S 5=15.(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知a 9=16,求a 50的值;(2)设T n =1S n +1+1S n +2+…+1S 2n ,当m ∈[-1,1]时,对任意n ∈N *,不等式t 2-2mt -83>T n恒成立,求t 的取值范围.【解】 (1)∵{b n }为等差数列,设公差为d ,b 1=1,S 5=15, ∴S 5=5+10d =15,d =1. ∴b n =1+(n -1)×1=n.设从第3行起,每行的公比都是q ,且q>0,a 9=b 4q 2,4q 2=16,q =2, 1+2+3+…+9=45,故a 50是数阵中第10行第5个数, 而a 50=b 10q 4=10×24=160. (2)∵S n =1+2+…+n =nn +12, ∴T n =1S n +1+1S n +2+…+1S 2n=2n +1n +2+2n +2n +3+…+22n2n +1=2⎝⎛⎭⎫1n +1-1n +2+1n +2-1n +3+…+12n -12n +1 =2⎝⎛⎭⎫1n +1-12n +1 =2n n +12n +1.令f(x)=2x x +12x +1(x≥1),f′(x)=2-4x 2x +122x +12,当x≥1时,f′(x)<0,f(x)在[1,+∞)上为减函数,∴{T n }为递减数列,{T n }的最大值为T 1=13.∴不等式变为t 2-2mt -3>0恒成立,设g(m)=-2tm +t 2-3,m ∈[-1,1],则⎩⎪⎨⎪⎧g -1>0,g1>0,即⎩⎪⎨⎪⎧2t +t 2-3>0,-2t +t 2-3>0, 解得t>3或t<-3.即t 的取值范围是(-∞,-3)∪(3,+∞)..。
2020年高考数学(理)(全国通用版)一轮复习课时分层作业: 三十四 5.5数列的综合应用 Word版含解析.doc
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时分层作业三十四数列的综合应用一、选择题(每小题5分,共25分)1.已知a,b,c是三个不同的实数,若a,b,c成等差数列,且b,a,c成等比数列,则a∶b∶c为( )A.2∶1∶4B.(-2)∶1∶4C.1∶2∶4D.1∶(-2)∶4【解析】选B.由a,b,c成等差数列,设a=m-d,b=m,c=m+d,d≠0,因为b,a,c成等比数列,所以a2=bc,即(m-d)2=m(m+d),化简,得d=3m,则a=-2m,b=m,c=4m,所以a∶b∶c=(-2)∶1∶4.2.设y=f(x)是一次函数,若f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)等于( )A.n(2n+3)B.n(n+4)C.2n(2n+3)D.2n(n+4)【解析】选 A.由题意可设f(x)=kx+1(k≠0),则(4k+1)2=(k+1)×(13k+1),解得k=2,f(2)+f(4)+…+f(2n)=(2×2+1)+(2×4+1)+…+(2×2n+1)=n(2n+3).3.若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )A.6B.7C.8D.9【解析】选D.由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,所以ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a<b,则-2,a,b成递增的等差数列,所以2a=b-2,联立消去b得a2+a-2=0,解得a=1或a=-2,又因为a>0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.当b<a时,同样求得p+q=9.【变式备选】如图,在等腰直角三角形ABC中,斜边BC=2,过点A 作BC的垂线,垂足为A1,过点A1作AC的垂线,垂足为A2;过点A2作A1C 的垂线,垂足为A3;…,以此类推.设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=________.【解析】根据题意易得a1=2,a2=,a3=1,所以数列{a n}构成以a1=2,q=的等比数列,所以a7=a1q6=2×=.答案:4.已知a,b,c成等比数列,a,m,b和b,n,c分别成两个等差数列,则+等于( ) A.4 B.3 C.2 D.1【解析】选C.由题意得b2=ac,2m=a+b,2n=b+c,则+====2.【一题多解】解答本题,还有以下解法:特殊值法:选C.因为a,b,c成等比数列,所以令a=2,b=4,c=8,又a,m,b和b,n,c分别成两个等差数列,则m==3,n==6,因此+=+=2.【变式备选】各项都是正数的等比数列的公比q≠1,且a2,a3,a1成等差数列,则的值为________.【解析】{a n}的公比为q(q>0且q≠1),由a3=a2+a1,得q2-q-1=0,解得q=,而===.答案:5.(2018·宜宾模拟)数列{a n}的通项a n=n(cos2-sin2),其前n项和为S n,则S40为( )A.10B.15C.20D.25【解析】选C.由题意得,a n=n(cos2-sin2)=ncos,则a1=0,a2=-2,a3=0,a4=4,a5=0,a6=-6,a7=0,…,于是a2n-1=0,a2n=(-1)n·2n,则S40=(a1+a3+…+a39)+(a2+a4+a6+…+a40)=-2+4-…+40=20.二、填空题(每小题5分,共15分)6.对于每一个正整数n,设曲线y=x n+2在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=log2x n,则a1+a2+a3+…+a62=________.【解析】因为y′=(n+2)x n+1,当x=1时,y′=n+2,所以曲线y=x n+2在点(1,1)处的切线方程为y=(n+2)x-(n+1),令y=0,得x n=.所以a n=log2x n=log2.所以a1+a2+a3+…+a62=log2=log2=-5.答案:-57.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________. 【解析】每天植树的棵数构成以2为首项,2为公比的等比数列,其前n项和S n===2n+1-2.由2n+1-2≥100,得2n+1≥102,由于26=64,27=128,则n+1≥7,即n≥6.答案:68.(2018·襄阳模拟)用g(n)表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则g(9)=9,10的因数有1,2,5,10,g(10)=5,那么g(1)+g(2)+…+g(2n-1)=________.【解析】由g(n)的定义易知g(n)=g(2n),且若n为奇数则g(n)=n, 令f(n)=g(1)+g(2)+g(3)+…+g(2n-1)则f(n+1)=g(1)+g(2)+g(3)+…g(-1)=1+3+…+(-1)+g(2)+g(4)+…+g(-2)=+g(1)+g(2)+…+g(2n-1)=4n+f(n),即f(n+1)-f(n)=4n,据此可得:f(1)=1,f(2)-f(1)=4,f(3)-f(2)=8,…,f(n)-f(n-1)=4n-1,以上各式相加可得:f(n)==.答案:三、解答题(每小题10分,共20分)9.(2018·南宁模拟)某体育场一角的看台共有20排,且此看台的座位是这样排列的:第一排有2个座位,从第二排起每一排比前一排多1个座位,记a n表示第n排的座位数.(1)确定此看台共有多少个座位.(2)求数列的前20项和S20.【解析】(1)由题可知数列{a n}是首项为2,公差为1的等差数列,所以a n=2+n-1=n+1(1≤n≤20).所以此看台的座位数为=230.(2)因为==-,所以S20=1-+-+…+-=1-=.10.已知{a n}是各项均为正数的等差数列,公差为d.对任意的n∈N*,b n 是a n和a n+1的等比中项.(1)设c n=-,n∈N*,求证:数列{c n}是等差数列.(2)设a1=d,T n=(-1)k,n∈N*,求证:<.【解析】(1)c n=-=a n+1a n+2-a n a n+1=2d·a n+1.c n+1-c n=2d(a n+2-a n+1)=2d2为定值.所以数列是等差数列.(2)T n=(-1)k=c1+c3+…+c2n-1=nc1+·4d2=nc1+2d2n(n-1)(*).由已知c1=-=a2a3-a1a2=2d·a2=2d(a1+d)=4d2,将c1=4d2代入(*)式得T n=2d2n(n+1),所以===<,得证.【变式备选】已知二次函数y=f(x)的图象的顶点坐标为,且过坐标原点O.数列{a n}的前n项和为S n,点(n,S n)(n ∈N*)在二次函数y=f(x)的图象上.(1)求数列{a n}的通项公式.(2)设b n=a n a n+1cos(n+1)π(n∈N*),数列{b n}的前n项和为T n,若T n≥tn2对n∈N*恒成立,求实数t的取值范围.【解题指南】(1)由已知可得数列{a n}的前n项和S n的公式,再利用a n=求得数列{a n}的通项公式.(2)分n为奇数与偶数先求出T n,T n≥tn2对n∈N*恒成立,通过分离参数t转化为求函数的最值,即可求得实数t的取值范围.【解析】(1)由题意可知f(x)=(x+1)2-.所以S n=(n+1)2-=n2+n(n∈N*).当n≥2时,a n=S n-S n-1=n2+n-=.当n=1时a1=S1=1适合上式,所以数列{a n}的通项公式为a n=(n∈N*).(2)因为b n=a n a n+1cos(n+1)π(n∈N*),所以T n=b1+b2+…+b n=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1a n a n+1,由(1)可知,数列{a n}是以1为首项,公差为的等差数列.①当n=2m,m∈N*时,T n=T2m=a1a2-a2a3+a3a4-a4a5+…+(-1)2m-1a2m a2m+1=a2(a1-a3)+a4(a3-a5)+…+a2m(a2m-1-a2m+1)=-(a2+a4+…+a2m)=-××m=-(8m2+12m)=-(2n2+6n).②当n=2m-1,m∈N*时,T n=T2m-1=T2m+(-1)2m·a2m·a2m+1=-(8m2+12m)+(16m2+16m+3)=(8m2+4m+3)=(2n2+6n+7).所以T n=要使T n≥tn2对n∈N*恒成立,只要使-(2n2+6n)≥tn2(n为正偶数)恒成立.即使-≥t对n为正偶数恒成立,故实数t的取值范围是.1.(5分)某学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查资料表明,凡是在星期一选A种菜的学生,下星期一会有20%改选B种菜;而选B种菜的学生,下星期一会有30%改选A种菜.用a n,b n分别表示在第n个星期的星期一选A种菜和选B种菜的学生人数,若a1=300,则a n+1与a n的关系可以表示为世纪金榜导学号12560592 ( )A.a n+1=a n+150B.a n+1=a n+200C.a n+1=a n+300D.a n+1=a n+180【解析】选A.由题意得第n+1个星期的星期一选A种菜的学生人数a n+1应满足消去b n,得a n+1=a n+150.2.(5分)(2018·郑州模拟)已知f′(x)=2x+m,且f(0)=0,函数f(x)的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为S n,则S2 018的值为( ) A. B.C. D.【解析】选B.由题意f′(1)=2+m=3,所以m=1,所以f′(x)=2x+1,又f(0)=0可得f(x)=x2+x,则===-,所以S2 018=1-+-+…+-=1-=.【变式备选】已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x,y都有f(x·y)=f(x)+f(y),若数列{a n}的前n项和为S n,且满足f(S n+2)-f(a n)=f(3)(n∈N*),则a n为( )A.2n-1B.nC.2n-1D.【解析】选 D.由f(S n+2)=f(a n)+f(3)(n∈N*),得S n+2=3a n,S n-1+2=3a n-1(n≥2),两式相减得,2a n=3a n-1(n≥2),即=.当n=1时,S1+2=3a1=a1+2,解得a1=1,所以数列{a n}是首项为1,公比为的等比数列,则a n=.3.(5分)已知等比数列{a n}中,各项都是正数,且a1,a3,2a2成等差数列,则=________.【解析】因为a1,a3,2a2成等差数列,所以2×a3=a1+2a2,即a3=a1+2a2,设等比数列{a n}的公比为q且q>0,则a3=a1q2,a2=a1q,所以a1q2=a1+2a1q,所以q2=1+2q,解得q1=1+,q2=1-(舍),==q2=(+1)2=3+2. 答案:3+24.(12分)已知数列{a n}的首项a1=,a n+1=,n∈N*.(1)求证:数列为等比数列.(2)记S n=++…+,若S n<100,求最大正整数n.【解析】(1)由a n+1=可得=+,所以-1=-=.又因为-1=≠0,所以-1≠0(n∈N*).所以数列是首项为,公比为的等比数列.(2)由(1)可得-1=·,所以=2·+1.S n=++…+=n+2=n+2·=n+1-,若S n<100,则n+1-<100,所以满足条件的最大正整数n为99.5.(13分)已知数列{a n}是等比数列,首项a1=1,公比q>0,其前n项和为S n,且S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{a n}的通项公式.(2)若数列{b n}满足a n+1=,T n为数列{b n}的前n项和,若T n≥m 恒成立,求m的最大值.【解析】(1)由题意可知:2(S3+a3)=(S1+a1)+(S2+a2),即2(a1+a2+2a3)=(a1+a1)+(a1+2a2),即4a3=a1,所以q2=,因为q>0,所以q=,因为a1=1,所以a n=,n∈N*.(2)因为a n+1=,所以=,所以b n=n·2n-1,所以T n=1×1+2×2+3×22+…+n·2n-1,①所以2T n=1×2+2×22+3×23+…+n·2n,②所以①-②得-T n=1+2+22+…+2n-1-n·2n=-n·2n=(1-n)·2n-1,所以T n=1+(n-1)·2n.因为T n≥m恒成立,只需(T n)min≥m.因为T n+1-T n=n·2n+1-(n-1)·2n=(n+1)·2n>0,所以数列{T n}为递增数列,故当n=1时,(T n)min=1,所以m≤1,所以m的最大值为1.关闭Word文档返回原板块。
2020版高考数学(浙江专用)一轮总复习检测:6.4 数列求和、数列的综合应用 含解析
