青岛版七年级数学上册知识点归纳及提纲

合集下载

青岛初中数学知识点总结

青岛初中数学知识点总结

青岛初中数学知识点总结一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。

- 有理数的加法、减法、乘法、除法运算规则。

- 有理数的大小比较和绝对值。

- 有理数的约分和通分。

2. 整数- 整数的性质:奇数、偶数、质数、合数。

- 整数的四则运算。

- 整数的整除性质:最大公约数和最小公倍数。

3. 分数与小数- 分数的基本性质和运算。

- 小数的意义和运算。

- 分数与小数的互化。

4. 代数表达式- 单项式和多项式的概念。

- 代数式的加减运算。

- 代数式的乘法和除法运算。

- 代数式的因式分解。

5. 一元一次方程- 方程的概念和解法。

- 一元一次方程的解的性质。

- 方程的应用题。

6. 二元一次方程组- 二元一次方程组的解法:代入法、消元法。

- 方程组的解的性质。

- 方程组的应用题。

7. 不等式与不等式组- 不等式的概念和性质。

- 不等式的解法。

- 不等式组的解集。

二、几何1. 平面图形- 点、线、面的基本性质。

- 角的概念:邻角、对顶角、平行线与对角。

- 三角形的分类和性质:等边、等腰、直角三角形。

- 四边形的分类和性质:平行四边形、矩形、菱形、正方形、梯形。

2. 图形的变换- 平移、旋转、对称(轴对称和中心对称)的概念和性质。

- 坐标系中点的坐标变换。

3. 圆的基本性质- 圆的定义和性质。

- 圆的对称性。

- 圆周角和圆心角的关系。

- 弧、弦、直径、半径、弦心距的概念。

4. 圆的计算- 圆的周长和面积公式。

- 扇形的弧长和面积公式。

- 圆锥的侧面积和全面积公式。

5. 空间图形- 立体图形的基本概念:棱柱、棱锥、圆柱、圆锥、球。

- 立体图形的表面积和体积计算。

6. 相似与全等- 全等三角形的判定条件。

- 相似三角形的判定条件和性质。

- 相似多边形和相似圆的概念。

7. 解析几何- 坐标系中点的坐标表示。

- 直线方程的表示方法:点斜式、斜截式、两点式。

- 圆的方程表示。

三、统计与概率1. 统计- 数据的收集、整理和描述。

青岛版初一数学知识点

青岛版初一数学知识点

《青岛版初一数学知识点全解析》数学,作为一门基础学科,在我们的学习和生活中起着至关重要的作用。

初一数学是初中数学学习的开端,为后续的学习奠定了坚实的基础。

本文将对青岛版初一数学的知识点进行全面解析。

一、有理数1. 有理数的概念有理数包括正整数、负整数、零、正分数和负分数。

可以用分数形式表示的数都是有理数。

2. 有理数的分类(1)按正负性分类:有理数可分为正有理数、零和负有理数。

(2)按整数和分数分类:有理数可分为整数和分数。

3. 数轴规定了原点、正方向和单位长度的直线叫做数轴。

数轴上的点与有理数一一对应。

4. 相反数只有符号不同的两个数叫做互为相反数。

零的相反数是零。

5. 绝对值数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。

6. 有理数的大小比较(1)正数大于零,零大于负数,正数大于负数。

(2)两个负数,绝对值大的反而小。

7. 有理数的加减法(1)有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为零,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。

