2018高中数学第二章平面向量第4课时2.2向量的数乘教案苏教版必修

合集下载

第二章 平面向量(第4课时)

第二章  平面向量(第4课时)

新余市第六中学 高中数学 必修④
数乘向量
数乘向量的定义
()定义:实数 1 和向量a的乘积是一个向量,记作: a
(2)长度: a a
(3)方向:( a a 0)的方向 ①当 0时,与a的方向相同; ②当 0时,与a的方向相反; ③特别的,当 0或a 0时, a 0
新余市第六中学 高中数学 必修④
巩固练习
同步训练
计算: 1 (1)3(6a b) 9(a b); 3 1 1 1 3 (2) [(3a 2b) (a b)] 2( a b); 2 2 2 8 (3)2(5a 4b c) 3(a 3b c) 7 a.
A, B, D三点共线
新余市第六中学 高中数学 必修④
共线的性质定理
性质定理
若向量b与非零向量a共线,则存在一个实数, 使得b a。
设两个非零向量a与b不共线,试确定实数k,使ka b 与a kb共线。
新余市第六中学 高中数学 必修④
共线的性质定理的应用
设两个非零向量a与b不共线,试确定实数k,使ka b 与a kb共线。 解: ka b与a kb共线
新余市第六中学 高中数学 必修④
数乘向量
运算律
设a, b为向量,, 为实数,有如下运算律:
(a b) a b
( )a a a
( a) ()a
新余市第六中学 高中数学 必修④
例题讲解
设a, b为向量,m, n为实数,计算下列各式
1 1 (1) 3a; (2)2( a b) ( a b); (3)(2m n) a mb ( m n)( a b) 3 2 1 (3)原式=2ma na mb m(a b) n(a b) 解:(1)原式=( 3) a 3 =2ma na mb ma mb na nb =a 1 =ma nb (2)原式=2a 2b a b 2 1 =(2a a ) (2b b) 2 5 =a b 2