6.4 数列求和、数列的综合应用挖命题 【考情探究】分析解读 1.等差数列和等比数列是数列的两个最基本的模型,是高考中的热点之一.基本知识的考查以选择题或填空题的形式呈现,而综合知识的考查则以解答题的形式呈现.2.以数列为载体来考查推理归纳、类比的能力成为高考的热点.3.数列常与其他知识如不等式、函数、概率、解析几何等综合起来进行考查.4.数学归纳法常与数列、不等式等知识综合在一起,往往综合性比较强,对学生的思维要求比较高.5.预计2020年高考中,等差数列与等比数列的综合问题仍然是考试的热点,复习时要足够重视.破考点 【考点集训】考点一 数列的求和1.(2018浙江新高考调研卷五(绍兴一中),14)已知等差数列{a n }的首项为a,公差为-2,S n 为数列{a n }的前n 项和,若从S 7开始为负数,则a 的取值范围为 ,S n 最大时,n= . 答案 [5,6);32.(2018浙江杭州地区重点中学第一学期期中,22)已知函数f(x)=x 2+x,x ∈[1,+∞),a n =f(a n-1)(n ≥2,n ∈N ).(1)证明:-≤f(x)≤2x 2;(2)设数列{}的前n 项和为A n ,数列的前n 项和为B n ,a 1=,证明:≤≤.证明(1)f(x)-=x2+x-=>0,∴f(x)≥-.f(x)-2x2=x2+x-2x2=x-x2=x(1-x)≤0(x≥1),∴f(x)≤2x2,∴-≤f(x)≤2x2.(2)a n=f(a n-1)=+a n-1⇒=a n-a n-1(n≥2),则A n=++…+=a n+1-a1=a n+1-,a n=+a n-1=a n-1(a n-1+1)⇒==-⇒=-(n≥2),累加得:B n=++…+=-=-,∴==a n+1.由(1)得a n≥-⇒a n+1+≥≥≥…≥, ∴a n+1≥-∴=a n+1≥3·-.a n=f(a n-1)≤2⇒a n+1≤2≤23≤…≤=·=·.∴=a n+1≤×·=·,∴3·-≤≤·,即-1≤≤,而-1≥,∴≤≤.考点二数列的综合应用1.(2018浙江新高考调研卷二(镇海中学),10)数列{a n}的各项均为正数,S n为其前n项和,对于任意n∈N*,总有S n=.设b n=a4n+1,d n=3n(n∈N*),且数列{b n}中存在连续的k(k>1,k∈N*)项和是数列{d n}中的某一项,则k的取值集合为()A.{k|k=2α,α∈N*}B.{k|k=3α,α∈N*}C.{k|k=2α,α∈N*}D.{k|k=3α,α∈N*}答案 B2.(2017浙江“七彩阳光”新高考研究联盟测试,9)已知函数f(x)=sin xcosx+cos2x,0≤x0<x1<x2<…<x n≤,a n=|f(x n)-f(x n-1)|,n∈N*,S n=a1+a2+…+a n,则S n的最大值等于()A. B.C.+1D.2答案 A考点三数学归纳法1.(2018浙江新高考调研卷五(绍兴一中),22)在数列{a n}中,a1=a,a n+1=a n+(n∈N*),已知0<a<1.(1)求证:a n+1<a n(n∈N*);(2)求证:a n≥.证明(1)由题意知a n>0,a n+1-a n=-a n=·a n(a n-1)(n∈N*).下面用数学归纳法证明:a n<1.①n=1时,a1=a<1,结论成立.②假设n=k时,a k<1,当n=k+1时,a k+1-a k=a k(a k-1)<0,即a k+1<a k<1,结论成立.根据①②可知,当n∈N*时,a n<1,所以a n+1<a n.(2)由a n+1=a n+,得====-,因为0<a n<1,所以=-<-,所以<-=+-(n≥2),即<+-<…<+-1==,所以a n>,又a1=a,所以当n∈N*时,a n≥.2.(2017浙江新高考临考冲刺卷,22)已知正项数列a n满足:a n+1=a n-(n∈N*).(1)证明:当n≥2时,a n≤;(2)设S n为数列{a n}的前n项和,证明:S n<1+ln(n∈N*).证明(1)因为a2>0,所以a1->0,故0<a1<1.下面利用数学归纳法证明结论.当n=2时,a2=a1-=-+≤,结论成立;假设当n=k(k≥2)时,结论成立,即a k≤,则当n=k+1时,a k+1=-+.因为函数f(x)=-+在上单调递增,0<a k≤<,所以a k+1≤-+=<=,即当n=k+1时,结论成立.由数学归纳法知,当n≥2时,a n≤.(2)首先证明:当x>0时,均有ln(1+x)>.设g(x)=ln(1+x)-,则g'(x)=-=>0,所以g(x)在(0,+∞)上单调递增,因此,当x>0时,g(x)>g(0)=0,即ln(1+x)>.在上述不等式中,取x=,则ln>,即ln>,所以,当n≥2时,S n=a1+(a2+a3+…+a n)<a1+++…+<a1+=a1+ln<1+ln.而当n=1时,S1=a1<1+ln=1成立.综上,S n<1+ln(n∈N*).炼技法【方法集训】方法1 错位相减法求和1.已知数列{a n}的前n项和为S n,a1=5,nS n+1-(n+1)S n=n2+n.(1)求证:数列为等差数列;(2)令b n=2n a n,求数列{b n}的前n项和T n.解析(1)证明:由nS n+1-(n+1)S n=n2+n得-=1,又=5,所以数列是首项为5,公差为1的等差数列.(2)由(1)可知=5+(n-1)=n+4,所以S n=n2+4n.当n≥2时,a n=S n-S n-1=n2+4n-(n-1)2-4(n-1)=2n+3.又a1=5也符合上式,所以a n=2n+3(n∈N*),所以b n=(2n+3)2n,所以T n=5×2+7×22+9×23+…+(2n+3)2n,①2T n=5×22+7×23+9×24+…+(2n+1)2n+(2n+3)2n+1,②所以②-①得T n=(2n+3)2n+1-10-(23+24+…+2n+1)=(2n+3)2n+1-10-=(2n+3)2n+1-10-(2n+2-8)=(2n+1)2n+1-2.2.已知数列{a n}是等比数列,a2=4,a3+2是a2和a4的等差中项.(1)求数列{a n}的通项公式;(2)设b n=2log2a n-1,求数列{a n b n}的前n项和T n.解析(1)设数列{a n}的公比为q,因为a2=4,所以a3=4q,a4=4q2.因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4.即2(4q+2)=4+4q2,化简得q2-2q=0.因为公比q≠0,所以q=2.所以a n=a2q n-2=4×2n-2=2n(n∈N*).所以数列{a n}的通项公式a n=2n(n∈N*).(2)因为a n=2n,所以b n=2log2a n-1=2n-1,所以a n b n=(2n-1)2n,则T n=1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n,①2T n=1×22+3×23+5×24+…+(2n-3)2n+(2n-1)2n+1.②由①-②得,-T n=2+2×22+2×23+…+2×2n-(2n-1)2n+1=2+2-(2n-1)2n+1=-6-(2n-3)2n+1,所以T n=6+(2n-3)2n+1.方法2 裂项相消法求和1.(2018浙江嘉兴高三期末,22)已知数列{a n}满足a1=1,a n=a n-1(n≥2).(1)求数列{a n}的通项公式;(2)求证:对任意的n∈N*,都有:①+++…+<3;②+++…+>(k≥2,k∈N*).解析(1)当n≥2时,==…==1,∴当n≥2时,a n=n.又∵a1=1,∴a n=n,n∈N*.(3分)(2)证明:①当n=1时,1<3成立;∴当n≥2时,==<=·=·<-.(6分)∴+++…+<1+++++…++=1+1+--<3,∴+++…+<3.(9分)②+++…+=+++…++,设S=++…++,则S=++…++,2S=++…+++.(11分)∵当x>0,y>0时,(x+y)=2++≥4,∴+≥,当且仅当x=y时等号成立.(13分)∴当k≥2,k∈N*时,2S>·(nk-n)=>.∴S>,即+++…+>(k≥2,k∈N*).(15分)2.(2017浙江宁波期末,22)已知数列{a n}满足a1=2,a n+1=2(S n+n+1)(n∈N*),b n=a n+1.(1)求证:{b n}是等比数列;(2)记数列{nb n}的前n项和为T n,求T n;(3)求证: -<+++…+<.解析(1)证明:由a1=2,得a2=2(a1+1+1)=8.由a n+1=2(S n+n+1),得a n=2(S n-1+n)(n≥2),两式相减,得a n+1=3a n+2(n≥2),当n=1时上式也成立,故a n+1=3a n+2(n∈N*).所以有a n+1+1=3(a n+1),即b n+1=3b n,又b1=3,故{b n}是等比数列.(2)由(1)得b n=3n,所以T n=1×3+2×32+3×33+…+n·3n,3T n=1×32+2×33+3×34+…+n·3n+1,两式相减,得-2T n=3+32+33+…+3n-n·3n+1=-n·3n+1,故T n=·3n+1+.(3)证明:由a n=b n-1=3n-1,得=>,k∈N*,所以+++…+>+++…+==-·,又==<=,k∈N*,所以+++…+<+=+=+-·<.故-<+++…+<.过专题【五年高考】A组自主命题·浙江卷题组考点一数列的求和1.(2016浙江文,17,15分)设数列{a n}的前n项和为S n.已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.解析(1)由题意得则又当n≥2时,由a n+1-a n=(2S n+1)-(2S n-1+1)=2a n,得a n+1=3a n.所以,数列{a n}的通项公式为a n=3n-1,n∈N*.(2)设b n=|3n-1-n-2|,n∈N*,则b1=2,b2=1.当n≥3时,由于3n-1>n+2,故b n=3n-1-n-2,n≥3.设数列{b n}的前n项和为T n,则T1=2,T2=3.当n≥3时,T n=3+-=,所以T n=易错警示(1)当n≥2时,得出a n+1=3a n,要注意a1是否满足此关系式.(2)在去掉绝对值时,要考虑n=1,2时的情形.在求和过程中,要注意项数,最后T n要写成分段函数的形式.2.(2015浙江文,17,15分)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.解析(1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知:当n=1时,b1=b2-1,故b2=2.当n≥2时, b n=b n+1-b n,整理得=,所以b n=n(n∈N*).(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).评析本题主要考查数列的通项公式,等差、等比数列的基础知识,同时考查数列求和的基本思想方法,以及推理论证能力. 考点二数列的综合应用1.(2018浙江,20,15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.解析本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8=20,解得q=2或q=,因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}的前n项和为S n.由c n=解得c n=4n-1.由(1)可知a n=2n-1,所以b n+1-b n=(4n-1)·,故b n-b n-1=(4n-5)·,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)·+(4n-9)·+…+7·+3.设T n=3+7·+11·+…+(4n-5)·,n≥2, T n=3·+7·+…+(4n-9)·+(4n-5)·,所以T n=3+4·+4·+…+4·-(4n-5)·,因此T n=14-(4n+3)·,n≥2,又b1=1,所以b n=15-(4n+3)·.易错警示利用错位相减法求和时,要注意以下几点:(1)错位相减法求和,适合数列{a n b n},其中{a n}为等差数列,{b n}为等比数列.(2)在等式两边所乘的数是等比数列{b n}的公比.(3)两式相减时,一定要错开一位.(4)特别要注意相减后等比数列的项数.(5)进行检验.2.(2016浙江,20,15分)设数列{a n}满足≤1,n∈N*.(1)证明:|a n|≥2n-1(|a1|-2),n∈N*;(2)若|a n|≤,n∈N*,证明:|a n|≤2,n∈N*.证明(1)由≤1得|a n|-|a n+1|≤1,故-≤,n∈N*,所以-=++…+≤++…+<1,因此|a n|≥2n-1(|a1|-2).(2)任取n∈N*,由(1)知,对于任意m>n,-=++…+≤++…+<,故|a n|<·2n≤·2n=2+·2n.从而对于任意m>n,均有|a n|<2+·2n.①由m的任意性得|a n|≤2.否则,存在n0∈N*,有||>2,取正整数m0>lo且m0>n0,则·<·=||-2,与①式矛盾. 综上,对于任意n∈N*,均有|a n|≤2.3.(2014浙江,19,14分)已知数列{a n}和{b n}满足a1a2a3…a n=((n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2. (1)求a n与b n;(2)设c n=-(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.解析(1)由a1a2a3…a n=(,b3-b2=6,知a3=(=8.又由a1=2,得公比q=2(q=-2舍去),所以数列{a n}的通项公式为a n=2n(n∈N*),所以,a1a2a3…a n==()n(n+1).故数列{b n}的通项公式为b n=n(n+1)(n∈N*).(2)(i)由(1)知c n=-=-(n∈N*),所以S n=-(n∈N*).(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,c n=,而-=>0,得≤<1,所以,当n≥5时,c n<0.综上,对任意n∈N*,恒有S4≥S n,故k=4.评析本题主要考查等比数列的概念、通项公式、求和公式、不等式性质等基础知识,同时考查运算求解能力.考点三数学归纳法(2017浙江,22,15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*).证明:当n∈N*时,(1)0<x n+1<x n;(2)2x n+1-x n≤;(3)≤x n≤.解析本题主要考查数列的概念、递推关系与单调性基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力.(1)用数学归纳法证明:x n>0.当n=1时,x1=1>0.假设n=k时,x k>0,那么n=k+1时,若x k+1≤0,则0<x k=x k+1+ln(1+x k+1)≤0,矛盾,故x k+1>0.因此x n>0(n∈N*).所以x n=x n+1+ln(1+x n+1)>x n+1.因此0<x n+1<x n(n∈N*).(2)由x n=x n+1+ln(1+x n+1)得,x n x n+1-4x n+1+2x n=-2x n+1+(x n+1+2)ln(1+x n+1).记函数f(x)=x2-2x+(x+2)ln(1+x)(x≥0),f '(x)=+ln(1+x)>0(x>0).函数f(x)在[0,+∞)上单调递增,所以f(x)≥f(0)=0,因此-2x n+1+(x n+1+2)ln(1+x n+1)=f(x n+1)≥0,故2x n+1-x n≤(n∈N*).(3)因为x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n≥.由≥2x n+1-x n得-≥2>0,所以-≥2≥…≥2n-1=2n-2,故x n≤.综上,≤x n≤(n∈N*).方法总结 1.证明数列单调性的方法.①差比法:作差a n+1-a n,然后分解因式,判断符号,或构造函数,利用导数求函数的值域,从而判断其符号.②商比法:作商,判断与1的大小,同时注意a n的正负.③数学归纳法.④反证法:例如求证:n∈N*,a n+1<a n,可反设存在k∈N*,有a k+1≥a k,从而导出矛盾.2.证明数列的有界性的方法.①构造法:构造函数,求函数的值域,得数列有界.②反证法.③数学归纳法.3.数列放缩的方法.①裂项法:利用不等式性质,把数列的第k项分裂成某数列的相邻两项差的形式,再求和,达到放缩的目的.②累加法:先把a n+1-a n进行放缩.例:a n+1-a n≤q n,则有n≥2时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)≤a1+q+q2+…+q n-1.③累乘法:先把进行放缩.例:≤q(q>0),则有n≥2时,a n=a1···…·≤a1q n-1(其中a1>0).④放缩为等比数列:利用不等式性质,把非等比数列{a n}放缩成等比数列{b n},求和后,再进行适当放缩.B组统一命题、省(区、市)卷题组考点一数列的求和1.(2017课标全国Ⅰ理,12,5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110答案 A2.(2015江苏,11,5分)设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*),则数列前10项的和为.答案3.(2018课标全国Ⅱ理,17,12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解析(1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.方法总结求等差数列前n项和S n的最值的两种方法(1)函数法:利用等差数列前n项和的函数表达式S n=an2+bn,通过配方或借助图象求二次函数的最值.(2)邻项变号法:①当a1>0,d<0时,满足的项数m,可使得S n取得最大值,最大值为S m;②当a1<0,d>0时,满足的项数m,可使得S n取得最小值,最小值为S m.4.(2018天津文,18,13分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.