(2)有理数减法法则:减去一个数,等于加上这个数的相反数。

8. 有理数的乘除法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。

(2)有理数除法法则:除以一个不等于零的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数都得零。

9. 有理数的乘方求 n 个相同因数 a 的积的运算叫做乘方,记作\(a^n\),其中a 叫做底数,n 叫做指数。

正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,零的任何正整数次幂都是零。

二、整式的加减1. 整式的概念单项式和多项式统称为整式。

2. 单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

青岛版七年级上册知识点、重难点、考点汇总

青岛版七年级上册知识点、重难点、考点汇总
的面积分成相等的两部分 4、三角形的内角和、外角和(略)
5、多边形: ⑴概念:平面内,不在同一条直线上的几条线段首尾顺次相接, 所得到的封闭图形叫多边形 ⑵连接多边形的不相邻的两个顶点的线段叫多边形的对角线。 ⑶多边形内角和与外角和
①多边形内角和等于(n-2)1800,边数增加,内角和增加,每 增加一条,内角和增加1800,反之亦然。
❖ 本章重点是:乘法公式及用乘法公式分解因式。 ❖ 本章难点是:乘法公式的应用及选择合适的方法进行因式分解。 ❖ 本章主要考点:历年中考的必考内容,主要考查对乘法公式的
理解和应用、因式分解的方法等。题型以选择题、填空题、解 答题为主。
具体知识点: 1、单项式乘单项式: 单项式与单项式相乘,把它们的系数、相 同字母的幂分别相乘,对于只在一个单 项式里含有的字母, 则连同它的指数作为积的一个因式。
为该点的坐标。 (3)由一、二、三、四,四个象限组成 (4)点的坐标特点:第一象限(+,+)
第二象限(-,+) 第三象限(-,-) 第四象限(+,-) 3、P(a,b)的对称点: ⑴P点关于x轴的对称点为(a ,-b) ⑵P点关于y轴的对称点为(-a , b) ⑶P点关于原点的对称点为(-a ,-b) 4、平面直角坐标系中的图形(略)
❖ 本章重点是:(1)角的概念和角的大小的比较; (2)余角、补角和对顶角的概念和性质; (3)两条直线垂直的有关概念和性质。
❖ 本章难点是:与角有关的概念、性质的理解及其语言(文字、 符号、图形)的表述。
❖ 本章主要考点:本章内容作为平面几何的基础知识,在中考 试题中单独考查很少出现,但有关互余、互补、对顶角、垂 直的性质、角平分线及角的有关计算等内容仍是考查的重点, 一般以选择题和填空题为主。

青岛版七年级上册数学提纲

青岛版七年级上册数学提纲

青岛版七年级上册数学提纲青岛版七年级上册数学提纲(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

青岛版七年级数学上册重要概念提纲

青岛版七年级数学上册重要概念提纲

青岛版七年级数学上册重要概念提纲
本文档总结了青岛版七年级数学上册的重要概念,帮助学生更好地掌握该学期的数学知识。

第一章:整数和小数
- 整数的概念及性质
- 整数的加法和减法
- 小数的概念及性质
- 小数的加法和减法
第二章:有理数
- 有理数的概念及性质
- 有理数的大小比较
- 有理数的加法和减法
- 有理数的乘法和除法
第三章:代数式与运算
- 代数式的概念及性质
- 代数式的加法和减法
- 代数式的乘法和除法
- 代数式的应用
第四章:图形与直角坐标系
- 图形的分类及性质
- 直角坐标系的概念和用法
- 点的坐标表示和计算
- 图形的对称性和变换
第五章:平面直角坐标系
- 平面直角坐标系的导入
- 直角坐标系中的距离和中点
- 二维平面图形的表示和性质
- 直线的方程和斜率
第六章:方程与不等式
- 方程的概念及解法
- 一元一次方程的应用
- 一元一次不等式的概念及解法- 一元一次不等式的应用
第七章:数据的收集与处理
- 调查数据的搜集和整理
- 数据的图表表示和分析
- 平均数的计算和应用
- 统计数据的解读和应用
第八章:图形的性质与变换
- 二维图形的角和边
- 图形的相似和全等
- 图形的旋转和平移
- 图形的投影和视图
第九章:比的概念与计算
- 比的概念及性质
- 比的计算和比例
- 倍数和百分数
- 比例的应用和解题方法
这份文档提供了青岛版七年级数学上册的重要概念提纲,希望对学生们学习数学有所帮助。

七年级上册青岛版数学知识提纲

七年级上册青岛版数学知识提纲

七年级上册青岛版数学知识提纲数学是中考的重要内容,想要学好数学一定要找对方法,最重要的就是做好知识提纲,以下是小编给大家整理的七年级上册青岛版数学知识提纲,希望对大家有所帮助,欢迎阅读!七年级上册青岛版数学知识提纲1、大于0的数叫做正数(positive number)。

2、在正数前面加上负号“-”的数叫做负数(negative number)。

3、整数和分数统称为有理数(rational number)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则减去一个数,等于加上这个数的相反数。

14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

初一上册数学青岛版有理数的运算知识点归纳

初一上册数学青岛版有理数的运算知识点归纳

初一上册数学青岛版第三章有理数的运算知识点归纳(史上最全面的总结)一、有理数的加法1.加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减较小绝对值。