高中数学 2.2.3 向量的数乘教案 苏教版必修4

高中数学 2.2.3 向量的数乘教案 苏教版必修4

2.2.3 向量的数乘(教师用书独具)●三维目标1.知识与技能(1)理解并掌握实数与向量的积的意义.(2)会利用实数与向量的积的运算律进行有关计算.(3)掌握向量共线的条件.2.过程与方法由概念的形成过程体验分类讨论的数学思想的指导作用.3.情感、态度与价值观(1)通过对实数与向量的乘积一节的学习,培养学生的观察、分析、归纳、抽象的思维能力.(2)实数与向量的积还是一个向量,它的长度和方向的变化由实数λ决定,向学生揭示事物是在不断地运动变化着.(3)通过本节内容的学习,使学生掌握实数与向量的积.从形上看,就是图形的放大或缩小,从而揭示事物在不断地运动变化过程中“万变不改其性”的哲理.●重点难点重点:数乘向量的运算及其几何意义.难点:两向量共线的含义及共线定理.(教师用书独具)●教学建议1.关于数乘向量的概念的教学教学时,建议教师结合学生熟悉的物理知识引出实数与向量的积,并着重强调数乘向量也是向量,也应该从“模”与“方向”两点学习该部分知识,进而得到数乘运算的几何意义.2.关于向量共线的判定定理和性质定理的教学教学时,建议教师从数乘向量的定义及共线向量的定义出发,先让学生由“a(a≠0),b共线”导出“b=λa”这一等量关系,在此基础上给出“b=λa”让学生判断a(a≠0),b是否共线.从而从正反两方面给出该定理的推导和证明,最后通过典例辅助学生理解并应用.●教学流程创设问题情境,引入向量数乘的概念,并引导学生探究向量数乘的运算律.⇒引导学生结合向量数乘的定义及共线向量的定义,探究向量共线定理的推导和证明.⇒通过例1及其变式训练,使学生掌握进行向量数乘基本运算的方法.⇒通过例2及其互动探究,使学生掌握结合向量数乘运算,用已知向量表示未知向量的方法.⇒通过例3及其变式训练,使学生掌握利用向量共线定理解决有关三点共线问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.【问题导思】我们知道a +a +a =3a ,那么a +a +a 是否等于3a ?(-a)+(-a)+(-a)呢? 【提示】 a +a +a =3a ,(-a)+(-a)+(-a)=-3a.一般地,实数λ与向量a 的积是一个向量,记作λa,它的长度和方向规定如下: (1)|λa|=|λ||a|;(2)当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当a =0时,λa =0;当λ=0时,λa=0.实数λ与向量a 相乘,叫做向量的数乘.类比实数的运算律,向量数乘有怎样的运算律?【提示】结合律,分配律.(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)【问题导思】若b=2a,b与a共线吗?【提示】根据共线向量及向量数乘的意义可知,b与a共线.如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使得b=λa.(1)化简23[(4a -3b)+13b -14(6a -7b)];(2)设向量a =3i +2j ,b =2i -j ,求(13a -b)-(a -23b)+(2b -a).【思路探究】 去括号→合并共线向量→化简. 【自主解答】 (1)原式=23[4a -3b +13b -32a +74b]=23[(4-32)a +(-3+13+74)b] =23(52a -1112b)=53a -1118b. (2)原式=13a -b -a +23b +2b -a=(13-1-1)a +(-1+23+2)b =-53a +53b =-53(3i +2j)+53(2i -j)=(-5+103)i +(-103-53)j =-53i -5j.向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”、“公因式”指向量,实数看作是向量的系数.计算:(1)(-7)×(6a);(2)(a+b)-3(a-b)-8a;(3)(a+2b+c)-2(b-3c).【解】(1)(-7)×(6a)=-42a.(2)(a+b)-3(a-b)-8a=(a-3a)+(b+3b)-8a=-2a+4b-8a=-10a+4b.(3)(a+2b+c)-2(b-3c)=a+(2b-2b)+(c+6c)=a+7c.图2-2-21如图2-2-21,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →.【思路探究】 由D ,E 为边AB 的两个三等分点可知A ,B ,D ,E 四点共线,从而向量AD →,AE →均可以由向量AB →表示,而向量AB →可由向量CA →,CB →表示,从而问题可解.【自主解答】 ∵CA →=3a ,CB →=2b , ∴AB →=CB →-CA →=2b -3a , 又D ,E 为边AB 的两个三等分点, 所以AD →=13AB →=23b -a ,所以CD →=CA →+AD →=3a +23b -a =2a +23b ,CE →=CA →+AE →=3a +23AB →=3a +23(2b -3a)=a +43b.用已知向量表示未知向量的求解思路:(1)先结合图形的特征,把待求向量放在三角形或平行四边形中;(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量;(3)求解过程体现了数学上的化归思想.若本例条件不变,如何求BD →?【解】 BD →=23BA →=-23(2b -3a)=2a -43b ,或BD →=BC →+CD →=-2b +2a +23b =2a -43b.已知非零向量e1,e2不共线.(1)如果AB →=e1+e2,BC →=2e1+8e2,CD →=3(e1-e2),求证:A ,B ,D 三点共线. (2)欲使ke1+e2和e1+ke2共线,试确定实数k 的值.【思路探究】 对于(1),欲证A ,B ,D 共线,只需证存在实数λ,使BD →=λAB →即可;对于(2),若ke1+e2与e1+ke2共线,则一定存在实数λ,使ke1+e2=λ(e1+ke2). 【自主解答】 (1)证明:∵AB →=e1+e2,BD →=BC →+CD →=2e1+8e2+3e1-3e2=5(e1+e2)=5AB →.∴AB →,BD →共线,且有公共点B ,∴A ,B ,D 三点共线. (2)∵ke1+e2与e1+ke2共线,∴存在实数λ,使ke1+e2=λ(e1+ke2), 则(k -λ)e1=(λk-1)e2,由于e1与e2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk-1=0,∴k =±1.1.证明三点共线,通常转化为证明这三点构成的其中两个向量共线,向量共线定理是解决向量共线问题的依据.2.若A ,B ,C 三点共线,则向量AB →,AC →,BC →在同一直线上,因此必定存在实数,使得其中两个向量之间存在线性关系.而向量共线定理是实现线性关系的依据.设e1,e2是两个不共线的向量,已知AB →=2e1+ke2,CB →=e1+3e2,CD →=2e1-e2,若A ,B ,D 三点共线,求k 的值.【解】 BD →=CD →-CB →=(2e1-e2)-(e1+3e2)=e1-4e2. 因为A ,B ,D 三点共线,故存在实数λ,使得AB →=λBD →, 即2e1+ke2=λ(e1-4e2)=λe1-4λe2.由向量相等的条件得⎩⎪⎨⎪⎧λ=2,k =-4λ,所以k =-8.对向量共线定理理解不透致误图2-2-22如图2-2-22所示,在△ABC中,已知D,E 分别为BC ,AC 的中点,若AD →=m ,BC →=a ,试用a ,m 表示DE →. 【错解】 由题意知DB →=12BC →=12a ,AB →=AD →+DB →=m +12a.∵DE 为△ABC 的中位线, ∴DE ∥AB ,且DE =12AB ,∴DE →=12AB →=12m +14a.【错因分析】 DB →与BC →共线,D 为BC 的中点,但DB →与BC →的方向相反,所以DB →=-12BC →=-12a.DE→与AB →平行且方向相反,故DE →=-12AB →.【防范措施】 正确理解向量共线的充要条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa.当b 与a 同向时,λ>0,b 与a 反向时,λ<0. 【正解】 ∵D 为BC 的中点,∴DB →=-12BC →=-12a ,∴AB →=AD →+DB →=m -12a.