解析本题主要考查等差数列、等比数列的通项公式及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等比数列{b n}的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以T n==2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n,所以S n=.(2)由(1),有T1+T2+…+T n=(21+22+…+2n)-n=-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n可得+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍)或n=4.所以正整数n的值为4.5.(2018天津理,18,13分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求{a n}和{b n}的通项公式;(2)设数列{S n}的前n项和为T n(n∈N*).(i)求T n;(ii)证明=-2(n∈N*).解析本题主要考查等差数列的通项公式,等比数列的通项公式及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故b n=n.所以数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n=n.(2)(i)由(1),有S n==2n-1,故T n==-n=2n+1-n-2.(ii)证明:因为===-,所以=++…+=-2.方法总结解决数列求和问题的两种思路(1)利用转化的思想将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.6.(2017北京文,15,13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式;(2)求和:b1+b3+b5+…+b2n-1.解析本题考查等差数列及等比数列的通项公式,数列求和.考查运算求解能力.(1)设等差数列{a n}的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以a n=2n-1.(2)设等比数列{b n}的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以b2n-1=b1q2n-2=3n-1.从而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=.方法总结求解有关等差数列和等比数列问题的关键是对其基本量(首项,公差,公比)进行求解.对于数列求和问题,常用的方法有公式法、裂项相消法、错位相减法、倒序相加法和分组求和法等.考点二数列的综合应用1.(2015福建,8,5分)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6B.7C.8D.9答案 D2.(2018江苏,14,5分)已知集合A={x|x=2n-1, n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.答案273.(2017北京理,10,5分)若等差数列{a n}和等比数列{b n}满足a1=b1=-1,a4=b4=8,则=.答案 14.(2018江苏,20,16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n-b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n-b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示). 解析本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n=(n-1)d,b n=2n-1.因为|a n-b n|≤b1对n=1,2,3,4均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得≤d≤.因此,d的取值范围为.(2)由条件知a n=b1+(n-1)d,b n=b1q n-1.若存在d∈R,使得|a n-b n|≤b1(n=2,3,…,m+1)均成立,即|b1+(n-1)d-b1q n-1|≤b1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d满足b1≤d≤b1.因为q∈(1,],所以1<q n-1≤q m≤2,从而b1≤0,b1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n-b n|≤b1对n=2,3,…,m+1均成立.下面讨论数列的最大值和数列的最小值(n=2,3,…,m+1).①当2≤n≤m时,-==,当1<q≤时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时, 数列单调递增,故数列的最大值为.②设f(x)=2x(1-x),当x>0时, f '(x)=(ln 2-1-xln 2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m时,=≤=f<1.因此,当2≤n≤m+1时,数列单调递减,故数列的最小值为.因此,d的取值范围为.疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d 的范围,使得|a n-b n|≤b1对n=2,3,…, m+1都成立,首先把d分离出来,变成b1≤d≤b1,难点在于讨论b1的最大值和b1的最小值.对于数列,可以通过作差讨论其单调性,而对于数列,要作商讨论单调性,∵==q,当2≤n≤m时,1<q n≤2.∴q≤,可以构造函数f(x)=2x(1-x),通过讨论f(x)在(0,+∞)上的单调性去证明f<1,得到数列的单调性,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断与1的大小是难点,平时多积累,多思考,也是可以得到的.5.(2017课标全国Ⅱ文,17,12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.解析本题考查等差、等比数列的通项与求和.设{a n}的公差为d,{b n}的公比为q,则a n=-1+(n-1)d,b n=q n-1.由a2+b2=2得d+q=3.①(1)由a3+b3=5得2d+q2=6.②联立①和②解得(舍去)或因此{b n}的通项公式为b n=2n-1.(2)由b1=1,T3=21得q2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S3=21.当q=4时,由①得d=-1,则S3=-6.6.(2017山东理,19,12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.解析本题考查等比数列基本量的计算,错位相减法求和.(1)设数列{x n}的公比为q,由已知知q>0.由题意得所以3q2-5q-2=0.因为q>0,所以q=2,x1=1.因此数列{x n}的通项公式为x n=2n-1.(2)过P1,P2,…,P n+1向x轴作垂线,垂足分别为Q1,Q2,…,Q n+1.由(1)得x n+1-x n=2n-2n-1=2n-1,记梯形P n P n+1Q n+1Q n的面积为b n,由题意b n=×2n-1=(2n+1)×2n-2,所以T n=b1+b2+…+b n=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2,①2T n=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1.②①-②得-T n=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=+-(2n+1)×2n-1.所以T n=.解题关键记梯形P n P n+1Q n+1Q n的面积为b n,以几何图形为背景确定{b n}的通项公式是关键.方法总结一般地,如果{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法.在写“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n-qS n”的表达式.考点三数学归纳法(2015江苏,23,10分)已知集合X={1,2,3},Y n={1,2,3,…,n}(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,b∈Y n}.令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.解析(1)f(6)=13.(2)当n≥6时,f(n)=(t∈N*).下面用数学归纳法证明:①当n=6时, f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+++3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.C组教师专用题组考点一数列的求和1.(2017天津文,18,13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).解析本题主要考查等差数列、等比数列及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.又因为q>0,解得q=2.所以b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n.(2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.得T n=(3n-4)2n+2+16.所以数列{a2n b n}的前n项和为(3n-4)2n+2+16.方法总结(1)等差数列与等比数列中分别有五个量,a1,n,d(或q),a n,S n,一般可以“知三求二”,通过列方程(组)求基本量a1和d(或q),问题可迎刃而解.(2)数列{a n b n},其中{a n}是公差为d的等差数列,{b n}是公比q≠1的等比数列,求{a n b n}的前n项和应采用错位相减法.2.(2017山东文,19,12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列的前n项和T n.解析本题考查等比数列与数列求和.(1)设{a n}的公比为q,由题意知a1(1+q)=6,q=a1q2,又a n>0,解得a1=2,q=2,所以a n=2n.(2)由题意知S2n+1==(2n+1)b n+1,又S2n+1=b n b n+1,b n+1≠0,所以b n=2n+1.令c n=,则c n=.因此T n=c1+c2+…+c n=+++…++,又T n=+++…++,两式相减得T n=+-,所以T n=5-.3.(2016课标全国Ⅱ,17,12分)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.解析(1)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.(6分)(2)因为b n=(9分)所以数列{b n}的前1 000项和为1×90+2×900+3×1=1 893.(12分)疑难突破充分理解[x]的意义,求出b n的表达式,从而求出{b n}的前1 000项和.评析本题主要考查了数列的综合运用,同时对学生创新能力进行了考查,充分理解[x]的意义是解题关键.4.(2015湖北,19,12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q.已知b1=a1,b2=2,q=d,S10=100. (1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=,求数列{c n}的前n项和T n.解析(1)由题意有,即解得或故或(2)由d>1,知a n=2n-1,b n=2n-1,故c n=,于是T n=1+++++…+,①T n=+++++…+.②①-②可得T n=2+++…+-=3-,故T n=6-.评析本题考查等差、等比数列的通项公式、前n项和公式,利用错位相减法求和,考查推理运算能力.5.(2015天津,18,13分)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.解析(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2.当n=2k-1(k∈N*)时,a n=a2k-1=2k-1=;当n=2k(k∈N*)时,a n=a2k=2k=.所以{a n}的通项公式为a n=(2)由(1)得b n==.设{b n}的前n项和为S n,则S n=1×+2×+3×+…+(n-1)×+n×,S n=1×+2×+3×+…+(n-1)×+n×,上述两式相减,得S n=1+++…+-=-=2--,整理得,S n=4-.所以数列{b n}的前n项和为4-,n∈N*.评析本题主要考查等比数列及其前n项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.6.(2014山东,19,12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1,求数列{b n}的前n项和T n.解析(1)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(2)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=评析本题考查等差数列的通项公式,前n项和公式和数列的求和,分类讨论的思想和运算求解能力、逻辑推理能力.7.(2014天津,19,14分)已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.解析(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=-q n-1=-1<0.所以s<t.评析本题主要考查集合的含义与表示,等比数列的前n项和公式,不等式的证明等基础知识和基本方法.考查运算能力、分析问题和解决问题的能力.考点二数列的综合应用1.(2017课标全国Ⅲ文,17,12分)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;(2)求数列的前n项和.解析(1)因为a1+3a2+…+(2n-1)a n=2n,所以当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1),两式相减得(2n-1)a n=2,所以a n=(n≥2).又由题设可得a1=2,满足上式,所以{a n}的通项公式为a n=(n∈N*).(2)记的前n项和为S n,由(1)知==-,所以S n=-+-+…+-=.思路分析(1)条件a1+3a2+…+(2n-1)a n=2n的实质就是数列{(2n-1)a n}的前n项和,故可利用a n与前n项和的关系求解;(2)利用裂项相消法求和.易错警示(1)要注意n=1时,是否符合所求得的通项公式;(2)裂项相消后,注意留下了哪些项,避免遗漏.2.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.证明本题主要考查等差数列的定义、通项公式等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.方法总结数列新定义型创新题的一般解题思路:1.阅读审清“新定义”;2.结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识;3.利用“新定义”及常规的数列知识,求解证明相关结论.3.(2016天津,18,13分)已知{a n}是各项均为正数的等差数列,公差为d.对任意的n∈N*,b n是a n和a n+1的等比中项.(1)设c n=-,n∈N*,求证:数列{c n}是等差数列;(2)设a1=d,T n=(-1)k,n∈N*,求证:<.证明(1)由题意得=a n a n+1,有c n=-=a n+1·a n+2-a n a n+1=2da n+1,因此c n+1-c n=2d(a n+2-a n+1)=2d2,所以{c n}是等差数列.