(3)互为相反数的两个数相加得零。

(4)一个数与0相加仍得这个数。

2 . 加法运算律(1)加法交换律两个数相加,交换加数的位置,和不变。

a+b=b+a注意事项:对于三个或三个以上的数相加,加法交换律仍使用。

(2)加法结合律三个数相加,先把前两个数相加,或先把后两个数相加,和不变。

(a+b)+c=a+(b+c)注意事项:对于三个以上的数相加,加法结合律仍使用。

(3)常见结合方法a 把正数和负数分别结合。

b 把同分母分数或易通分的分数相结合。

C 把相加得零的几个数相结合。

d 把相加得整数的几个小数相结合。

e几个整数和分数相加,通常整数与分数分别结合。

3.重要结论(1)在有理数范围内,和不一定大于每一个加数。

(2)ba+≠a+b二、有理数的减法1.减法法则减去一个数等于加上它的相反数。

2.数轴上两点间的距离公式设点A表示有理数a,点B表示有理数b,则AB=ba-3.重要结论(1)在有理数范围内,差不一定小于被减数。

(2)任何数减去0仍得这个数。

(3)0减去一个数得这个数的相反数。

(4)ba-≠a-b(5)设a,b为任意有理数a>b ⟺ a-b>0a=b⟺ a-b=0a<b⟺a-b<0三、有理数的乘法1.乘法法则两数相乘,同号得正,异号得负。

并把绝对值相乘。

2.多个数相乘的乘法法则(1)几个不为0的数相乘,积的符号是由负因数的个数决定的,当负因数为偶数个时,积为正。

当负因数的个数为奇数时,积为负,并把绝对值相乘。

(2)几个数相乘,有一个因数为0,积为0.3.乘法运算律(1)乘法交换律两数相乘,交换因数的位置,积不变。

(2)乘法结合律三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。

2024年秋新青岛版七年级上册数学课件 4.1 整 式

2024年秋新青岛版七年级上册数学课件 4.1 整 式

它们是两个不同的概念.
2. 单项式的次数是所有字母指数的和,而多项式的次数是
多项式中次数最高的项的次数,二者不能混淆.
3. 多项式中的每一项都是单项式,且每一项都包括它前面
的符号,特别注意项的符号为负号时,一定不要遗漏该
项的符号.
例4
知2-练
解题秘方:利用多项式的项及次数的概念进行解答.
知2-练
方法:根据单项式的系数和次数的定义建立与要求字 母有关的简易方程,即可得出要求字母的值,体现了 转化思想和方程思想.
知1-练
3-1.已知(a-1)x2ya+1是关于x,y的五次单项式,则这个
单项式的系数是( A )
A. 1
B. 2
C. 3
D. 0
知识点 2 多项式
1. 多项式:几个单项式的和叫作多项式. 一个式子是多项式需具备两个条件: (1)式子中含有运算符号“+”或“-”; (2)分母中不含有字母.
式的运算关系计算得出的结果,叫作整式的值.
知3-讲
3. 求整式的值的一般步骤 (1)代入:用指定的字母的数值代替多项式里的字母,其 他的运算符号和原来的数都不能改变. (2)计算:按照多项式指明的运算,并根据有理数的运算 方法进行计算.
知3-讲
特别解读 1. 单项式是整式; 2. 多项式是整式; 3. 如果一个式子既不是单项式又不是多项式,那么它一定
知1-练
C
例2
知1-练
解题秘方:利用单项式的定义及单项式中系数和 次数的定义解决问题.
知1-练
知1-练
D
知1-练
例 3 已知2kx2yn是关于x, y的一个单项式, 且系数是7, 次数是5, 那么k=______, n=___3___. 解题秘方:根据单项式的次数和系数的确定方法求值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册总复习第一章基本的几何图形一、几何图形1.基本元素:点、线、面、体。

⑴点动成线,线动成面,面动成体。

(体是由面围成的;面有平面和曲面)⑵线与线相交(点)面与面相交(线)棱顶点2.分类几何图形有平面图形和立体图形(两者之间的转化)几何体:①柱体(圆柱和棱柱)②锥体(圆锥和棱锥)③球④台体……3.正方体的平面展开图有“11种”(至少剪7条棱正方体展成平面图形)“一四一型”(有6种)“二三一型”(有3种)“二二二型”“三三型”(有1种)(有1种)不能出现“田”字、“凹”字和“7”字考点:1.识别常见的几何体①在六角螺母、乒乓球、圆形烟囱、书本、热水瓶胆等物体中,形状类似于棱柱的有_____个,球体有_____个。

②圆锥由____个面围成,其中______个平面,_____个曲面.2.平面图形旋转得到立体图形③将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是().3.正方体的展开与折叠④下列图形中为正方体的平面展开图的是()A.B.C.D.⑤如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()二、线段、射线、直线1.线段、射线、直线的区别和联系延伸性端点长度图形表示作图描述线段射线直线2.递推①五个人若其中每两个人都握一次手,他们总共握多少次手?②往返于甲、乙两地的火车中途要停靠三个站,则有()种不同的票价(来回票价一样),需准备()种车票.③以图中的点A、B、C、D、E为端点的线段条数为_____3.延长线与反向延长线4.点与直线的位置关系:①点在直线上②点在直线外点P在直线a上(直线a经过点P)点P在直线a外(直线a不经过点P)5.直线的性质:经过两点有且只有一条直线。