又∵D ,E 分别为BC ,AC 的中点, ∴DE →=-12AB →=-12m +14a.1.向量数乘的几何意义由实数与向量的积的定义可以看出,它的几何意义就是将表示向量a 的有向线段伸长或压缩.当|λ|>1时,表示a 的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍; 当|λ|<1时,表示a 的有向线段在原方向(λ>0)或反方向(λ<0)上缩小为原来的|λ|倍.2.准确理解共线向量定理共线向量定理为运用向量判定直线平行或三点共线等几何问题提供了理论依据.理解时应注意以下几点:(1)定理本身包含了正反两个方面:若存在一个实数λ,使b =λa(a≠0),则a 与b 共线;反之,若a 与b 共线(a≠0),则必存在一个实数λ,使b =λa.(2)定理中,之所以限定a≠0是由于若a =b =0,虽然λ仍然存在,可是λ不惟一,定理的正反两个方面不成立.(3)若a ,b 不共线,且λa=μb,则必有λ=μ=0.1.化简5(3a -2b)-4(2b -3a)的结果为________.【解析】 5(3a -2b)-4(2b -3a)=15a -10b -8b +12a =27a -18b. 【答案】 27a -18b2.在△ABC 中,D 是BC 的中点,向量AB →=a ,向量AC →=b ,则向量AD →=________(用向量a ,b 表示).【解析】 延长AD 到E ,使AD =DE ,则四边形ABEC 是平行四边形, 则AD →=12AE →=12(a +b).【答案】 12(a +b)3.平面向量a ,b 共线的等价条件是________.(填序号) ①a ,b 方向相同;②a ,b 两向量中至少有一个为零向量; ③存在λ∈R ,b =λa;④存在不全为0的实数λ1,λ2,λ1a+λ2b=0.【解析】 由两个非零向量a ,b 共线的条件,即向量共线定理可知,①②③不是a ,b 共线的等价条件,④是. 【答案】 ④4.已知AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线.【证明】 ∵BD →=BC →+CD →=-2a +8b +3(a -b)=a +5b =AB →, ∴BD →与AB →共线.又∵AB →与BD →有公共点B ,∴A ,B ,D 三点共线.一、填空题1.已知λ∈R ,则下列说法错误的是________.①|λa|=λ|a|;②|λa|=|λ|a;③|λa|=|λ||a|; ④|λa|>0.【解析】 当λ<0时,①式不成立;当λ=0或a =0时,④式不成立;又|λa|∈R ,而λ|a|是数乘向量,故②必不成立. 【答案】 ①②④ 2.(2013·滨海高一检测)将112[2(2a +8b)-4(4a -2b)]化简成最简式为________. 【解析】 原式=16(2a +8b)-13(4a -2b)=13a +43b -43a +23b =-a +2b =2b -a.【答案】 2b -a3.若AC →=57AB →,则BC →=________AC →.【解析】 ∵AC →=57AB →,∴点A ,B ,C 三点共线且AC →与AB →同向,|AC AB |=57(如图),∴|BC AC |=25,又BC →与AC →反向, ∴BC →=-25AC →.【答案】 -254.(2013·南昌高一检测)已知平行四边形ABCD 中,DA →=a ,DC →=b ,其对角线的交点为O ,则用a ,b 表示OB →为________.【解析】 ∵DA →+DC →=DA →+AB →=DB →=2OB →, ∴OB →=12(a +b).【答案】 12(a +b)5.点G 是△ABC 的重心,D 是AB 的中点,且GA →+GB →-GC →=λGD →,则λ=________. 【解析】 ∵GA →+GB →-GC →=GA →+GB →+CG →=2CG →=4GD →, ∴λ=4. 【答案】 4图2-2-236.如图2-2-23所示,OA →与OB →分别在由点O 出发的两条射线上,则下列各项中向量的终点落在阴影区域的是________.①OA →+2OB →;②OA →+12OB →;③OA →-13OB →;④34OA →-15OB →.【解析】 作出四个向量可知,只有①②满足条件.【答案】 ①②7.已知向量a ,b ,若AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是________. 【解析】 通过观察,BD →=BC →+CD →=2a +4b ,与a +2b 有2倍关系,即2AB →=BD →.符合向量共线定理,∴A ,B ,D 三点共线.故填A ,B ,D. 【答案】 A ,B ,D8.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________(用a ,b 表示).【解析】 法一 如图, MN →=MB →+BA →+AN → =-12b -a +34AC →=-12b -a +34(a +b)=14(b -a). 法二 设AC 交BD 于O ,由于N 为AC 的34分点,则有N 为OC 的中点,MN →=12BO →=14BD →=14(b -a).【答案】 14b -14a二、解答题 9.已知向量a ,b 是两个不共线的向量,且ma -3b 与向量a +(2-m)b 共线,求实数m 的值. 【解】 由ma -3b 与向量a +(2-m)b 共线可知, 存在实数λ满足ma -3b =λ[a+(2-m)b], 即(m -λ)a-[3+λ(2-m)]b =0, 又a 与b 不共线,∴⎩⎪⎨⎪⎧m -λ=0,3-λm -2=0,解得m =3或m =-1.10.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.【解】 如图,设AB →=a ,AD →=b.∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a.∵在△ADM 和△ABN 中,⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →,即⎩⎪⎨⎪⎧b +12a =c , ①a +12b =d. ②①×2-②,得b =23(2c -d).②×2-①,得a =23(2d -c).∴AB →=43d -23c ,AD →=43c -23d.11.设a ,b ,c 为非零向量,其中任意两向量不共线,已知a +b 与c 共线,且b +c 与a 共线,则b 与a +c 是否共线?请证明你的结论. 【解】 b 与a +c 共线.证明如下: ∵a +b 与c 共线,∴存在惟一实数λ,使得a +b =λc.① ∵b +c 与a 共线,∴存在惟一实数μ,使得b +c =μa.②由①-②得,a -c =λc-μa.∴(1+μ)a=(1+λ)c. 又∵a 与c 不共线,∴1+μ=0,1+λ=0, ∴μ=-1,λ=-1,∴a +b =-c , 即a +b +c =0. ∴a +c =-b. 故a +c 与b 共线.(教师用书独具)如图所示,已知D ,E 分别为△ABC 的边AB ,AC 的中点,延长CD 到M 使DM =CD ,延长BE 到N 使BE =EN ,求证:M ,A ,N 三点共线.【思路探究】 本题利用三角形法则转化到可证两向量共线,从而解决点共线的几何问题. 【自主解答】 在△AMC 中,D 为MC 的中点, ∴2AD →=AM →+AC →.又∵D 是AB 的中点,∴2AD →=AB →. ∴AB →=AM →+AC →,∴AM →=AB →-AC →=CB →. 同理可证AN →=AC →-AB →=BC →.∴AM →=-AN →.∴AM →,AN →共线且有公共点A.∴A ,M ,N 三点共线.1.用已知向量表示相关向量时,一般使用向量运算的三角形法则表示出相关向量,然后用相等向量、相反向量及数乘向量逐步替换为已知向量.2.解答本类问题除使用向量的线性运算外,还要灵活运用平面几何中的相关性质和结论.已知任意平面四边形ABCD 中,E ,F 分别是AD ,BC 的中点.求证:EF →=12(AB →+DC →).【证明】 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点,∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →).又 ∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →.∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).。