(2)T n=(-+)+(-+)+…+(-+)=2d(a2+a4+…+a2n)=2d·=2d2n(n+1).所以===·<.评析本题主要考查等差数列及其前n项和公式、等比中项等基础知识.考查数列求和的基本方法、推理论证能力和运算求解能力.4.(2015重庆,22,12分)在数列{a n}中,a1=3,a n+1a n+λa n+1+μ=0(n∈N+).(1)若λ=0,μ=-2,求数列{a n}的通项公式;(2)若λ=(k0∈N+,k0≥2),μ=-1,证明:2+<<2+.解析(1)由λ=0,μ=-2,有a n+1a n=2(n∈N+).若存在某个n0∈N+,使得=0,则由上述递推公式易得=0.重复上述过程可得a1=0,此与a1=3矛盾,所以对任意n∈N+,a n≠0.从而a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.故a n=a1q n-1=3·2n-1.(2)证明:由λ=,μ=-1,数列{a n}的递推关系式变为a n+1a n+a n+1-=0,变形为a n+1=(n∈N+).由上式及a1=3>0,归纳可得3=a1>a2>...>a n>a n+1> 0因为a n+1===a n-+·,所以对n=1,2,…,k0求和得=a1+(a2-a1)+…+(-)=a1-k0·+·>2+·=2+.另一方面,由上已证的不等式知a1>a2>…>>>2,得=a1-k0·+·<2+·=2+.综上,2+<<2+.5.(2014湖南,20,13分)已知数列{a n}满足a1=1,|a n+1-a n|=p n,n∈N*.(1)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(2)若p=,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.解析(1)因为{a n}是递增数列,所以|a n+1-a n|=a n+1-a n=p n.而a1=1,因此a2=p+1,a3=p2+p+1. 又a 1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p=0,解得p=或p=0.当p=0时,a n+1=a n,这与{a n}是递增数列矛盾.故p=.(2)由于{a2n-1}是递增数列,因而a2n+1-a2n-1>0,于是(a2n+1-a2n)+(a2n-a2n-1)>0.①但<,所以|a2n+1-a2n|<|a2n-a2n-1|.②由①②知,a2n-a2n-1>0,因此a2n-a2n-1==.③因为{a2n}是递减数列,同理可得,a2n+1-a2n<0,故a2n+1-a2n=-=.④由③④知,a n+1-a n=.于是a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+-+…+=1+·=+·,故数列{a n}的通项公式为a n=+·.6.(2015陕西,21,12分)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=+;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.解析(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1+++…+-2=-2=-<0,所以F n(x)在内至少存在一个零点.又F'n(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n.因为x n是F n(x)的零点,所以F n(x n)=0,即-2=0,故x n=+.(2)解法一:由题设知,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时, f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1-.若0<x<1,h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时, f n(x)=g n(x);当x≠1时, f n(x)<g n(x).解法二:由题设, f n(x)=1+x+x2+…+x n,g n(x)=,x>0.当x=1时, f n(x)=g n(x).当x≠1时,用数学归纳法可以证明f n(x)<g n(x).①当n=2时, f2(x)-g2(x)=- (1-x)2<0,所以f2(x)<g2(x)成立.②假设n=k(k≥2)时,不等式成立,即f k(x)<g k(x).那么,当n=k+1时,f k+1(x)=f k(x)+x k+1<g k(x)+x k+1=+x k+1=.又g k+1(x)-=,令h k(x)=kx k+1-(k+1)x k+1(x>0),则h'k(x)=k(k+1)x k-k(k+1)x k-1=k(k+1)x k-1(x-1).所以当0<x<1时,h'k(x)<0,h k(x)在(0,1)上递减;当x>1时,h'k(x)>0,h k(x)在(1,+∞)上递增.所以h k(x)>h k(1)=0,从而g k+1(x)>.故f k+1(x)<g k+1(x),即n=k+1时不等式也成立.由①和②知,对一切n≥2的整数,都有f n(x)<g n(x).解法三:由已知,记等差数列为{a k},等比数列为{b k},k=1,2,…,n+1. 则a1=b1=1,a n+1=b n+1=x n,所以a k=1+(k-1)·(2≤k≤n),b k=x k-1(2≤k≤n),令m k(x)=a k-b k=1+-x k-1,x>0(2≤k≤n),当x=1时,a k=b k,所以f n(x)=g n(x).当x≠1时,m'k(x)=·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1).而2≤k≤n,所以k-1>0,n-k+1≥1.若0<x<1,x n-k+1<1,m'k(x)<0;若x>1,x n-k+1>1,m'k(x)>0,从而m k(x)在(0,1)上递减,在(1,+∞)上递增,所以m k(x)>m k(1)=0,所以当x>0且x≠1时,a k>b k(2≤k≤n),又a1=b1,a n+1=b n+1,故f n(x)<g n(x).综上所述,当x=1时, f n(x)=g n(x);当x≠1时, f n(x)<g n(x).7.(2014四川,19,12分)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*). (1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-,求数列的前n项和T n.解析(1)由已知,得b7=,b8==4b7,有=4×=.解得d=a8-a7=2.所以,S n=na1+d=-2n+n(n-1)=n2-3n.(2)函数f(x)=2x在(a2,b2)处的切线方程为y-=(ln 2)(x-a2),它在x轴上的截距为a2-.由题意,得a2-=2-,解得a2=2.所以d=a2-a1=1.从而a n=n,b n=2n.所以T n=+++…++,2T n=+++…+.因此,2T n-T n=1+++…+-=2--=.所以,T n=.评析本题考查等差数列与等比数列的概念、等差数列与等比数列通项公式与前n项和、导数的几何意义等基础知识,考查运算求解能力.8.(2014江西,17,12分)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1b n=0.(1)令c n=,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n.解析(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0(n∈N*),所以-=2,即c n+1-c n=2.所以数列{c n}是以1为首项,2为公差的等差数列,故c n=2n-1.(2)由b n=3n-1知a n=c n b n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1·30+3·31+5·32+…+(2n-1)·3n-1,3S n=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2S n=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.评析本题主要考查等差数列的有关概念及求数列的前n项和,考查学生的运算求解能力,在利用错位相减法求和时,计算失误是学生失分的主要原因.9.(2014湖北,18,12分)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.解析(1)设数列{a n}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2,从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n.显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n==2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的n;当a n=4n-2时,存在满足题意的n,其最小值为41.评析本题考查了数列的通项公式和求和公式,考查了分类讨论的方法.考点三数学归纳法(2014安徽,21,13分)设实数c>0,整数p>1,n∈N*.(1)证明:当x>-1且x≠0时,(1+x)p>1+px;(2)数列{a n}满足a1>,a n+1=a n+.证明:a n>a n+1>.证明(1)用数学归纳法证明:①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以p=k+1时,原不等式也成立.综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.(2)证法一:先用数学归纳法证明a n>.①当n=1时,由题设a1>知a n>成立.②假设n=k(k≥1,k∈N*)时,不等式a k>成立.由a n+1=a n+易知a n>0,n∈N*.当n=k+1时,=+=1+.由a k>>0得-1<-<<0.由(1)中的结论得=>1+p·=.因此>c,即a k+1>. 所以n=k+1时,不等式a n>也成立.综合①②可得,对一切正整数n,不等式a n>均成立.。
【2020】人教版最新高中数学数列专题复习(综合训练篇含答案)Word版
编 辑:__________________
时 间:__________________
———综合训练篇
一、选择题:
1. 在等差数列中,,则的值为 ( D )
A.18B.20C.22D.24
2.等差数列满足:,若等比数列满足则为( B ) A.16B.32C.64D.27
(Ⅰ)求证:数列为等差数列;
(Ⅱ)若,求数列的前n项和Sn.
17.解:(Ⅰ),
,…………………………………………2分
,即
………………………………………………4分
∴数列为首项,公差为2的等差数列 …………………………6分
(Ⅱ)由(1)得:,即
……………………………………………………8分
b1 = 1,当,
(I)哪一年两产品获利之和最小?
(II)至少经过几年即可达到或超过预期计划?
16.
故第20xx年两产品获利最小.……………………………………………………(6分)
(II)
…………………………………………(1分)
17.(选做题)已知函数的反函数为,数列{an}满足:a1 = 1, ,数列是首项为1,公比为的等比数列.
三、解答题:
15.已知是等比数列,Sn是其前n项的和,a1,a7,a4成等差数列,求证:2S3,S6,S12-S6,成等比数列.
15.[解法1]由已知………………(2分)
当
…………(4分)
………………(8分)
当……(10分)
所以,成等比数列.………………………………………………(12分)
[解法2]由已知,……………(2分)
A. B. C. D.
2020年高考数学总复习 第五章 第5课时 数列的综合应用随堂检测(含解析) 新人教版
2020年高考数学总复习 第五章 第5课时 数列的综合应用随堂检测(含解析) 新人教版1.(2020·高考湖北卷)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为__________升.解析:设所构成数列{a n }的首项为a 1,公差为d ,依题意⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧ 4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧ a 1=1322,d =766, ∴a 5=a 1+4d =1322+4×766=6766. 答案:67662.已知数列{a n }的前n 项和S n =2n 2-3n ,数列{b n }是各项为正的等比数列,满足a 1=-b 1,b 3(a 2-a 1)=b 1.(1)求数列{a n },{b n }的通项公式;(2)记c n =a n ·b n ,求c n 的最大值.解:(1)∵a n =⎩⎪⎨⎪⎧ S 1, n =1S n -S n -1,n ≥2,∴a n =⎩⎪⎨⎪⎧-1, n =14n -5,n ≥2, 即a n =4n -5(n ∈N *).故b 1=1,b 1q 2(a 2-a 1)=b 1,∴q 2=14, ∵b n >0,∴q =12,∴b n =(12)n -1(n ∈N *). (2)由(1)可知,c n =(4n -5)(12)n -1, 则由⎩⎪⎨⎪⎧ c n ≥c n -1c n ≥c n +1可得94≤n ≤134,又n ∈N *,故n =3. 即c 3最大,故c n 的最大值为74. 3.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f (1a n),n ∈N *. (1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n .解:(1)∵a n +1=f (1a n )=2a n +33a n=2+3a n 3=a n +23,∴{a n }是以23为公差的等差数列.又a 1=1,∴a n =23n +13. (2)T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1 =a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1)=-43(a 2+a 4+…+a 2n ) =-43·n 53+4n 3+132=-49(2n 2+3n ).。
高考数学(理)一轮复习课件:5-5数列的综合应用(人教A版)
■ ·考点自测· ■
1. [2012·蚌埠二中质检]已知数列{an}的通项公式为 an=6n-4,数列{bn}的通项公式为bn=2n,则在数列{an}
的前100项中与数列{bn}中相同的项有( )
A. 50项
B. 34项
C. 6项
D. 5项
答案:D
解析:a1=2=b1,a2=8=b3,a3=14,a4=20,a5= 26,a6=32=b5,又b10=210=1024>a100,b9=512 ==令=== 6n -4,则n=86,∴a86=b9,b8=256 ==令=== 6n-4无解,b7 =128 ==令=== 6n-4,则n=22,∴a22=b7,b6=64=6n-4 无解,综上知,数列{an}的前100项中与{bn}相同的项有5 项.
∴Tn=π2 [1·2+3·22+…+(2n-3)·2n-1+(2n-1)·2n], 2Tn=π2 [1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1],
两式相减,得
π
-Tn= 2 [1·2+2·22+2·23+…+2·2n-(2n-1)·
2n+1],∴Tn=π[(2n-3)·2n+3].
[规律总结] 本题把数列、导数、解析几何等知识巧 妙地融合在一起,具有较强的综合性,在解决数列知识 与其他章节知识的综合题时,要注意思维角度与解题途 径的选择,提高数字变形转换、推理等综合能力.
3. 数列知识的综合问题 (1)数列本身的综合 数列知识内部综合主要是指以等差数列和等比数列 为中心的综合问题,通常涉及到等差、等比数列的证 明,基本计算、求和等.
(2)数列与其他章节知识的综合 与数列常联系在一起命题的知识主要有函数、不等 式和解析几何,以及三角、复数等.有时带有探索性, 涉及到的方法有转化与化归、放缩、数学归纳法、反证 法、函数思想等.