即__________________________________画图:6.平面上两条直线的位置关系:_________和_________7.线段的大小比较方法有:①测量法②叠合法③截取法(圆规)8.线段的性质:两点的所有连线中,线段最短。

即:_______________________两点之间线段的长度,叫做这两点间的距离。

9.线段及线段和差的画法:(尺规作图)10.线段的中点:线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

画图:(数量关系)几何语言:【类似的还有线段的三等分点、四等分点等。

】考点:1.线段、射线、直线的概念及表示①如图,点A、B、C是直线l上的三个点,图中共有线段____条数,它们是____________________;射线有____条;直线有_____条②a、画直线AB=10厘米b、过A、B、C三点,过这三点画一条直线c、画射线OB=10厘米d、延长直线AB e、延长线段AB至C,使AC=BC f、延长射线OA g、延长线段AB至C,使BC=2AB h、直线AB与直线BA不是同一条直线i、射线OA与射线AO是同一条射线上面说法正确的有_____个2.点与直线的位置关系&平面内两条直线的位置关系③下列说法错误的是()A.点P为直线AB外一点B.直线AB不经过点PC.直线AB与直线BA是同一条直线D.点P在直线AB上④观察图形,并阅读图形下面的相关文字:a两直线相交,最多1个交点;b三条直线相交最多有3个交点;c四条直线相交最多有6个交点;那么十条直线相交交点个数最多有()⑤下列说法错误的是()A.图①中直线l经过点A B.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点3..根据题意画出符合题意的图形⑥ⅰ如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画射线AB、直线CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F.ⅱ如图,平面上有A、B、C、D4个点,根据下列语句画图.(1)画线段AC、BD交于点F;(2)连接AD,并将其反向延长;(3)取一点P,使点P既在直线AB上又在直线CD上.4..直线的性质⑦ⅰ在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()依据是___________________ⅱ小朋友在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为5..线段的性质⑧ⅰ已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)ⅱ如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒BC.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒Bⅲ如图AB+AC___BC(填“>”“<”或“=”),理由是( )6.线段的画法⑨作图:已知线段a、b,画一条线段使它等于2a-b7.线段的中点及计算⑩ⅰ如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()ⅱ已知线段AB=10cm,AC+BC=12cm,则点C的位置是在:①线段AB上;②线段AB的延长线上;③线段BA的延长线上;④直线AB外.其中可能出现的情况有()种ⅲ已知线段AB=10cm,点C是线段AB所在直线上一点,BC=4cm,若M是AC的中点,则线段BM的长度是()ⅳ如图,C是线段AB上一点,M是AB的中点,N是AC的中点,若AB=16,AC=10,则MN=_______ⅴ已知两根木条,一根长60cm,一根长100cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是__________第二章有理数一、有理数1.相反意义的量:上升2米和下降1米;零上5℃和零下3℃①同一属性的量②意义相反(带单位,数值可以不同)2.正数与负数:为了区别相反意义的量,把其中一种意义的量规定为正的,与它意义相反意义的量规定为负的。

如:向东走2米记为+2米,向西走2米则记为-2米①相对而言②一个数前面带有的“+”或”-“号是这个数的符号。

③正数前面的正号“+”号可以省略。

3.有理数的分类整数和分数统称有理数。

正整数、0、负整数统称整数,正分数和负分数统称分数,。

有理数还可分为正有理数、0、负有理数。

正有理数包括正整数和正分数。

负有理数包括负整数和负分数。

☆有限小数和无限循环小数都可化为分数。

☆0既不是正数也不是负数,是正负数的分界点。

\☆非负数包括正数和0.考点:1.相反意义的量①如果向西走6米记作-6米,那么向东走10米记作___;如果产量减少5%记作-5%,那么20%表示__________②在下列各组中,表示互为相反意义的量是()A.上升与下降B.篮球比赛胜5场与负2场C.向东走3米,再向南走3米D.增产10吨粮食与减产-10吨粮食2.有理数③下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数④在数0,2,-3,-1.2中,属于负整数的是()⑤最大的负整数和最小的正整数分别是___;既不是正数又不是整数的有理数是⑥判断正误:0是整数;0是最小的自然数;0是偶数;0是非负数;0是有理数;0是正负数的分界点;0没有意义;带正号的数是正数,带负号的数是负数。