高中数学数乘向量教案

高中数学数乘向量教案

高中数学数乘向量教案
教学目标:
1. 理解数乘向量的概念。

2. 掌握数乘向量的运算法则。

3. 能够应用数乘向量解决实际问题。

教学重点:
1. 数乘向量的定义和性质。

2. 数乘向量的运算法则。

教学难点:
1. 能够熟练地进行数乘向量的运算。

2. 能够灵活运用数乘向量解决实际问题。

教学准备:
1. 教学资料:教材、讲义、习题集等。

2. 教学工具:黑板、彩色粉笔、投影仪等。

教学步骤:
一、导入(5分钟)
教师通过引入向量的概念,引出数乘向量的定义,并提出学习数乘向量的目的和意义。

二、讲解(15分钟)
1. 数乘向量的定义和性质。

2. 数乘向量的运算法则。

三、示范(10分钟)
教师通过示范例题,演示如何进行数乘向量的运算,并让学生跟着一起做练习。

四、练习(15分钟)
学生进行课堂练习,巩固数乘向量的运算方法,解决相关问题。

五、拓展(10分钟)
教师通过拓展练习,帮助学生深入理解数乘向量的应用,并激发学生的学习兴趣。

六、总结(5分钟)
教师对本节课的重点内容进行总结,并强调数乘向量的重要性和实际应用。

七、作业布置(5分钟)
布置相应作业,激发学生的学习兴趣,巩固今天所学知识。

教学反思:通过这节课的教学,学生能够初步掌握数乘向量的概念和运算法则,并能够灵
活运用解决问题。

同时,通过拓展练习,能够启发学生的思维,提高他们的数学应用能力。

高中数学 2.2.3 向量的数乘(2)教案 苏教版必修4

高中数学 2.2.3 向量的数乘(2)教案 苏教版必修4

2.2.3 向量的数乘(2)一、课题:向量的数乘(2))二、教学目标:1.了解平面向量基本定理的概念;2.通过定理用两个不共线向量来表示另一向量或将一个向量分解为两个 向量;3.能运用平面向量基本定理处理简单的几何问题。

三、教学重、难点:1.平面向量基本定理的应用;2.平面向量基本定理的理解。

四、教学过程:(一)复习引入:(1)向量的加法运算、向量共线定理;(2)设1e ,2e 是同一平面内的两个不共线的向量,a 是这一平面内的任一向量,下面我们 来研究向量a 与1e ,2e 的关系。

(二)新课讲解:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ,2λ,使1122a e e λλ=+.其中我们把不共线的向量1e ,2e 叫做表示这一平面所有向量的一组基底。

注:①1e ,2e 均非零向量;②1e ,2e 不唯一(事先给定); ③1λ,2λ唯一;④20λ=时,a 与1e 共线;10λ=时,a 与2e 共线;120λλ==时,0a =.2.例题分析:例1 已知向量1e ,2e (如图),求作向量12235e e -+. 作法:1.如图(2),任取一点O ,作152OA e =-,23OB e =; 2,于是OC 是所求作的向量。

