自动控制原理实验报告(专业电子版)

合集下载

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

实验报告-自动控制原理

实验报告-自动控制原理
________________________________________________________________________________
________________________________________________________________________________
〖分析பைடு நூலகம்:______________________________________________________________________
_______________________________________________________________________________
说明:特征参数为比例增益K和微分时间常数T。
1)R2=R1=100KΩ, C2=0.01µF,C1=1µF;特征参数实际值:K=______,T=________。
波形如下所示:
2)R2=R1=100KΩ, C2=0.01µF,C1=0.1µF;特征参数实际值:K= 1,T=0.01。
波形如下所示:
四、实验心得体会
实验报告
班级
姓名
学号
所属课程
《自动控制原理》
课时
2
实践环节
实验3控制系统的稳定性分析
地点
实字4#318
所需设备
电脑、工具箱
一、实验目的
1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响
3.学习用MATLAB仿真软件对实验内容中的电路进行仿真。
2、实验步骤
_______________________________________________________________________________

【VIP专享】自动控制原理实验报告(1专业电子版)

【VIP专享】自动控制原理实验报告(1专业电子版)
自动控制原理实验报告
课程编号: 专业 班级 姓名 学号 实验时ቤተ መጻሕፍቲ ባይዱ:
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。

实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。

实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。

实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。

实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。

在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。

结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。

我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。

总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。

通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。

这对我们今后的学习和工作都具有重要的意义。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验报告

自动控制原理实验报告

《自动控制原理实验》实验报告班级:自动化0901姓名:***学号:*********东华大学信息学院实验一 MATLAB 中数学模型的表示MP2.1考虑两个多项式2()21p s s s =++ ,()1q s s =+使用 MATLAB 计算下列各式:程序: (a )>> A=[1 2 1];B=[1 1]; >> C=conv(A,B)运行结果: C =1 3 3 1 (b)>> num=[1 1]; >> den=[1 2 1]; >> z=roots(num); >> p=roots(den); >> z,p运行结果: z =-1 p =-1 -1 (c)>> value=polyval(p,-1) 运行结果: value = 0程序:(a)>> num1=[1];num2=[1 2];den1=[1 1];den2=[1 3];[num,den]=series(num1,den1,num2,den2);[num,den]=cloop(num,den,-1);printsys(num,den)运行结果:num/den =s + 2----------------s^2 + 5 s + 5(b)step(num,den)运行结果:(a)>> num1=[1]; den1=[1 1];num2=[1]; den2=[1 0 2];[num3,den3]=series(num1,den1,num2,den2);num4=[4 2]; den4=[1 2 1];[num5,den5]=feedback(num3,den3,num4,den4,-1);num6=[1]; den6=[1 0 0];num7=[50]; den7=[1];[num8,den8]=feedback(num6,den6,num7,den7,1);[num9,den9]=series(num5,den5,num8,den8);num10=[1 0 2]; den10=[1 0 0 14];[num11,den11]=feedback(num9,den9,num10,den10,-1);num12=[4]; den12=[1];[num13,den13]=series(num11,den11,num12,den12)F=tf(num13,den13)运行结果:Transfer function:4 s^5 + 8 s^4 + 4 s^3 + 56 s^2 + 112 s + 56 ----------------------------------------------------------------------------------------------------s^10 + 3 s^9 - 45 s^8 - 129 s^7 - 198 s^6 - 976 s^5 - 2501 s^4 - 3558 s^3 - 4841 s^2 - 6996 s – 2798(b)[p,z]=pzmap(num13,den13); pzmap(num13,den13);grid on运行结果:p =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517>> zz =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i(c)>> Z=roots(num13)Z =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i>> P=roots(den13)P =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517绘制系统的单位阶跃响应,参数Z=3,6和12。

北航自动控制原理实验报告(完整版)

北航自动控制原理实验报告(完整版)