2020新课标高考数学(文)总复习专题限时训练:数列的综合应用含解析
编 辑:__________________
时 间:__________________
(建议用时:45分钟)
1.已知数列{an}为等差数列、满足 =a3 +a2 013 、其中A、B、C在一条直线上、O为直线AB外一点、记数列{an}的前n项和为Sn、则S2 015的值为( )
因为t2-2t+ >bn恒成立、
所以t2-2t+ > 、
解得t<0或t>2、
所以实数t的取值范围为(-∞、0)∪(2、+∞).
解析:设等差数列{an}的公差为d、因为a3+a7=36、所以a4+a6=36、与a4a6=275联立、
解得 或
当 时、可得 此时an=7n-17、a2=-3、a3=4、易知当n≤2时、an<0、当n≥3时、an>0、所以a2a3=-12为anan+1的最小值;
当 时、可得 此时an=-7n+53、a7=4、a8=-3、易知当n≤7时、an>0、当n≥8时、an<0、所以a7a8=-12为anan+1的最小值.
解析:当n≥2时、因为Sn=2bn-1、所以Sn-1=2bn-1-1、所以bn=2bn-2bn-1、所以bn=2bn-1(n≥2且n∈N*)、因为b1=2b1-1、所以b1=1、所以数列{bn}是首项为1、公比为2的等比数列、所以bn=2n-1.
设a1、a2、a4、a7、a11、…的下标1,2,4,7,11、…构成数列{cn}、则c2-c1=1、c3-c2=2、c4-c3=3、c5-c4=4、…、cn-cn-1=n-1、累加得、cn-c1=1+2+3+4+…+(n-1)、所以cn= +1、由cn= +1=56、得n=11、所以a56=b11=210=1 024.
2020届高考数学 第五章第五节数列的综合问题课后练习 新人教A版 .doc
"【三维设计】高考数学 第五章第五节数列的综合问题课后练习 人教A 版 "一、选择题1.(2012·长沙模拟)设{a n }、{b n }分别为等差数列与等比数列,a 1=b 1=4,a 4=b 4=1,则下列结论正确的是( )A .a 2>b 2B .a 3<b 3C .a 5>b 5D .a 6>b 6解析:设{a n }的公差为d ,{b n }的公比为q ,由题可得d =-1,q =322,于是a 2=3>b 2=232. 答案:A2.已知等差数列{a n }的前n 项和为S n ,S 9=-36,S 13=-104,等比数列{b n }中,b 5=a 5,b 7=a 7,则b 6的值为( )A .±4 2B .-4 2C .4 2D .无法确定解析:依题意得,S 9=9a 5=-36⇒b 5=a 5=-4,S 13=13a 7=-104⇒b 7=a 7=-8,所以b 6=±4 2.答案:A3.(2012·青岛模拟)已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的一个方向向量的坐标可以是( )A .(2,4)B.⎝ ⎛⎭⎪⎫-13,-43C.⎝ ⎛⎭⎪⎫-12,-1 D .(-1,-1) 解析:由S 2=10,S 5=55,得2a 1+d =10,5a 1+10d =55,解得a 1=3,d =4,可知直线PQ 的一个方向向量是(1,4),只有⎝ ⎛⎭⎪⎫-13,-43与(1,4)平行,故选B.答案:B4.已知数列{a n },{b n }满足a 1=1且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10等于( )A .24B .32C .48D .64 解析:依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列,而a 1=1,a 2=2,所以a 10=2·24=32,a 11=1·25=32,又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.答案:D5.(2011·上海高考)设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件为( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,…. ∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n =q ,从而{A n }为等比数列. 答案:D二、填空题6.(2011·江苏高考)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6 成公差为1的等差数列,则q 的最小值是________.解析:设a 2=t ,则1≤t ≤q ≤t +1≤q 2≤t +2≤q 3,由于t ≥1,所以q ≥max{t ,t +1,3t +2},故q 的最小值是33. 答案:337.(2011·陕西高考)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________(米).解析:当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案:2 000三、解答题8.(2011·浙江高考)已知公差不为0的等差数列{a n }的首项a 1为a (a ∈R),且1a 1,1a 2,1a 4成等比数列. (1)求数列{a n }的通项公式; (2)对n ∈N *,试比较1a 2+1a 22+1a 23+…+1a 2n 与1a 1的大小. 解:(1)设等差数列{a n }的公差为d ,由题意可知⎝ ⎛⎭⎪⎫1a 22=1a 1·1a 4, 即(a 1+d )2=a 1(a 1+3d ),从而a 1d =d 2.因为d ≠0.所以d =a 1=a .故通项公式a n =na .(2)记T n =1a 2+1a 22+…+1a 2n,因为a 2n =2n a , 所以T n =1a ⎝ ⎛⎭⎪⎫12+122+…+12n =1a ·12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1a ⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n . 从而,当a >0时,T n <1a 1;当a <0时,T n >1a 1. 9.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据资料统计,11月1日,该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30天内感染该病毒的患者总共有8 670人,则11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.解:设从11月1日起第n (n ∈N *,1≤n ≤30)日感染此病毒的新患者人数最多,则从11月1日至第n 日止,每日新患者人数依次构成一个等差数列,这个等差数列的首项为20,公差为50,前n 日的患者总人数即该数列前n 项之和S n =20n +n n -12·50=25n 2-5n .从第n +1日开始,至11月30日止,每日的新患者人数依次构成另一等差数列,这个等差数列的首项为[20+(n -1)·50]-30=50n -60,公差为-30,项数为(30-n ),(30-n )日的患者总人数为T 30-n =(30-n )·(50n -60)+30-n 29-n 2×(-30) =(30-n )(65n -495)=-65n 2+2 445n -14 850.依题意有S n +T 30-n =8 670,即(25n 2-5n )+(-65n 2+2 445n -14 850)=8 670.化简整理得n 2-61n +588=0,所以n =12,n =49,又1≤n ≤30,所以n =12.所以第12日的新患者人数为20+(12-1)×50=570,所以11月12日该市感染此病毒的新患者人数最多,且这一天新患者人数为570人. 10.已知函数f (x )=a x 的图象过点⎝ ⎛⎭⎪⎫1,12,且点⎝ ⎛⎭⎪⎫n -1,a n n 2 (n ∈N *)在函数f (x )=a x的图象上.(1)求数列{a n }的通项公式;(2)令b n =a n +1-12a n ,若数列{b n }的前n 项和为S n ,求证:S n <5. 解:(1)∵函数f (x )=a x 的图象过点⎝ ⎛⎭⎪⎫1,12, ∴a =12,f (x )=⎝ ⎛⎭⎪⎫12x . 又点⎝⎛⎭⎪⎫n -1,a n n 2(n ∈N *)在函数f (x )=a x 的图象上,从而a n n 2=12n -1,即a n =n 22n -1(n ∈N *). (2)由b n =n +122n -n 22n =2n +12n 得, S n =32+522+…+2n +12n , 则12S n =322+523+…+2n -12n +2n +12n +1, 两式相减得12S n =32+2⎝ ⎛⎭⎪⎫122+123+…+12n -2n +12n +1, ∴S n =5-2n +52n (n ∈N *), ∴S n <5。
2020版高考数学(浙江专用)一轮总复习检测:6.4 数列求和、数列的综合应用 Word版含解析
+
. ������
2.(2017 浙江新高考临考冲刺卷,22)已知正项数列 an 满足:an+1=an-���������2���(n∈N*).
1
(1)证明:当 n≥2 时,an≤������
+
; 2
������ + 2 (2)设 Sn 为数列{an}的前 n 项和,证明:Sn<1+ln 3 (n∈N*).
答案 B
2.(2017 浙江“七彩阳光”新高考研究联盟测试,9)已知函数 f(x)=sin xcos
x+cos2x,0≤x0<x1<x2<…<xn≤,an=|f(xn)-f(xn-1)|,n∈N*,Sn=a1+a2+…+an,则 Sn 的最大值等于( ) A. 2 B. 3 C. 2+1 D.2
-
1)������������
-
+1 ������
-
1<…<������1+-1=
������������1
= ������������
,
������ 所以 an>(1 - ������)������ + ������,又 a1=a,
������
所以当 n∈N*时,an≥(1
-
������)������
总有 Sn= 2 .设 bn=a4n+1,dn=3n(n∈N*),且数列{bn}中存在连续的 k(k>1,k∈N*)项和是数列{dn}中的某
一项,则 k 的取值集合为( )
A.{k|k=2α,α∈N*} B.{k|k=3α,α∈N*} C.{k|k=2α,α∈N*} D.{k|k=3α,α∈N*}
高三数学人教版A版数学(理)高考一轮复习教案:5.5 数列的综合应用 Word版含答案
第五节数列的综合应用数列的综合应用能在具体的问题情境中,识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题.知识点数列的实际应用问题数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n+1的递推关系,还是前n项和S n与S n+1之间的递推关系.必备方法解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.具体解题步骤用框图表示如下:[自测练习]1.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要() A.6秒钟B.7秒钟C.8秒钟D.9秒钟解析:设至少需要n秒钟,则1+21+22+…+2n-1≥100,∴1-2n 1-2≥100,∴n ≥7. 答案:B2.一个凸多边形的内角成等差数列,其中最小的内角为2π3,公差为π36,则这个多边形的边数为________.解析:由于凸n 边形的内角和为(n -2)π, 故2π3n +n (n -1)2×π36=(n -2)π. 化简得n 2-25n +144=0.解得n =9或n =16(舍去). 答案:93.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128,则n +1≥7,即n ≥6.答案:6考点一 等差、等比数列的综合应用|在数列{a n }中,a 1=2,a 2=12,a 3=54,数列{a n +1-3a n }是等比数列.(1)求证:数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列;(2)求数列{a n }的前n 项和S n .[解] (1)证明:∵a 1=2,a 2=12,a 3=54, ∴a 2-3a 1=6,a 3-3a 2=18. 又∵数列{a n +1-3a n }是等比数列, ∴a n +1-3a n =6×3n -1=2×3n , ∴a n +13n -a n3n -1=2, ∴数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列.(2)由(1)知数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列,∴a n 3n -1=a 130+(n -1)×2=2n , ∴a n =2n ×3n -1.∵S n =2×1×30+2×2×31+…+2n ×3n -1, ∴3S n =2×1×3+2×2×32+…+2n ×3n .∴S n -3S n =2×1×30+2×1×3+…+2×1×3n -1-2n ×3n =2×1-3n1-3-2n ×3n=3n -1-2n ×3n , ∴S n =⎝⎛⎭⎫n -12×3n +12.等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.1.(2016·贵州七校联考)已知{a n }是等差数列,{b n }是等比数列,S n 为数列{a n }的前n 项和,a 1=b 1=1,且b 3S 3=36,b 2S 2=8(n ∈N *).(1)求a n 和b n ;(2)若a n <a n +1,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n .解:(1)由题意得⎩⎪⎨⎪⎧q 2(3+3d )=36,q (2+d )=8,解得⎩⎪⎨⎪⎧d =2q =2或⎩⎪⎨⎪⎧d =-23,q =6,∴⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎪⎨⎪⎧a n =13(5-2n ),b n =6n -1.(2)若a n <a n +1,由(1)知a n =2n -1, ∴1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=n 2n +1.考点二 数列的实际应用问题|为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.[解] (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量. 依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n 1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n -1, {b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n -1+400n +n (n -1)2a . (2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000, 即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.解决数列应用题一个注意点解决数列应用问题,要明确问题属于哪一种类型,即明确是等差数列问题还是等比数列问题,要求a n 还是S n ,特别是要弄清项数.2.某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨.(1)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年SO 2的年排放量控制在6万吨以内,求p 的取值范围.⎝ ⎛⎭⎪⎫参考数据:823≈0.9505,923≈0.955 9解:(1)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为-0.3的等差数列, 所以y =5×9.3+5×(5-1)2×(-0.3)=43.5(万吨).所以按原计划“十二五”期间该城市共排放SO 2约43.5万吨. (2)由已知得,2012年的SO 2年排放量为9.3-0.3=9(万吨),所以2012年至2020年SO 2的年排放量构成首项为9,公比为1-p 的等比数列. 由题意得9×(1-p )8<6,由于0<p <1, 所以1-p <823,所以1-p <0.950 5,解得p >4.95%.所以SO 2的年排放量每年减少的百分率p 的取值范围为(4.95%,1).考点三 数列与不等式的综合问题|(2015·高考浙江卷)已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *). (1)证明:1≤a na n +1≤2(n ∈N *);(2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)≤S n n ≤12(n +1)(n ∈N *).[证明] (1)由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n , 故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0. 由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n ∈[1,2],即1≤a na n +1≤2. (2)由题意得a 2n =a n -a n +1, 所以S n =a 1-a n +1.① 由1a n +1-1a n =a n a n +1和1≤a n a n +1≤2得1≤1a n +1-1a n ≤2, 所以n ≤1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1≤1n +2(n ∈N *).②由①②得12(n +2)≤S n n ≤12(n +1)(n ∈N *).数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等.3.(2016·云南一检)在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n项和是S n .(1)证明数列{b n }是等差数列,并求S n ; (2)比较a n 与S n +7的大小.解:(1)∵b n =1a n -1,a n +1=2-1a n ,∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列. 由a 1=35,b n =1a n -1得b 1=-52,∴S n =-5n 2+n (n -1)2=n 22-3n .(2)由(1)知:b n =-52+n -1=n -72.由b n =1a n -1得a n =1+1b n =1+1n -72.∴a n -S n -7=-n 22+3n -6+1n -72.∵当n ≥4时,y =-n 22+3n -6是减函数,y =1n -72也是减函数,∴当n ≥4时,a n -S n -7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0,a 3-S 3-7=-72<0,∴∀n ∈N *,a n -S n -7≤0, ∴a n ≤S n +7.6.数列的综合应用的答题模板【典例】 (12分)(2015·高考四川卷)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.[思路点拨] 由S n =2a n -a 1,得a 2=2a 1,a 3=4a 1,再通过a 1,a 2+1,a 3成等差数列确定首项a 1=2是解决(1)的切入点;由(1)知⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为12的等比数列,所以T n =1-12n ,然后解不等式即可. [规范解答] (1)由已知S n =2a n -a 1,有 a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2).所以a =2. 从而a 2=2a 1,a 3=2a 2=4a 1.(2分)又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1). 