例2 的两条对角线相交于点M ,且AB a =,AD b =,用a 、b 表示MA、MB 、 MC 和MD .∵AC AB BC AB AD a b =+=+=+,DB AB AD a b =-=-,∴11()22MA AC a b =-=-+1122a b =--, 1e 2e D b C B a A M11()22MB DB a b ==-,111222MC AC a b ==+, 1122MD MB a b =-=-+. 例3 如图,OA 、OB 不共线,()AP t AB t R =∈,用OA 、OB 表示OP .解:∵AP t AB =,∴OP OA AP OA t AB =+=+=()(1)OA t OB OA t OA tOB +-=-+.例4 已知梯形ABCD 中,||2||AB DC =,M ,N 分别是DC 、AB 的中点,若AB 1e =,2AD e =,用1e ,2e 表示DC 、BC 、MN .解:(1)∵DC AB < ∴12DC AB ==112e =12102e e + (2)BC AC AB AD DC AB =-=+-(3)连接DN ,则DN CB =, 1()2MN MD DN DC BC =+=-+-1211211112224e e e e e =-⨯-+=-. 例5 已知在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,求证:ABCD 是梯形。

(完整版)教案平面向量的数乘运算

(完整版)教案平面向量的数乘运算

(完整版)教案平面向量的数乘运算一、引言平面向量是代数中一个重要的概念,而平面向量的数乘运算是对向量进行伸缩的操作,其在数学和物理中具有广泛的应用。

本教案将详细介绍平面向量的数乘运算及其性质。

二、定义1.1 平面向量平面向量是指具有大小和方向的量,在平面上由箭头表示,箭头的长度表示向量的大小,箭头的指向表示向量的方向。

常用大写字母表示平面向量,如向量A。

1.2 数乘运算数乘运算是指将一个向量与一个实数相乘,得到一个新的向量。

若向量A与实数k进行数乘运算,记作kA,其中k为实数。

数乘运算可改变向量的大小和方向,具体规律将在后文中介绍。

三、性质与规律2.1 数乘运算的基本性质(1)零向量的数乘:0A = 0,其中0为零向量。

零向量的数乘结果仍为零向量。

(2)单位向量的数乘:1A = A,其中1为单位向量。

单位向量的数乘结果与原向量相等。

2.2 数乘运算的规律(1)交换律:kA = Ak,其中k为实数。

数乘运算满足交换律,即数与向量的顺序可以交换。

(2)结合律:(kl)A = k(lA),其中k、l为实数。

数乘运算满足结合律,即数与向量的括号位置可以移动。

(3)分配律:(k + l)A = kA + lA,其中k、l为实数。

数乘运算满足分配律,即数与向量相加后再进行数乘,等价于先进行数乘再相加。

四、数乘运算的几何解释3.1 放缩效应数乘运算改变向量的大小,当k > 1时,数乘结果的向量放大;当0 < k < 1时,数乘结果的向量缩小;当k < 0时,数乘结果的向量方向发生反转。

3.2 平行效应数乘运算可以改变向量的方向,当k > 0时,数乘结果的向量与原向量方向相同;当k < 0时,数乘结果的向量与原向量方向相反;当k = 0时,数乘结果的向量为零向量。

五、数乘运算的应用4.1 向量的单位化将一个非零向量除以它的模长,得到的结果是一个方向与原向量相同的单位向量。

4.2 平面向量加法与数乘运算的关系在平面向量加法中,若向量A与向量B的和为向量C,即C = A + B,那么向量C也可以表示为C = kA + lB的形式,其中k、l为实数。

新课标数学必修4第2章平面向量教案

新课标数学必修4第2章平面向量教案

第二章平面向量第1课时平面向量的实际背景及基础概念【知识与技能】1.理解平面向量、有向线段的概念,掌握向量的几何表示;2.掌握向量的模、零向量、单位向量、平行向量、相等向量共线向量等概念3.会辨认图形中的相等向量;4.清楚认识现实生活中的向量和数量两个不同概念,把握其本质区别,提高辨识能力. 【过程与方法】向量的概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量关系的运算.向量不同于数量,它是一种新的量,既有大小又有方向,关于数量的运算在向量范围内不一定适用.因此,本章在介绍向量概念时,说明了向量与数量的区别.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念.本节是本章的入门课,概念较多,但难度不大.可根据在原有的位移、力等物理概念来学习向量的概念,结合图形来区分平行向量、相等向量、共线向量等概念.一、教学目标1.理解向量、零向量、单位向量、相等向量的意义,并能用数学符号表示向量;2.理解向量的几何表示,会用字母表示向量;3.了解平行向量、共线向量、和相等向量的意义,并会判断向量的平行、相等、共线;4.通过对向量的学习,使学生对现实生活的向量和数量有一个清楚的认识,培养学生进行唯物辩证思想.二、教学重点⑴向量的概念,相等向量的概念,向量的几何表示.⑵向量是一种新的量,其特征有两个:既有大小,又有方向.让学生认识到方向性的存在是认识向量概念的关键,还要让学生理解向量和数量的区别联系,建立一种新的量的思维体系.⑶相等向量只与方向、大小有关,与位置没有关系,进一步理了解学习的向量是自由向量,为以后运用向量解决平面数形问题奠定基础.三、教学难点⑴向量概念的理解.由于向量是一种新的量,与以前的数量是不同的体系,两者之间既有联系又有区别;⑵引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量.对于它们要抓住本质特征,让学生在比较中找出相近概念的区别与联系,而且由于向量同时具有几何图象的特征,在学习时还要在图形中辩清它们相等、平行,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份、地位和作用.四、教学具准备直尺、投影仪.五、教学过程㈠设置情境问:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标?答:不能,因为没有给定发射的方向.问:现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向?答:力、速度、加速度等有大小也有方向,温度和长度只有大小没有方向.㈡向量的概念:力、速度、加速度等也是既有大小也有方向的量,我们把既有大小又有方向的量叫做向量.数学中用点表示位置,用射线表示方向.常用一条有向线段表示向量.在数学中,通常用点表示位置,用射线表示方向.(1)意义:既有大小又有方向的量叫向量。