自动控制原理实验报告一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系2、学习在电子模拟机上建立典型环节系统模型的方法3、学习阶跃响应的测试方法三、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T 时的响应曲线,测定过渡过程时间T s2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s四、实验原理及实验数据 一阶系统系统传递函数:由电路图可得,取则K=1, T 分别取:0.25, 0.5, 1T 0.25 0.501.00 R 2 0.25M Ω 0.5M Ω 1M Ω C1μ1μ1μT S 实测 0.7930 1.5160 3.1050 TS 理论 0.7473 1.4962 2.9927 阶跃响应曲线图1.1图1.2图1.3误差计算与分析(1)当T=0.25时,误差==6.12%;(2)当T=0.5时,误差==1.32%;(3)当T=1时,误差==3.58%误差分析:由于T 决定响应参数,而,在实验中R 、C 的取值上可能存在一定误差,另外,导线的连接上图1.1图1.2图1.3也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。

但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。

实验结果说明由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T 确定,T 越小,过度过程进行得越快,系统的快速性越好。

二阶系统系统传递函数:令二阶系统模拟线路0.25 0.50 1.00 R 4210.5C 2111实测 45.8% 16.9% 0.6% 理论 44.5% 16.3% 0% T S 实测13.98605.48954.8480T S 理论 14.0065 5.3066 4.8243 阶跃响应曲线图2.1图2.2图2.3注:T s 理论根据matlab 命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。

自动控制原理实验报告

自动控制原理实验报告

《自动控制原理》实验报告姓名:学号:专业:班级:时段:成绩:工学院自动化系实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为K R K R R RZ Z sG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-3所示。

三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。

① 比例环节1)(1=s G 和2)(1=s G ;② 惯性环节11)(1+=s s G 和15.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=四、实验结果及分析① 仿真模型及波形图1)(1=s G 和2)(1=s G图1-3 比例环节的模拟电路及SIMULINK 图形② 仿真模型及波形图11)(1+=s s G 和15.01)(2+=s s G 11)(1+=s s G 15.01)(2+=s s G③ 积分环节ss G 1)(1=④ 微分环节⑤ 比例+微分环节(PD )⑥比例+积分环节(PI)五、分析及心得体会实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

自动控制原理实验实训报告 .docx

自动控制原理实验实训报告 .docx

自动控制原理实验实训报告 .docx【导言】自动控制原理实验实训是控制科学与工程专业的必修课程,是学生进行理论学习与实践操作结合的一个重要环节。

本次实训学习了控制系统的基本概念、控制器的类型以及控制系统的建模和分析方法,并通过实现传感器数据采集、信号控制和反馈调节等操作,掌握了控制系统的工作原理和实现方式。

本报告将对本次实训中的实验操作、实验结果和实验体会进行详细记录和总结。

【实验操作】1.传感器场景仿真实验本实验通过MATLAB仿真软件,实现了对不同场景下传感器采集数据的比较分析。

实验过程中需要设置不同的传感器样本数据和处理方式,并利用MATLAB的数据处理工具对数据进行处理分析,从而得出传感器对于不同场景下数据采集的适用性和准确性。

2.直流电动机速度调节实验本实验通过实现电动机的速度控制,实现对电动机的运行状态的控制调节。

实验需要完成对AC220V电源、TG-01速度控制器以及直流电动机的连接和调试,并通过电动机的运行状态和速度,实现对控制器的参数设置和调节操作。

4.磁悬浮控制实验本实验实现了对磁悬浮平台的控制和调节,并通过数据反馈实现了对磁悬浮平台的稳定运行。

通过对控制器的参数调节和磁悬浮平台的反馈数据分析,加深了对磁悬浮控制原理的理解和掌握程度。

本次实验操作中,通过对控制器的操作和数据反馈的分析,加深了对自动控制的认识和掌握程度,提高了对控制系统的工作原理和实现方式的理解。

同时,实验操作中也存在一些问题和不足,例如实验操作过程的不稳定性和实验数据分析的不准确性等问题。

需要在今后的学习和实践中,加强对理论知识和实验操作技能的学习和掌握,提高实验操作的准确性和稳定性,从而更好地掌握自动控制原理的知识和技能。

自动控制原理实验报告,DOC

自动控制原理实验报告,DOC

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。

2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

PC三.1.2.3.4.5.6.一12二PC机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

三、原理简述所谓校正就是指在使系统特性发生变化接方式,可分为:串馈回路之内采用的校测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3校正前:校正后:校正前:校正后:12PC(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2.线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比Φ(jω)和相位差∠Φ(jω)随角频率(ω由0变到∞)变化的特性。