所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以,数列{a n }是首项为2,公比为2的等比数列. 故a n =2n .(6分) (2)由(1)得1a n =12n .所以T n =12+122+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .(8分)由|T n -1|<11 000,得⎪⎪⎪⎪1-12n -1<11000,即2n >1 000. 因为29=512<1 000<1 024=210, 所以n ≥10.(10分) 于是,使|T n -1|<11 000成立的n 的最小值为10.(12分) [模板形成][跟踪练习] (2015·湖北七市联考)数列{a n }是公比为12的等比数列,且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n+1(λ为常数,且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意得(1-a 2)2=a 1(a 3+1), 即⎝⎛⎭⎫1-12a 12=a 1⎝⎛⎭⎫14a 1+1, 解得a 1=12,∴a n =⎝⎛⎭⎫12n . 设{b n }的公差为d ,又⎩⎪⎨⎪⎧ T 1=λb 2,T 2=2λb 3,即⎩⎪⎨⎪⎧8=λ(8+d ),16+d =2λ(8+2d ),解得⎩⎪⎨⎪⎧λ=12,d =8或⎩⎪⎨⎪⎧λ=1,d =0(舍),∴λ=12.(2)由(1)知S n =1-⎝⎛⎭⎫12n,∴12S n =12-⎝⎛⎭⎫12n +1≥14,① 又T n =4n 2+4n ,1T n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1,∴1T 1+1T 2+…+1T n=14⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =14⎝⎛⎭⎫1-1n +1<14,② 由①②可知1T 1+1T 2+…+1T n <12S n .A 组 考点能力演练1.(2015·杭州二模)在正项等比数列{a n }中,22为a 4与a 14的等比中项,则2a 7+a 11的最小值为( )A .16B .8C .6D .4解析:因为{a n }是正项等比数列,且22为a 4与a 14的等比中项,所以a 4a 14=8=a 7a 11,则2a 7+a 11=2a 7+8a 7≥22a 7·8a 7=8,当且仅当a 7=2时,等号成立,所以2a 7+a 11的最小值为8,故选择B.2.(2016·宝鸡质检)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小的一份为( )A.53B.103C.56D.116解析:由100个面包分给5个人,每个人所得成等差数列,可知中间一人得20块面包,设较大的两份为20+d,20+2d ,较小的两份为20-d,20-2d ,由已知条件可得17(20+20+d+20+2d )=20-d +20-2d ,解得d =556,∴最小的一份为20-2d =20-2×556=53,故选A.答案:A3.(2016·豫南十校联考)设f (x )是定义在R 上的恒不为零的函数,且对任意的x ,y ∈R ,都有f (x )·f (y )=f (x +y ).若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A.⎣⎡⎭⎫12,2B.⎣⎡⎦⎤12,2 C.⎣⎡⎭⎫12,1D.⎣⎡⎦⎤12,1解析:在f (x )·f (y )=f (x +y )中令x =n ,y =1,得f (n +1)=f (n )f (1),又a 1=12,a n =f (n )(n∈N *),则a n +1=12a n ,所以数列{a n }是首项和公比都是12的等比数列,其前n 项和S n =12×⎝⎛⎭⎫1-12n 1-12=1-12n ∈⎣⎡⎭⎫12,1,故选择C. 答案:C4.已知在等差数列=a 4,前n 项和为T n ,则A .S 4>T 4 C .S 4=T 4解析:法一:设等比数列S 4-T 4=a 2+a 3-(b 2+-b 2)>0,所以S 4>T 4.法二:不妨取a n =7n -4,则等比数列{b n }的公比q =3a 4a 1=2,所以S 4=54,T 4=b 1(1-q 4)1-q =45,显然S 4>T 4,选A.答案:A5.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2 B .16 C.114D.32解析:设数列{a n }的公比为q ,a 3=a 2+2a 1⇒q 2=q +2⇒q =2,∴a n =a 1·2n -1,a m ·a n =16a 21⇒a 21·2m+n -2=16a 21⇒m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114.答案:C6.(2016·兰州双基)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =________.解析:由题意,得(a 1+3×2)2=(a 1+2)(a 1+7×2),解得a 1=2,所以S n =2n +n (n -1)2×2=n 2+n .答案:n 2+n7.(2015·高考湖南卷)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1.答案:3n -18.从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒________次后才能使纯酒精体积与总溶液的体积之次后纯酒精与总溶液的体积比为a n , 2,x >0},把M 中的元素从小到大依次排成一列,得到数列{a n },n ∈N *.(1)求数列{a n }的通项公式;(2)记b n =1a 2n +1,设数列{b n }的前n 项和为T n ,求证:T n <14.解:(1)∵|f (x )|=2,∴π2x =k π+π2,k ∈Z ,x =2k +1,k ∈Z .又∵x >0,∴a n =2n -1(n ∈N *).(2)∵b n =1a 2n +1=1(2n +1)2=14n 2+4n +1<14n 2+4n =14⎝⎛⎭⎫1n -1n +1,∴T n =b 1+b 2+…+b n <14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=14-14(n +1)<14,∴T n <14得证.10.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1(n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n . 解:(1)∵a n =-2S n ·S n -1(n ≥2), ∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2(n ≥2),∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n , ∴S n =12n.将S n =12n代入a n =-2S n ·S n -1,⎧12, (n =1),∴当n ≥2时,S 21+S 22+…+S 2n=14+14×2×2+…+14·n ·n <14+14⎝⎛⎭⎫1-12+…+14⎝⎛⎭⎫1n -1-1n =12-14n; 当n =1时,S 21=14=12-14×1. 综上,S 21+S 22+…+S 2n ≤12-14n. B 组 高考题型专练1.(2015·高考浙江卷)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . 解:(1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1n b n =b n +1-b n ,整理得b n +1n +1=b n n ,所以b n =n (n ∈N *). (2)由(1)知a n b n =n ·2n ,因此,T n =2+2×22+3×23+…+n ·2n , 2T n =22+2×23+3×24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).2.(2015·高考安徽卷)设n ∈N *,x n 是曲线y =x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标.(1)求数列{x n }的通项公式;(2)记T n =x 21x 23…x 22解:(1)y ′=(x 2n +,曲线y =x 2n +2+1在点(1,2)处的切线斜率为2n +2,从而切线方程为y 令y =0,解得切线与x 轴交点的横坐标x n =1-1n +1=nn +1.所以数列{x n }的通项公式x n =n n +1. (2)证明:由题设和(1)中的计算结果知T n =x 21x 23…x 22n -1=⎝⎛⎭⎫122⎝⎛⎭⎫342…⎝⎛⎭⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,因为x 22n -1=⎝⎛⎭⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n ,所以T n >⎝⎛⎭⎫122×12×23×…×n -1n =14n . 综上可得对任意的n ∈N *,均有T n ≥14n.3.(2014·高考新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.淘宝店铺:漫兮教育(1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,。
【新课改】2020版高考数学一轮复习课时跟踪检测:数列的综合应用(含解析)
课时跟踪检测(三十七) 数列的综合应用1.(2019·深圳模拟)设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( )A.n n +1 B .n +2n +1 C.nn -1D .n +1n解析:选A ∵f ′(x )=mx m -1+a =2x +1,∴a =1,m =2,∴f (x )=x (x +1),则1f n=1n n +1=1n -1n +1,用裂项法求和得S n =1-12+12-13+…+1n -1n +1=n n +1.2.已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2018=( ) A .-2 017 B .-2 018 C .2 017D .2 018解析:选D 当n 为奇数时,n +1为偶数,则a n =n 2-(n +1)2=-2n -1,所以a 1+a 3+a 5+…+a 2 017=-(3+7+11+…+4 035).当n 为偶数时,n +1为奇数,则a n =-n 2+(n +1)2=2n +1,所以a 2+a 4+a 6+…+a 2 018=5+9+13+…+4 037.所以a 1+a 2+a 3+…+a 2 018=(5-3)+(9-7)+(13-11)+…+(4 037-4 035)=2×1 009=2 018,故选D.3.(2017·四川乐山模拟)对于数列{a n },定义H 0=a 1+2a 2+…+2n -1a nn为{a n }的“优值”.现已知某数列的“优值”H 0=2n +1,记数列{a n -20}的前n 项和为S n ,则S n 的最小值为( )A .-64B .-68C .-70D .-72解析:选D 由题意可知:H 0=a 1+2a 2+…+2n -1a n n=2n +1,则a 1+2a 2+…+2n -1·a n =n ·2n +1.当n ≥2时,a 1+2a 2+…+2n -2·a n -1=(n -1)·2n,两式相减得2n -1·a n =n ·2n +1-(n -1)·2n,a n =2(n +1),当n =1时成立,∴a n -20=2n -18,显然{a n -20}为等差数列. 令a n -20≤0,解得n ≤9,故当n =8或9时,{a n -20}的前n 项和S n 取最小值,最小值为S 8=S 9=9×-16+02=-72,故选D.4.(2019·湖北襄阳联考)已知函数f ⎝ ⎛⎭⎪⎫x +12为奇函数,g (x )=f (x )+1,若a n =g ⎝ ⎛⎭⎪⎫n 2 019,则数列{a n }的前2 018项和为( )A .2 017B .2 018C .2 019D .2 020解析:选B ∵函数f ⎝ ⎛⎭⎪⎫x +12为奇函数,∴其图象关于原点对称,∴函数f (x )的图象关于点⎝ ⎛⎭⎪⎫12,0对称,∴函数g (x )=f (x )+1的图象关于点⎝ ⎛⎭⎪⎫12,1对称,∴g (x )+g (1-x )=2,∵a n =g ⎝ ⎛⎭⎪⎫n 2 019,∴数列的前2 018项之和为g ⎝ ⎛⎭⎪⎫12 019+g ⎝ ⎛⎭⎪⎫22 019+g ⎝ ⎛⎭⎪⎫32 019+…+g ⎝ ⎛⎭⎪⎫2 0172 019+g ⎝⎛⎭⎪⎫2 0182 019=2 018.故选B. 5.(2019·林州一中调研)已知数列{a n }的前n 项和为S n ,且a 1=5,a n +1=-12a n +6,若对任意的n ∈N *,1≤p (S n -4n )≤3恒成立,则实数p 的取值范围为( )A .(2,3]B .[2,3]C .(2,4]D .[2,4]解析:选B 由数列的递推关系式可得a n +1-4=-12(a n -4),则数列{a n -4}是首项为a 1-4=1,公比为-12的等比数列,∴a n -4=1×⎝ ⎛⎭⎪⎫-12n -1,∴a n =⎝ ⎛⎭⎪⎫-12n -1+4,∴S n =23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n +4n ,∴不等式1≤p (S n -4n )≤3恒成立,即1≤p ×23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n ≤3恒成立.当n 为偶数时,可得1≤p ×23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ≤3,可得2≤p ≤92,当n 为奇数时,可得1≤p ×23⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫12n≤3,可得32≤p ≤3,故实数p 的取值范围为[2,3].6.(2019·昆明适应性检测)已知数列{a n }的前n 项和为S n ,且a n =4n ,若不等式S n +8≥λn 对任意的n ∈N *都成立,则实数λ的取值范围为________.解析:因为a n =4n ,所以S n =2n 2+2n ,不等式S n +8≥λn 对任意的n ∈N *恒成立,即λ≤2n 2+2n +8n ,又2n 2+2n +8n =2n +8n+2≥10(当且仅当n =2时取等号),所以实数λ的取值范围为(-∞,10].答案:(-∞,10]7.(2019·济宁模拟)若数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,那么就称数列{a n }具有性质P .已知数列{a n }具有性质P ,且a 1=1,a 2=2,a 3=3,a 5=2,a 6+a 7+a 8=21,则a 2 020=____________.解析:根据题意,数列{a n }具有性质P ,且a 2=a 5=2, 则有a 3=a 6=3,a 4=a 7,a 5=a 8=2. 由a 6+a 7+a 8=21,可得a 3+a 4+a 5=21, 则a 4=21-3-2=16,进而分析可得a 3=a 6=a 9=…=a 3n =3,a 4=a 7=a 10=…=a 3n +1=16,a 5=a 8=…=a 3n +2=2(n ≥1),则a 2 020=a 3×673+1=16. 答案:168.我国古代数学名著《九章算术》中有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第一天长高3尺,莞草第一天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的高度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的高度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n=3⎝ ⎛⎭⎪⎫1-12n 1-12,B n =2n-12-1,令3⎝ ⎛⎭⎪⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n=6,所以n=lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草高度相同. 答案:39.(2019·安阳模拟)设等差数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=x 2+Bx +C -1(B ,C ∈R)的图象上,且a 1=C .(1)求数列{a n }的通项公式;(2)记数列b n =a n (a 2n -1+1),求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 则S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .又S n =n 2+Bn +C -1,两式比较得d 2=1,B =a 1-d2,C -1=0.又a 1=C ,解得d =2,C =1=a 1,B =0, ∴a n =1+2(n -1)=2n -1.(2)∵b n =a n (a 2n -1+1)=(2n -1)(2×2n -1-1+1)=(2n -1)×2n,∴数列{b n }的前n 项和T n =2+3×22+5×23+…+(2n -1)×2n, ∴2T n =22+3×23+…+(2n -3)×2n +(2n -1)×2n +1,∴-T n =2+2×(22+23+…+2n )-(2n -1)×2n +1=2+2×42n -1-12-1-(2n -1)×2n +1=(3-2n )×2n +1-6,故T n =(2n -3)×2n +1+6.10.2017年12月4日0时起某市实施机动车单双号限行,新能源汽车不在限行范围内,某人为了出行方便,准备购买某新能源汽车.假设购车费用为14.4万元,每年应交付保险费、充电费等其他费用共0.9万元,汽车的保养维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.(1)设使用n 年该车的总费用(包括购车费用)为f (n ),试写出f (n )的表达式; (2)问这种新能源汽车使用多少年报废最合算(即该车使用多少年平均费用最少),年平均费用的最小值是多少?解:(1)由题意得f (n )=14.4+(0.2+0.4+0.6+…+0.2n )+0.9n =14.4+0.2n n +12+0.9n =0.1n 2+n +14.4.(2)设该车的年平均费用为S 万元,则有S =1n f (n )=1n (0.1n 2+n +14.4)=n 10+14.4n+1≥2 1.44+1=3.4. 当且仅当n 10=14.4n,即n =12时,等号成立,即S 取最小值3.4万元.所以这种新能源汽车使用12年报废最合算,年平均费用的最小值是3.4万元.11.(2018·淮南一模)若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. 解:(1)∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=16-13a 1,∴a 1=18,∴a n =18×⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)证明:由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1).∴1c 2+1c 3+1c 4+…+1c n=122-1+132-1+142-1+…+1n 2-1=12×[ ⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1-1n +1 ] =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1 =34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。
(新课标)2020年高考数学一轮总复习第五章数列5_5数列的综合应用课件文新人教A版
3.掌握数列与函数、不等 查求通项,第二问考查求和,并与不等
式的综合问题.