高中数学 第21课时(向量的数乘2)教学案 苏教版必修4 学案

高中数学 第21课时(向量的数乘2)教学案 苏教版必修4 学案

某某省某某市溧水县高中数学 第21课时《向量的数乘2》教学案 苏教版必修4总 课 题 向量的线性运算总课时 第21课时分 课 题 向量的数乘(2) 分课时第2课时教学目标 理解两个向量共线的含义,并掌握向量共线定理。

能运用实数与向量的积解决有关问题。

重点难点 两个向量共线含义的理解及其应用。

引入新课1、填空:(1)=||aλ;(2)当0>λ时,a λ与a 方向;当0<λ时,a λ与a方向;当0 =a 时,aλ=;当0=λ时,aλ=。

(3)=)(a μλ;=+a)(μλ;=+)(b a λ。

(4)若向量a 与b 方向相反,且5||,2||==b a ,则a 与b 的关系是 (5)设b a ,是已知向量,若0)(3)(2=--+b x a x ,则=x 。

2、如图,D ,E 分别是ABC ∆的边AB 、AC 的中点,求证:BC 与DE 共线, 并将DE 用BC 线性表示。

3、共线向量定理:如果存在一个实数λ,使=b ,)0(≠a ,那么。

反之,如果b 与a )0(≠a 是共线向量,那么。

注意:)0(≠=λλa b 可写成b a λ1=,但不能写成λ=a b 或λ=ba 。

ABCDE4、提问:上述定理中,若无条件0≠a ,会有什么结果?5、向量共线定理如何用来解决点共线或线共点问题。

例题剖析例1、设e 是非零向量,若e b a e b a32,2-=-=+,试问:向量a与b是否共线?例2、如图,OAB ∆中,C 为直线AB 上一点,)1(-≠=λλCB AC ,求证:λλ++=1OBOA OC 。

思考:上例证明的结论λλ++=1OBOA OC 表明:起点为O ,终点为直线AB 上一点C 的向量OC 可以用OB OA ,表示。

那么两个不共线的向量OB OA ,可以表示平面内任一向量吗?巩固练习1、已知向量)(3,221221e e b e e a --=-=,求证:a 与b 是共线向量。

2、已知向量21212,24e e PQ e e MP +=+=,求证:Q P M ,,三点共线。

2.4平面向量的数量积及向量的应用备课与复习课课件(苏教版必修四)

2.4平面向量的数量积及向量的应用备课与复习课课件(苏教版必修四)

• 4.若<a,b>=θ,则a在b方向上的投影为 |a|·cosθ,b在a方向上的投影为|b|·cosθ, → 应注意区分. OS → → → →
→ 共线的向量,不要和投影|O→ OS F |cosθ 相混淆.
力 OF 在 OS 方向上的分力 OF ′= | OF |cosθ· ,是与 →| |OS
2.用向量法处理垂直 →· → =0. 要证两线段 AB⊥CD,只需证AB CD 3.用向量法处理平行 → 要证两线段 AB∥CD, 只需证存在实数 λ≠0, 使等式AB → 成立. =λCD 4.用向量法处理距离 → 2=CD → 2 或|AB → |= 要证线段 AB=CD,可转化为证明AB → |. |CD
标题:第二章 平面 ——XXX(姓名) 向量
金太阳教育
• 重点难点
• 重点:①平面向量的数量积及其几何意义, 数量积的性质及运算律,数量积的坐标表 示. • ②了解用平面向量的数量积可以处理有关长 度、角度和垂直的问题. • 难点:平面向量数量积的应用及向量与其它 知识的综合问题.
知识归纳 一、平面向量的数量积 1.向量数量积的定义 (1)向量 a 与 b 的夹角 → =a,OB → =b , 已知两个非零向量 a、b,过 O 点作OA 则 θ=∠AOB(0≤θ≤π)叫做向量 a 与 b 的夹角. π 当 θ=2时,a 与 b 垂直,记作 a⊥b; 当 θ=0 时,a 与 b 同向; 当 θ=π 时,a 与 b 反向.
[例 4]
1 已知向量 a,b 为单位向量,且 a· b=-2,向量
c 与 a+b 共线,则|a+c|的最小值为 ( )
• 分析:因为已知a·b,故求|a+c|可先利用c 与a+b共线将c用a+b表示,然后利用|a|2= a2展开转化为二次函数,可求最值.