而幅值比Φ(jω)和相位差∠Φ(jω)恰好是函数Φ(jω)的模和幅角。

所以只要把系统的传递函数Φ(s),令s=jω,即可得到Φ(jω)。

我们把Φ(jω)称为系统的频率特性或频率传递函数。

当ω由0到∞变化时,Φ(jω)随频率ω的变化特性成为幅频特性,∠Φ(jω)随频率ω的变化特性称为相频特性。

幅频特性和相频特性结合在一起时称为频率特性。

3.频率特性的表达式(1)(2)(3)幅值不易测量,可将其构成闭环负反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的本次自动控制原理实验的目的是通过对传统反馈控制系统的模拟和实现,了解并掌握基本的控制原理和控制器设计方法,进一步深化对自动控制理论的理解。

实验装置本次实验使用的是一台水位控制系统,该系统由电源、电机、计量储水罐、信号检测器、PID控制器、水泵等组成。

电源将电能转换为机械能,通过水泵将水流入到计量储水罐中,信号检测器对储水罐中的水位进行检测并反馈给PID控制器,PID控制器对信号进行处理并控制电机的转速,从而实现对水位的控制。

实验步骤1. 确定实验参数在进行实验之前,首先需要确定实验的一些参数,如PID控制器的比例系数、积分系数以及微分系数等。

这需要根据具体实验情况进行设定,以确保控制系统具有良好的稳定性和响应能力。

2. 实施控制将水泵开启,令水流入计量储水罐中,同时PID控制器对信号进行处理,调节电机的转速以控制水位。

实验过程中需要注意及时进行系统动态的监控和调整,以确保控制系统的稳定性和故障排除。

3. 结束实验并分析结果实验结束后,需要对实验结果进行分析,包括控制系统的响应速度、稳定性以及对参数的灵敏度等。

通过对实验数据的收集和分析,可以进一步提高对自动控制理论的理解和应用能力。

实验结果分析本次实验中,我们实现了对水位的控制,并对PID控制器的参数进行了设定和调整。

实验结果表明,我们所设计的控制系统具有较好的稳定性和响应能力,并且对参数的灵敏度较高。

同时,通过实验数据的分析,我们也发现了一些问题和不足之处,如控制系统的动态响应速度过慢等,这需要我们在实际应用中加以改进和完善。

结论本次自动控制原理实验通过实现对水位的控制,进一步加深了对自动控制理论的理解,掌握了基本的控制原理和控制器设计方法。

同时,通过实验数据的分析和总结,也为今后在自动控制领域的实际应用提供了一定的参考和指导。

自动控制原理实习报告

自动控制原理实习报告

实习报告:自动控制原理实验一、实验背景及目的随着现代工业的快速发展,自动控制技术在各个领域中的应用越来越广泛。

自动控制原理实验是电气工程及其自动化专业的一门重要实践课程,旨在让学生了解和掌握自动控制理论的基本原理和方法,培养学生的动手能力和实际问题解决能力。

本次实验主要涉及电动调节阀和PID控制器的相关知识。

二、实验内容及步骤1. 电动调节阀篇(1)了解电动调节阀的结构特点和工作原理。

电动调节阀主要由电动执行器与调节阀阀体构成,通过接收工业自动化控制系统的信号,来驱动阀门改变阀芯和阀座之间的截面积大小,控制管道介质的流量、温度、压力等工艺参数,实现远程自动控制。

(2)学习电动调节阀的调节稳定性和调节性能。

电动调节阀具有调节稳定,调节性能好等特点。

其结构特点包括:伺服放大器采用深度动态负反馈,可提高自动调节精度;电动操作器有多种形式,可适用于4~20mA DC或0~10mA DC;可调节范围大,固有可调比为50,流量特性有直线和等百分比;电子型电动调节阀可直接由电流信号控制阀门开度,无需伺服放大器;阀体按流体力学原理设计的等截面低流阻流道,额定流量系数增大30%。