二、数轴、相反数和绝对值1.数轴:规定了_____、______、_______的直线叫做数轴。

画一条数轴:数轴的作用是所有的有理数都可以用数轴上的点来表达。

但数轴上的点并不都表示有理数。

①同一个数轴,单位长度必须一致;数轴的两端不能画点。

(数轴是直线)②数轴上,表示正数的点在原点___边,表示负数的点在原点____边(一般正方向向右)2.比较有理数的大小方法一:(数轴法)______________________________________________________方法二:(法则法)______________________________________________________ 3.相反数:只有_______不同的两个数叫做互为相反数。

如4与-4互为相反数。

几何意义:___________________________________________________________图示意图:※a与b互为相反数则a+b=0☆在任意一个数前面添上“-”号,就表示它的相反数。

如a的相反数是______ 4.绝对值:_______________________________________(如图:※a的绝对值表示为________。

※任何数的绝对值都是______数。

※互为相反数的两数的绝对值______。

如:考点:1.用数轴上的点表示有理数①ⅰ在数轴上到原点距离等于2的点所表示的数是();到表示-2的点距离等于3的点所表示的数是();已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()ⅱ数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()ⅲ数轴上点A,B分别表示数-2和1,点C是线段AB的中点,则C表示的数是()2.相反数②-2010的相反数是____;-(-2014)=_____;- |-2014|=____:(-2) 3的相反数是___③m与n互为相反数,则2m+2n-3=_________④数轴上数a、b位置如图所示则a 、–a、b、-b大小关系是_____________3.绝对值⑤ⅰ|-2013|等于();若x=1,则|x-4|=();若|x-4|=5,则x=()ⅱ在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为()ⅲ若|2m+1|与(n-2)2互为相反数,则 m n的值等于()非负性:⑴______⑵_________ⅳ绝对值不小于2而又不大于5的整数是_____________ⅴ若|2m|=-2m,则m的取值范围是___________.4.有理数的大小比较⑥ⅰ在3,0,6,-2这四个数中,最大的数是()比较大小:-6 _-9.ⅱ如图,数轴上A,B,C三点表示的数分别为a,b,c,则它们的大小关系是()ⅲ大于-2.5而不大于3的整数是_____ _________;大于-3的负整数是________第三章有理数的运算一、有理数的加减法1.加法⑴加法法则:(+5)+(+2)=()(-5)+(-2)=()①__________________________________________________________(+5)+(-2)=()(-5)+(+2)=()②__________________________________________________________(+5)+(-5)=()(-2)+(+2)=()③__________________________________________________________(+5)+0=()0+(-2)=()④__________________________________________________________两数相加,先由加数的符号确定____________;再由加数的绝对值确定________⑵加法交换律:______________________;加法结合律:___________________⑴(+23)+(-12)+(+7)“同号结合法”⑵1521()()()()3232“同分母结合法”⑶(+0.56)+(-0.9)+(+0.44)+(-8.1)“凑整法”⑷353()()()474⑸3552()()()4623⑹12(10) 4.1()(10.4)66331()()48考点:1.有理数的加减法①(2-3)+(-1)②(-12)-(-15)+(-8)-(-10)③(-3)+7-|-8|④111(11)(7)()(2)()263⑤7111(4)(5)(4)(3)8248⑥11323243⑦|-2|+|-9|-|-7|④某书店举行图书促销会,每位促销人员以销售50本为基准,超过记为正,不足的记为负,其中10名促销人员的销售结果如下(单位:本):4,2,3,-7,-3,-8,3,4,8,-1.(1)这组促销人员的总销售量超过还是不足总销售基准?相差多少?(2)如销售图书每本的利润为2.7元,此次促销会所得总利润为多少元?(结果保留整数)二、有理数的乘除法1.乘法⑴乘法法则:(+3)×(+5)=__(-3)×(-5)=__(+3)×(-5)=_(-3)×(+5)=__①______________________________________________________(+3)×0=__ 0×(-5)=__②______________________________________________________⑵乘法交换律:_______________ 乘法结合律:____________________乘法分配律:___________________ [运算律改变了___________]ⅰ1(8)9(1.25)()9ⅱ151(1)(12)462ⅲ 5.372(3) 5.372(17) 5.3724ⅳ34(24) 2.5(8)35⑶几个不等于零的数相乘,积的符号由__________________决定①______________________________________________②______________________________________________ 几个有理数相乘,若其中有一个因数为零,积为______。

相关文档
最新文档