式、函数、最值等问题综合.
考点一|等差、等比数列的综合问题 (方法突破) 【例 1】 (2016·高考北京卷)已知{an}是等差数列,{bn}是等比数列,且 b2=3,b3 =9,a1=b1,a14=b4. (1)求{an}的通项公式; (2)设 cn=an+bn,求数列{cn}的前 n 项和.
=34-12n+1 1+n+1 2. ∵Tn+1-Tn=n+11n+3>0, ∴数列{Tn}单调递增, ∴{Tn}中的最小项为 T1=13.
考点三|数列与不等式综合问题 (能力突破) 【例 3】 等差数列{an}的前 n 项和为 Sn,且满足 a1+a7=-9,S9=-929. (1)求数列{an}的通项公式; (2)设 bn=21Sn,数列{bn}的前 n 项和为 Tn,求证:Tn>-34.
[解析] (1)设数列{an}的公差为 d, 2a1+6d=-9,
考点二|数列的实际应用 (思维突破) 【例 2】 为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间 更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型 和混合动力型车.今年初投入了电力型公交车 128 辆,混合动力型公交车 400 辆; 计划以后电力型车每年的投入量比上一年增加 50%,混合动力型车每年比上一年 多投入 a 辆. (1)求经过 n 年,该市被更换的公交车总数 S(n); (2)若该市计划 7 年内完成全部更换,求 a 的最小值.
跟踪训练 (1)已知等差数列{an}的前 n 项和为 Sn,a3=5,S8=64. ①求数列{an}的通项公式; ②证明:Sn1-1+Sn1+1>S2n(n≥2,n∈N*). 解析:①设等差数列{an}的首项为 a1,公差为 d, 则aS38= =a81a+1+2d28=d5=,64, 解得 a1=1,d=2. 故数列{an}的通项公式为 an=2n-1.
2020高考数学(人教版a版)一轮配套题库:5-5数列的综合应用
第五节 数列的综合应用时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( ) A.5-12 B.5+12 C.1-52D.5-12或5+12解析 设{a n }的公比为q (q >0),由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.而a 4+a 5a 3+a 4=q =1+52.答案 B2.据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…a n 则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n (n -1)d 2=240,即2n +n (n -1)=240,解得n =15.答案 C3.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n解析 由f ′(x )=mx m -1+a =2x +1得m =2,a =1. ∴f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.∴S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1. 答案 A4.已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N *),设其前n项和为S n ,则使S n <-5成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值31解析 ∵a n =log 2n +1n +2=log 2(n +1)-log 2(n +2),∴S n =a 1+a 2+…+a n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2).由S n <-5,得log 2(n +2)>6,即n +2>64,∴n >62,∴n 有最小值63. 答案 A5.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64解析 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除,得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列.而a 1=1,a 2=2,所以a 10=2·24=32,a 11=1·25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64. 答案 D6.抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交点分别为A n ,B n (n ∈N *),以|A n B n |表示该两点的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|的值是( )A.2 0092 010 B.2 0102 011 C.2 0112 012D.2 0122 013解析 令y =0,则(n 2+n )x 2-(2n +1)x +1=0. 设两根分别为x 1,x 2,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n .解得x 1=1n ,x 2=1n +1.∴|A n B n |=1n -1n +1.∴|A 1B 1|+|A 2B 2|+…+|A n B n |=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. ∴|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|=2 0102 011. 答案 B二、填空题(本大题共3小题,每小题5分,共15分)7.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.解析 由于a 1=1,a 2=-2,a n +2=-1a n,所以a 3=-1,a 4=12,a 5=1,a 6=-2,…, 所以{a n }是周期为4的数列,故S 26=6×⎝ ⎛⎭⎪⎫1-2-1+12+1-2=-10.答案 -108.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.解析 a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2[(n -1)+(n -2)+…+1]+33=33+n 2-n ,所以a n n =33n +n -1.设f (x )=33x +x -1,则f ′(x )=-33x 2+1. 令f ′(x )>0,得x >33或x <-33.所以f (x )在(33,+∞)上是增函数,在(0,33)上是减函数. 因为n ∈N *,所以当n =5或n =6时,f (n )取最小值. 因为f (5)=535,f (6)=636=212,535>212, 所以a n n 的最小值为212. 答案 2129.(2013·安徽卷)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n .若a 1=1 ,a 2=2,则数列{a n }的通项公式是________.解析 ∵A 1B 1∥A 2B 2∥A 3B 3∥…∥A n B n ,∴A 1A 2A 2A 3=B 1B 2B 2B 3,…,不妨设OA 1=OB 1,OA 2=OB 2,OA 3=OB 3,…,OA n =OB n .梯形A 1A 2B 2B 1,A 2A 3B 3B 2,…,A n -1A n B n B n -1的面积均为S ,∠O =θ.梯形A 1A 2B 2B 1的面积为S ,则S =12a 22·sin θ-12a 21·sin θ=12×22sin θ-12×12sin θ=32sin θ.梯形A 2A 3B 3B 2的面积S =12a 23·sin θ-12a 22·sin θ=32sin θ,∴可解得a 3=7,同理a 4=10,…,故a n =3n -2. 答案 a n =3n -2三、解答题(本大题共3小题,每小题10分,共30分)10.已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n ,(n ∈N *).(1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1a n ,且a 1=4,求数列{a n }的通项公式.解 (1)由f ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =2n ,16n 2a -4nb =0. 解之得a =12,b =2n ,即f (x )=12x 2+2nx (n ∈N *). (2)由1a n +1=1a n +2n ,∴1a n +1-1a n=2n .由累加得1a n-14=n 2-n ,∴a n =4(2n -1)2(n ∈N *). 11.某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a n n ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.解 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n >6时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝ ⎛⎭⎪⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎨⎧130-10n ,n ≤6,70×⎝ ⎛⎭⎪⎫34n -6,n ≥7.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n =120n -5n (n -1), A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故 S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -6 =780-210×⎝ ⎛⎭⎪⎫34n -6,A n =780-210×⎝ ⎛⎭⎪⎫34n -6n.因为{a n }是递减数列,所以{A n }是递减数列.又A 8=780-210×⎝ ⎛⎭⎪⎫3428=824764>80,A 9=780-210×⎝ ⎛⎭⎪⎫3439=767996<80. 所以须在第9年初对M 更新. 12.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n内的整点个数为a n (n ∈N *)(整点即横坐标和纵坐标均为整数的点).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1.若对于一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.解 (1)由x >0,y >0,3n -nx >0,得0<x <3. ∴x =1,或x =2.∴D n 内的整点在直线x =1和x =2上.记直线y =-nx +3n 为l ,l 与直线x =1,x =2的交点的纵坐标分别为y 1,y 2.则y 1=-n +3n =2n ,y 2=-2n +3n =n . ∴a n =3n (n ∈N *).(2)∵S n =3(1+2+3+…+n )=3n (n +1)2, ∴T n =n (n +1)2n .∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n =(n +1)(2-n )2n +1.∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32. 于是T 2,T 3是数列{T n }中的最大项,故m ≥T 2=32.。
2020年高考数学总复习 数列的综合应用(限时练习)详细
限时训练16 数列的求和与数列的综合应用一、选择题1.数列{a n }的前n 项和为S n ,若)1(1+=n n a n ,则S 5等于( ) A.1 B.65 C.61 D.301 解析: 111)1(1)1(1+-=+-+=+=n n n n n n n n a n , ∴S 5=a 1+a 2+a 3+a 4+a 5=6561513121211=-++-+-Λ. 答案:B2.等差数列{a n }的前n 项和记为S n ,若a 2+a 6+a 10为一个确定的常数,则下列各数中也是常数的是( )A.S 6B.S 11C.S 12D.S 13 解析:由a 2+a 6+a 10=3a 6为常数,则a 6为常数. ∴611111112)(11a a a S =+⨯=为常数. 故选B.答案:B3.已知数列{a n }的前n 项和为S n =1-5+9-13+17-21+…+(-1)n-1(4n-3),则S 15+S 22-S 31的值是( )A.13B.-76C.46D.76 解析:对数列{a n }的相邻两项结合后,再求和.答案:B4.已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( )A.64B.100C.110D.120 解析:设公差为d,则由已知得1002291011021281324210111=⨯⨯+⨯=⇒⎩⎨⎧==⇒⎩⎨⎧=+=+S d a d a d a . 答案:B5.记等差数列{a n }的前n 项和为S n ,若211=a ,S 4=20,则S 6等于( ) A.16 B.24 C.36 D.48 解析:由题意,知S 4=2+6d =20,∴d=3.故S 6=3+15d =48.答案:D6.如果f(a+b)=f(a)·f(b)且f(1)=2,则)2007()2008()5()6()3()4()1()2(f f f f f f f f ++++Λ等于( )A.4 016B.1 004C.2 008D.2 006 解析:由f(a+b)=f(a)·f(b)得f(n+1)=f(n)·f(1),2)1()()1(==+f n f n f ,S =2×1 004=2 008.答案:C 7.已知椭圆13422=+y x 上有n 个不同的点P 1,P 2,P 3,…,P n ,设椭圆的右焦点为F,数列{|PF n |}是公差大于10031的等差数列,则n 的最大值为 …( ) A.2 005 B.2 006 C.1 002 D.1 003 解析:数列{|PF n |}是以1为首项,|PF n |=3为末项的等差数列,3=|PF n |=1+(n-1)d,(n-1)d =2,,21d n =-由d >10031可得答案. 