(3)了解电动调节阀的分类及适用场合。

电动调节阀一般可分为单座式和双座式结构。

电动单座式调节阀适用于对泄漏要求严格,阀前后压差低及有一定粘度和含纤维介质的工作场合;电动双座式调节阀具有不平衡力小,允许压差大,流通能力大等待点,适用于泄漏量要求不严格的场合。

2. PID控制器篇(1)了解PID控制器的组成及作用。

PID控制器由比例控制、积分控制和微分控制组成。

比例控制是利用输入信号和参考信号的偏差量来控制;微分控制是利用输入信号的变化频率来控制;积分控制是利用输入信号的积分量来控制。

PID控制器能够通过设置比例、积分和微分三种参数来调节系统输出。

(2)学习PID控制器的开发现状。

PID控制器自发明以来已有近70年的历史,其结构简单、稳定性好、运行可靠、调节方便,已成为工业控制技术中的领先技术之一。

自动控制原理实验报告(自动化专业电子版)

自动控制原理实验报告(自动化专业电子版)

精心整理自动控制原理实验报告课程编号:ME3121023专业班级实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

一、12341分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理:实验原理及实验设计:1.2.3.时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.123、123的原因。

(七)、记录实验数据:、实测实验二二阶系统的性能研究(一)、实验目的:通过实验加深理解二阶系统的性能指标同系统参数的关系。

(二)、实验内容:1、二阶系统的时域动态性能研究;(三)、实验要求:1、做好预习,根据实验原理图所示相应参数,写出系统的开环,闭环传递函数。

(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。

实验三系统时域分析实验(一)、实验目的:1、深入掌握二阶系统的性能指标同系统闭环极点位置的关系。

2、掌握高阶系统性能指标的估算方法及开环零、极点同闭环零、极点的关系。

3、能运用根轨迹分析法由开环零极点的位置确定闭环零极点的位置。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本知识,了解控制系统的结构和工作原理,以及掌握控制系统的设计和调试方法。

实验仪器,本次实验所使用的仪器有PID控制器、执行器、传感器等。

实验原理,自动控制系统是指通过传感器采集被控对象的信息,经过控制器处理后,通过执行器对被控对象进行调节,以达到设定的控制目标。

其中PID控制器是通过比较被控对象的实际值和设定值,计算出误差,并根据比例、积分、微分三个参数来调节执行器输出的控制信号,使被控对象的实际值逐渐趋近设定值的一种控制方式。

实验步骤:1. 将PID控制器与执行器、传感器连接好,并确认连接正确无误。

2. 设置被控对象的设定值,并观察实际值的变化情况。

3. 调节PID控制器的参数,观察被控对象的响应情况,找到最佳的控制参数组合。

4. 对不同类型的被控对象进行实验,比较不同参数组合对控制效果的影响。

实验结果与分析:通过实验我们发现,合适的PID参数组合能够使被控对象的实际值快速稳定地达到设定值,并且对不同类型的被控对象,需要调节的参数组合也有所不同。

在实际工程中,需要根据被控对象的特性和控制要求来选择合适的PID参数,并进行调试和优化。

结论:本次实验使我们进一步了解了自动控制原理,掌握了PID控制器的基本原理和调试方法,对控制系统的设计和调试有了更深入的理解。

同时也认识到在实际工程中,需要根据具体情况来选择合适的控制方法和参数,进行调试和优化,以达到最佳的控制效果。

通过本次实验,我们对自动控制原理有了更深入的认识,对控制系统的设计和调试方法有了更加清晰的理解,相信这对我们今后的学习和工作都将有所帮助。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验报告课程编号: ME3121023专业班级姓名学号实验时间:实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

一、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线18根实验一线性典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。

2、掌握用运算放大器构成各种常用的典型环节的方法。

3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。

4、学会时域法测量典型环节参数的方法。

(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理:实验原理及实验设计:1.比例环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节:Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤1、根据原理图构造实验电路。