平面向量的数乘教案

平面向量的数乘教案

平面向量的数乘教案【篇一:《平面向量的加法教案》】《平面向量的加法》教案课题名称:平面向量的加法教材版本:苏教版《中职数学基础模块*下册》年级:高一撰写教师:徐艳一、理解课程要求教材分析:(1)地位和作用《平面向量的加法》是苏教版《中职数学基础模块*下册》第七章平面向量第二节平面向量的加法﹑减法和数乘向量的第1课时,主要内容为向量加法的三角形法则和运算律.向量的加法是向量线性运算中最基本的一种运算,既是对平面向量这一章第一节向量概念的巩固和应用,也是向量运算的起始课,为后继学习向量的减法运算及其几何意义﹑向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量和立体几何中有很普遍的应用.因此,本节学习起着承上启下的作用.(2)教学内容及教材处理教材是从两岸直航前后飞机发生的位移作为问题情境引入,让学生结合对平面向量概念的理解感受不同方式的位移对结果的影响,初步体会向量相加的概念,引发思考,引出新知.同时让学生知道数学源于生活并能解决生活中实际问题,更容易激发学习兴趣和激情.教学目标:(1)知识目标①理解向量加法的含义,学会用代数符号表示两个向量的和向量;②掌握向量加法的三角形法则,学会求作两个向量的和;③掌握向量加法的交换律和结合律,学会运用它们进行向量运算.(2)能力目标①经历向量加法的概念﹑三角形法则的建构过程;②通过探究、思考、交流、解决问题等方式锻炼培养学生的逻辑思维能力、运算能力.(3) 情感目标努力运用多种形象、直观和生动的教学方法,通过深入浅出的教学,让学生主动学习数学,体验学习数学的乐趣和成功,使学生产生“我努力,我能行”的乐观心态.二、分析学生背景(1)认知分析:学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础.(2)能力分析:学生已经具备了一定的归纳、猜想能力,主要培养学生分析问题和处理问题的能力.(3)情感分析:职高学生的数学基础相对较差,学生对数学学习尚有一定兴趣。