答案:B8.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.6644S a S a = B.6644S a S a > C.6644S a S a < D.6644S a S a ≤ 解析:由题意得q >0,当q =1时,有061416644>-=-S a S a ; 当q≠1时,有 )1()1()1()1(615141316644q a q q a q a q q a S a S a -----=- 0111)1)(1(1)1(6236423>--•+=---•-=q q q q q q q q q , 所以6644S a S a >.故选B. 答案:B9.(2020安徽合肥高三第一次质检,理5)已知S n 是等差数列{a n }的前n 项和,S 10>0并且S 11=0,若S n ≤S k 对n∈N *恒成立,则正整数k 构成的集合为( )A.{5}B.{6}C.{5,6}D.{7} 解析:由S 10>0,并且S 11=0,知a 6=0,a 11<0,所以d <0.故S 5=S 6且最大.又S n ≤S k 对n∈N *恒成立,所以正整数k 构成集合为{5,6}.答案:C10.已知数列{a n }的通项公式是1+=bn an a n ,其中a 、b 均为正常数,那么a n 与a n+1的大小关系是( )A.a n >a n+1B.a n <a n+1C.a n =a n+1D.与n 的取值有关 解析:将a n 看成1)(+=bx ax x f ,又a 、b 为正数, ∴f(x)>0. 0)1()1()'1()1()'()('22>+=++-+=bx a bx bx ax bx ax x f 恒成立, 即1+=bn an a n 关于n 是递增的. ∴a n+1>a n .答案:B二、填空题11.设数列{a n }的通项为a n =2n-7(n∈N *),则|a 1|+|a 2|+…+|a 15|=___________.解析:由a n =2n-7≤0得n≤27,a i ≤0(i=1,2,3), S n =a 1+a 2+…+a n =n 2+n-7n =n 2-6n.所以|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=-2S 3+S 15=-2×(-9)+135=153. 答案:15312.数列841,631,421,2112222++++,…的前n 项和等于________. 解析:∵)211(21212+-=+=n n n n a n , ∴原式=)]211()4121()311[(21+-++-+-n n Λ )2)(1(23243)2111211(21+++-=+-+-+=n n n n n . 答案:)2)(1(23243+++-n n n 13.已知等比数列{a n }的公比为q,前n 项和为S n ,且S 3,S 9,S 6成等差数列,则q 等于__________.解析:公比q =1时,不符合题意,∴q≠1. ∴qq a q q a q q a --+--=--1)1(1)1(1)1(2613191. 解得321-=q .答案:321- 14.定义一种“*”运算:对于n∈N *,满足以下运算性质:①2*2=1;②(2n+2)*2=3(2n*2).则用含n 的代数式表示2n*2为_________.解析:由已知得32*)22(2*2+=n n ,令a n =2n*2,当n =1时,a 1=2*2=1=30;n =2时,a 2=4*2=(2+2)*2=3(2*2)=3=31;n =3时,a 3=6*2=(2×2+2)*2=3(4*2)=32,亦可知a 4=33,a 5=34,…,则可得2n*2=3n-1.答案:3n-1三、解答题15.已知数列{log 2(a n -1)}为等差数列,且a 1=3,a 2=5.(1)求证:数列{a n -1}是等比数列;(2)求nn a a a a a a -++-+-+12312111Λ的值. (1)证明:设log 2(a n -1)-log 2(a n-1-1)=d(n≥2),∴d=log 2(a 2-1)-log 2(a 1-1)=log 24-log 22=1.∴log 2(a n -1)=n.∴a n -1=2n . ∴2111=---n n a a (n≥2). ∴{a n -1}是以2为首项,2为公比的等比数列.(2)解:由(1)可得a n -1=(a 1-1)·2n-1,∴a n =2n +1. ∴nn n n a a a a a a 221221221111123212312-++-+-=-++-+-++ΛΛ n n 2112121212-=+++=Λ. 16.已知数列{a n }的通项⎩⎨⎧-=,,2,,56为偶数为奇数n n n a n n 求其前n 项和S n . 解:当n 为奇数时,以奇数项组成以a 1=1为首项,公差为12的等差数列;偶数项组成以a 2=4为首项,公比为4的等比数列. ∴41)41(42)561(2121--+-++=-n n n n S 3)12(42)23)(1(1-+-+=-n n n . 当n 为偶数时,奇数项和偶数项各有2n 项, ∴41)41(42)561(22--+-+=n n n n S 3)12(42)23(-+-=n n n .教学参考例题 志鸿优化系列丛书【例1】 (2020河北保定高三第一学期调研,22)已知正项数列{a n }满足a n+12-a n 2-2a n+1-2a n =0,a 1=1.设b n =n 3-3n 2+5-a n .(1)求数列{a n },{b n }的通项公式;(2)试比较a n 与b n 的大小;(理)(3)设n n b n n c -+-=6123,且数列{c n }的前n 项和为S n ,求n n S ∞→lim 的值. 解:(1)由a n+12-a n 2-2a n+1-2a n =0,得(a n+1+a n )(a n+1-a n -2)=0.因为a n >0,所以a n+1-a n -2=0,a n+1-a n =2.所以数列{a n }是以a 1=1为首项,以2为公差的等差数列.所以a n =1+(n-1)×2=2n-1,b n =n 3-3n 2+5-a n =n 3-3n 2+5-2n+1=n 3-3n 2-2n+6.(2)由(1)得b n -a n =n 3-3n 2-2n+6-(2n-1)=n 3-3n 2-4n+7,当n =1时,b 1-a 1=1-3-4+7=1>0⇒b 1>a 1;当n =2时,b 2-a 2=23-3×22-4×2+7=-5<0⇒b 2<a 2;当n =3时,b 3-a 3=33-3×32-4×3+7=-5<0⇒b 3<a 3;当n =4时,b 4-a 4=43-3×42-4×4+7=7>0⇒b 4>a 4.下面考查函数f(x)=x 3-3x 2-4x+7(x≥4),f′(x)=3x 2-6x-4=3(x-1)2-7,当x =4时,f′(x)>0,所以f(x)在[4,+∞)上递增.所以当n≥4时数列{b n -a n }单调递增,即0<b 4-a 4<b 5-a 5<…<b n -a n <….综上,当n =1或n≥4时,b n >a n ,当n =2,3时,b n <a n .(理)(3)由(1)得)623(6161232323+---+-=-+-=n n n n n b n n c n n )111(21)1(21+-=+=n n n n . 所以)111(21)111413*********(21+-=+-++-+-+-=n n n S n Λ. 所以21)111(21lim lim =+-=∞→∞→n S n n n . 【例2】 某汽车销售公司为促销采取了较为灵活的付款方式,对购买10万元一辆的轿车在一年内将款全部付清的前提下,可以选择以下两种分期付款的方案购车:方案一:分3次付清,购买后4个月第1次付款,再过4个月第2次付款,再过4个月第3次付款.方案二:分12次付清,购买后1个月第1次付款,再过1个月第2次付款,…,购买后12个月第12次付款.规定分期付款中每期付款额相同,月利率为0.8%,每月利息按复利计算,即指上月利息要计入下月的本金.(1)试比较以上两种方案的哪一种方案付款总额较少?(2)若汽车销售公司将收回的售车款进行再投资,可获月增长2%的收益,为此对一次性付款给予降价p%的优惠,为保证一次性付款经一年后的本金低于方案一和方案二中较少一种的付款总额,且售车款再投资一年后的本金要高于车价款一年的本金,试确定p 的取值范围.(注:计算结果保留三位有效数字,参考数据:1.0083≈1.024,1.0084≈1.033,1.00811≈1.092,1.00812≈1.1,1.0211≈1.243,1.0212≈1.268)解:(1)对于方案一,设每次付款额为x 1万元,那么一年后,第一次付款的本金为1.0088x 1万元,第2次付款的本金为1.0084x 1万元,第3次付款的本金为x 1万元,则1.0088x 1+1.0084x 1+x 1=10×1.00812.解得x 1≈3.63(万元).付款总额为3×3.63=10.89(万元).对于方案二,设每次付款为x 2万元,那么一年后,第一次付款的本金为1.00811x 2万元,第2次付款的本金为1.00810x 2万元,…,第12次付款的本金为x 2万元,则1.00811x 2+1.00810x 2+…+1.008x 2+x 2=10×1.00812.解得x 2≈0.88(万元),付款总额为12×0.88=10.56(万元),显然,第二种方案付款总额较少.(2)如果降低p%的售车款为10(1-p%),那么一年后产生的本金为10(1-p%)×1.00812,而转入再投资所产生的本金为10(1-p%)(1+2%)12,则依题意有⎪⎩⎪⎨⎧+-<⨯<⨯-,%)21%)(1(10008.110,56.10008.1%)1(10121212p p 解得4<p <13.2.。
高考数学第一轮复习强化训练 5.5《数列的综合应用》新人教版必修5
5.5数列的综合应用【考纲要求】1.探索并掌握一些基本的数列求前n 项和的方法;2.能在具体的问题情境中,发现数列的数列的通项和递推关系,并能用有关等差、等比数列知识解决相应的实际问题。
【基础知识】一、数列的应用主要是从实际生活中抽象出一个等差、等比的数列问题解答,如果不是等差等比数列的,要转化成等差等比数列的问题来解决。
二、方法总结1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
3、单利问题:设本金为p ,期利率为r ,则n 期后本利和)1(nr p S n +=;复利问题:设本金为p ,期利率为r ,则n 期后本利和n n r p S )1(+=。
【例题精讲】例1 某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两种方案的使用期都是10年,到期一次性归还本息. 若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种获利更多?(取665.575.1,786.133.1,629.105.1101010===)解析:甲方案是等比数列,乙方案是等差数列, ①甲方案获利:63.423.013.1%)301(%)301(%)301(11092≈-=+++++++Λ(万元), 银行贷款本息:29.16%)51(1010≈+(万元),故甲方案纯利:34.2629.1663.42=-(万元), ②乙方案获利:5.02910110)5.091()5.021()5.01(1⨯⨯+⨯=⨯+++⨯++++Λ 50.32=(万元);银行本息和:]%)51(%)51(%)51(1[05.192+++++++⨯Λ 21.1305.0105.105.110≈-⨯=(万元) 故乙方案纯利:29.1921.1350.32=-(万元);综上可知,甲方案更好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学总复习 第五章 第5课时 数列的综合应用随堂
检测(含解析) 新人教版
1. (2020 •高考湖北卷)《九章算术》“竹九节”问题:现有一根 9节的竹子,自上而 下各节的容积成等差数列, 上面4节的容积共3升,下面3节的容积共4升,则第5节的容 积为 _______________ 升.
a 1 + a 2+ a 3+ a 4= 3,
解析:设所构成数列 {a n }的首项为 a i ,公差为d ,依题意
即 a 7 + a 8+ a 9= 4,
4a i + 6d = 3,
3a i + 21 d =4,
67
答案:66
2. 已知数列{a n }的前n 项和S= 2n 2- 3n ,数列{5}是各项为正的等比数列,满足 -b 1, b 3(a 2 — a" = b.
(1) 求数列{a n } , {b n }的通项公式;
(2) 记C n = a n • b n ,求C n 的最大值.
即 a n = 4n — 5( n € N). 2 2 1 故 b 1= 1, bq (a 2— a" = bi ,二 q = 4,
1 1 n -1 *
■/ b n >0,^ q = 2,二b n =(2) (n € N).
1 n —1
⑵由(1)可知,C n = (4n -5)( 2)-1,
9 13 *
可得4仝n w 7又n €N ,故n = 3.
即C 3最大,故C n 的最大值为4.
2x + 3 1 *
3. 已知函数 f (x ) = ,数列{a n }满足 a 1= 1 , a n +1 = f (y ) , n € N.
=2+坦=a n + 3{a n }是以I 为公差的等差数列.
1 求数列{a n }的通项公式;
2 令 T n = a 1 a 2 — a 2a
3 + a 3a 4— a 4a 5+…一 a 2n a 2n +1,求 T n . 13
a 1 =
1 22,
解得 13 a 5 = a 1 + 4d = 22 + 4x 7 66 67
66.
a 1 = 解:(1) T a n =
S , n = 1
S n — S n - 1 , n 》2 -1, ,…a n =
4n —
n = 1
n 》2
C n 》C n - 1 则由
C n 》6+ 1 解: 7
(1)
2 3 2
(2) T n = a i a 2— a 2a 3 + a 3a 4— a 4a 5+…一a 2n St n +i =a 2( a i — a 3)+ a 4( a 3— a 5)+…+ a 2n ( a 2n — i — a 2
n +1)
4
=—3( a 2 + a 4+・・・+ a 2n ) 3
又 a i = 1, a n = 3门+ 3 1
3.
2 3 2
5 4n 1
n 3 + T + 3
—4(2 n 2+ 3n ).。