2、测量输入和输出波形图。

3、将所测得的数据填入实验数据表中。

(六)、讨论与思考1、写出各典型环节的微分方程(建立数学模型)。

2、根据所描述的各典型环节的微分方程,你能否用电学、力学、热力学和机械学等学科中的知识设计出相应的系统?请举例说明,并画出原理图。

3、利用MATLAB仿真,与实验中实测数据和波形相比较,分析其误差及产生的原因。

实验二二阶系统的性能研究(一)、实验目的:通过实验加深理解二阶系统的性能指标同系统参数的关系。

(二)、实验内容:1、二阶系统的时域动态性能研究;(三)、实验要求:1、做好预习,根据实验原理图所示相应参数,写出系统的开环,闭环传递函数。

计算ξ、ωn、t r、t s、t p、σ%、等理论值,并绘制单位阶跃信号下的输出响应理论波形。

2、自己设计实验参数。

(四)、实验原理:实验原理及实验设计:预习内容:(1) 二阶系统时域实验参数计算:(五)、实验方法与步骤1、根据原理图构造实验电路。

2、测量时域响应波形和数据。

3、将所测得的数据填入实验数据表中。

(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。

实验三系统时域分析实验(一)、实验目的:1、深入掌握二阶系统的性能指标同系统闭环极点位置的关系。

2、掌握高阶系统性能指标的估算方法及开环零、极点同闭环零、极点的关系。

3、能运用根轨迹分析法由开环零极点的位置确定闭环零极点的位置。

(二)、实验内容:1、运用根轨迹法对控制系统进行分析;明确闭环零、极点的分布和系统阶跃响应的定性关系。

(三)、实验要求:1、做好预习,根据原理图所示相应参数,计算理论值并绘制根轨图,用试探法确定主导极点的大致位置。

2、用Routh稳定判据,求出系统稳定、临界稳定和不稳定时的K值范围和R的取值。

3、画出输入输出的理论波形(单位阶跃信号作用下)。

(四)、实验原理:1、根轨迹:当K由0→∞变化时,闭环特征根在S平面上移动的轨迹城根轨迹,不仅直观的表示了K 变化时间闭环特征根的变化,还给出了参数时闭环特征根在S平面上分布的影响。

可判定系统的稳定性,确定系统的品质。

稳定性:根轨迹若越过虚轴进入s右半平面,与虚轴交点的k即为临界增益。

稳态性能:根据坐标原点的根数,确定系统的型别,同时可以确定对应的静态误差系数。

预习内容:(1) 三阶系统时域实验参数计算和根轨迹图:(五)、实验方法与步骤1、根据原理图构造实验电路。

2、测量时域响应波形和相应参数。

3、将所测得的数据填入实验数据表中。

(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。

实验四二阶系统的性能频域研究(一)、实验目的:1、通过实验加深理解二阶系统的性能指标同系统参数的关系。

2、掌握系统频率特性测试方法。

3、研究二阶系统频率特性与系统动态性能之间的关系。

(二)、实验内容:二阶系统的频域动态性能研究;(三)、实验要求:1、自己设计实验参数。

2、根据原理图所示相应参数,计算理论值M P、ωp、ωB等理论值,并绘制幅频、相频和幅相特性图.(四)、实验原理:实验原理及实验设计:预习内容:(1)、二阶系统的频域实验参数计算:(五)、实验方法与步骤1、根据原理图构造实验电路。

2、测量频域伯德图和奈奎斯特图。

3、将所测得的数据填入实验数据表中。

(七)、记录实验实测图形:(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。

实验五校正实验(一)、实验目的:1、掌握系统校正的两种基本方法的原理。

2、深入理解开环零、极点对闭环系统性能的影响关系。

3、加深理解串联校正(微分、积分、复合校正)和并联校正的特点,学会正确选择校正装置。

(二)、实验内容:1、对与一个不稳定系统,分别储存加入导前网络、滞后网络、滞后-导前网络进行校正,然后比较其优劣性。

(三)、实验要求:1、做好预习,根据原理图所示相应参数,写出原系统及校正后开环传递函数。

2、分析讨论三种串联校正网络使用场合和优缺点。

(四)、实验原理:1、导前网络:()()()()SCRRSCRRRRRRRSG4132324321*1)(+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++++=2、滞后网络:()()()()SCRRSCRRRRRRSG313232321*1)(+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛+++=3、滞后-导前网络:)1)(1()1)(1()(2132STSTSSKsG++++=ττ其中:1532RRRRK++=131CRT=642542RRCRRT+=5323522)(RRRRRR+++=τ253CR=τ(五)、实验方法与步骤:1、根据原理图构造实验电路(六)、讨论与思考1、 比较相角超前校正网络与相角滞后校正网络(从目的、效果、优点、缺点、适用场合、不适用场合等几方面进行比较)?2、 自行设计用作校正控制器的实用放大电路(PD 、 PI 、PID )。

系统 参数系统响应测量值 电阻(K) U o (t p ) U o (∞) %t rt st p未 加校正R=100KR=25R= 临界振荡加导前网络 临界振荡时的阻值: R=R= 25加 滞后网络 临界振荡时的阻值: R=R= 25加 滞后导前 网络临界振荡时的阻值: R=R=25实验六非线性典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。

2、掌握用运算放大器构成各种常用的典型环节的方法。

3、掌握各类典型环节的输入和输出时域关系。

4、学会时域法测量典型环节参数的方法。

(二)、实验内容:1、用运算放大器构成饱和、继电器、死区、空回(可选做)非线性典型环节。

2、输入在+ 5 ~ - 5伏之间可连续变化的电压信号,测量各典型环节的输入和输出波形及相关参数。

(三)、实验要求:1、做好预习,根据实验内容中的原理图及相应参数,写出其数学表达式,并计算相关参数。

2、分别画出各典型环节的理论波形。

(四)、实验原理:实验原理及实验设计:1、继电器特性Ui-Uo的时域响应理论波形:输出Uo2、饱和特性Ui-Uo的时域响应理论波形:比例系数(斜率):输出Uo3、死区特性Ui-Uo的时域响应理论波形:死区值:输出Uo4、空回(磁滞回线)特性Ui-Uo的时域响应理论波形:输出Uo名称参数理论值实测值饱和特性R =R1=M=K = R/R1 =M=M=继电器特性R1= M= M=死区特性R1=R2=10KK=R f / Ro =△=(R2/50)*12(V)=0.4 R2(V) △=空回特性R1=R2=10K △=(R2/50)*12(V)=0.4R2(V)tgα=(C i/C f )*(R f /R o )=△=tgα=(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。

实验七非线性系统实验(一)、实验目的:1、熟悉非线性系统的分析方法(相平面法)。

2、了解控制系统存在非线性环节对系统性能的影响。

(二)、实验内容:用相平面法分析继电型非线性系统的阶跃响应和稳态误差。

(三)、实验要求:1、做好预习,根据实验内容中的原理图及结构图的相应参数计算在阶跃信号作用下误差e(t)的相轨迹。

2、画出相平面图及在不同阶跃信号输入下的相轨迹和输出波形。

(四)、实验原理非线性系统的相平面分析法是状态空间分析法在二维空间特殊情况下的应用。

它是一种不用求解方程,而用图解法给出X1 = e, X2 =的相平面图。

由相平面图就能清楚地知道系统的动态性能和稳态程度。

(五)、实验方法与步骤1、根据原理图构造实验电路。

2、测量时域响应波形和相应参数。

3、将所测得的数据填入实验数据表中。

(七)、记录实测波形:实验八状态反馈(极点配置实验)(一)、实验目的:掌握状态全反馈改善系统性能的原理和状态观测器的模拟实现方法。

(二)、实验内容:用全状态反馈实现二阶系统极点的任意配置,并用电路模拟实验和软件仿真予以实现。

(三)、实验要求:1、做好预习,清楚利用系统内部状态反馈来改造系统极点分布的原理。

2、根据实验内容中的原理图及结构图的相应参数,分析受控系统的可控性,同时写出其状态方程和输出方程。

3、计算闭环极点位置,并绘制根轨迹图。

(四)、实验原理由于控制系统的动态性能主要取决于它的闭环极点在S平面上的位置,因而人们常把对系统动态性能的要求转化为一组希望的闭环极点。

一个单输入单输出的N阶系统,如果仅靠系统的输出量进行反馈,显然不能使系统的n个极点位于所希望的位置。

基于一个N阶系统有N 个状态变量,如果把它们作为系统的反馈信号,则在满足一定的条件下就能实现对系统极点的任意配置,这个条件是系统能控。

相关文档
最新文档