高中数学 第2章 平面向量 2.2.3 向量的数乘教学设计 苏教版必修4

高中数学 第2章 平面向量 2.2.3 向量的数乘教学设计 苏教版必修4

2.2.3 向量的数乘整体设计教学分析向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是所得向量与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.三维目标1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义.掌握实数与向量的积的运算律.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.2.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.重点难点教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.课时安排1课时教学过程导入新课思路1.(直接引入)前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算的基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,所以相同向量的求和运算也有类似的简便计算.思路2.(问题引入)一物体做匀速直线运动,一秒钟的位移对应的向量为a,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a 吗?怎样用图形表示?由此展开新课.推进新课新知探究实数与向量积的定义及运算律.活动:教师引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.实数λ与向量a 相乘,叫做向量的数乘(scalar multiplication of vectors).事实上,通过作图1可发现,OC →=OA →+AB →+BC →=a +a +a .类似数的乘法,可把a +a +a记作3a ,即OC →=3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a|=3|a |.同样,由图可知,PN →=PQ →+QM →+MN →=(-a )+(-a )+(-a ),图1即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa|=|λ||a|.(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.由(1)可知,λ=0时,λa=0.根据实数与向量的积的定义,我们可以验证下面的运算律.设λ、μ为实数,那么1λμa=λμa;2λ+μa=λa+μa;3λa+b=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.教师与学生一起归纳总结:数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ||a|确定.它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.应用示例思路1例1课本本节例2.变式训练1.计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2课本本节例1.变式训练如图2(1),已知任意两个非零向量a 、b ,试作OA →=a +b ,OB →=a +2b ,OC →=a +3b .你能判断A 、B 、C 三点之间的位置关系吗?为什么?活动:本题给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A 、B 、C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只需引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.(1) (2)图2解:如图2(2)分别作向量OA →、OB →、OC →,过点A 、C 作直线AC 〔如图2(2)〕.观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.事实上,因为AB →=OB →-OA →=a +2b -(a +b )=b ,而AC →=OC →-OA →=a +3b -(a +b )=2b ,于是AC →=2AB →.所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3课本本节例3.变式训练如图3,ABCD 的两条对角线相交于点M ,且AB →=a ,AD →=b ,你能用a 、b 表示MA →、MB →、MC →和MD →吗?图3活动:本题的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点. 解:在ABCD 中,∵AC →=AB →+AD →=a +b ,DB →=AB →-AD →=a -b ,又∵平行四边形的两条对角线互相平分,∴MA →=-12AC →=-12(a +b )=-12a -12b , MB →=12DB →=12(a -b )=12a -12b , MC →=12AC →=12a +12b ,MD →=-MB →=-12DB →=-12a +12b . 点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.思路2例1凸四边形ABCD 的边AD 、BC 的中点分别为E 、F ,求证:EF →=12(AB →+DC →). 活动:教师引导学生探究,能否构造三角形,使EF 作为三角形的中位线,借助于三角形中位线定理解决.或创造相同起点,以建立向量间的关系.鼓励学生多角度观察思考问题.图4证明:方法一:过点C 在平面内作CG →=AB →,则四边形ABGC 是平行四边形,故F 为AG的中点(如图4).∴EF 是△ADG 的中位线.∴EF 12DG ,∴EF →=12DG →. 而DG →=DC →+CG →=DC →+AB →,∴EF →=12(AB →+DC →). 方法二:如图5,连EB 、EC ,则有EB →=EA →+AB →,EC →=ED →+DC →,图5又∵E 是AD 的中点,∴有EA →+ED →=0,即有EB →+EC →=AB →+DC →.以EB →与EC →为邻边作EBGC ,则由F 是BC 的中点,可得F 也是EG 的中点.∴EF →=12EG →=12(EB →+EC →)=12(AB →+DC →). 点评:向量的运算主要从以下几个方面加强练习:(1)加强数形结合思想的训练,画出草图帮助解决问题;(2)加强三角形法则和平行四边形法则的运用练习.做到准确熟练运用.例2课本本节例4.知能训练课本本节练习.课堂小结1.让学生回顾本节学习的数学知识,向量的数乘运算法则,向量的数乘运算律,向量共线的条件.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化.2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.作业课本习题2.2 8、9.设计感想1.本教案的设计流程符合新课程理念,充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地,0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线,然后对所探究的结果进行运用拓展.2.向量具有的几何形式和代数形式的双重身份在本节中得以充分体现,因而成为中学数学知识网络的一个交汇点,由此可看出在中学数学教材中的地位的重要,也成为近几年各地高考命题的重点和热点,教师要引导学生对平面向量中有关知识要点进行归纳整理.备课资料一、向量的数乘运算律的证明设a 、b 为任意向量,λ、μ为任意实数,则有(1)λ(μa )=(λμ)a ;①(2)(λ+μ)a =λa +μa ;②(3)λ(a +b )=λa +λb .③证明:(1)如果λ=0或μ=0或a =0,则①式显然成立.如果λ≠0,μ≠0,且a ≠0,则根据向量数乘的定义有:|λ(μa )|=|λ||μa |=|λ||μ||a |,|(λμ)a |=|λμ||a |=|λ||μ||a |,所以|λ(μa )|=|(λμ)a |.如果λ、μ同号,则①式两边向量的方向都与a 同向;如果λ、μ异号,则①式两边向量的方向都与a 反向.因此,向量λ(μa )与(λμ)a 有相等的模和相同的方向,所以这两个向量相等.(2)如果λ=0或μ=0或a =0,则②显然成立.如果λ≠0,μ≠0且a ≠0,可分如下两种情况:当λ、μ同号时,则λa 和μa 同向,所以|(λ+μ)a |=|λ+μ||a |=(|λ|+|μ|)|a |,|λa +μa |=|λa |+|μa |=|λ||a |+|μ||a |=(|λ|+|μ|)|a |,即有|(λ+μ)a |=|λa +μa |.由λ、μ同号,知②式两边向量的方向或都与a 同向,或都与a 反向,即②式两边向量的方向相同.综上所述,②式成立.如果λ、μ异号,当λ>μ时,②式两边向量的方向都与λa 的方向相同;当λ<μ时,②式两边向量的方向都与μa 的方向相同.还可证|(λ+μ)a |=|λa +μa |.因此②式也成立.(3)当a =0,b =0中至少有一个成立,或λ=0,λ=1时,③式显然成立. 当a ≠0,b ≠0且λ≠0,λ≠1时,可分如下两种情况:当λ>0且λ≠1时,如图6,在平面内任取一点O 作OA →=a ,AB →=b ,OA 1→=λa ,A 1B 1→=λb ;则OB →=a +b ,OB 1→=λa +λb .图6由作法知AB →∥A 1B 1→,有∠OAB=∠OA 1B 1,|A 1B 1→|=λ|AB →|,所以|OA 1→||OA →|=|A 1B 1→||AB →|=λ.所以△AOB∽△A 1OB 1.所以|OB 1→||OB →|=λ,∠AOB=∠A 1OB 1.因此O 、B 、B 1在同一条直线上,|OB 1→|=|λOB →|,OB 1→与λOB →的方向也相同.所以λ(a +b )=λa +λb .当λ<0时,由图7可类似证明λ(a +b )=λa +λb .图7所以③式也成立.二、备用习题1.13[12(2a +8b )-(4a -2b )]等于( )A .2a -bB .2b -aC .b -aD .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( )A .1B .-1C .±1 D.03.若向量方程2x -3(x -2a )=0,则向量x 等于( )A.65a B .-6aC .6aD .-65a 4.在△ABC 中,AE →=15AB →,EF∥BC,EF 交AC 于F ,设AB →=a ,AC →=b ,则BF →用a 、b 表示的形式是BF →=________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA →+OB →+OC →=13e 1-12e 2,则OM →+ON →+OP →=________.6.已知△ABC 的重心为G ,O 为坐标原点,OA →=a ,OB →=b ,OC →=c ,求证:OG →=13(a +b +c ).参考答案:1.B 2.C 3.C4.-a +15b 5.13e 1-12e 26.证明:连结AG 并延长,设AG 交BC 于M.∵AB →=b -a ,AC →=c -a ,BC →=c -b ,∴AM →=AB →+12BC →=(b -a )+12(c -b )=12(c +b -2a ).∴AG →=23AM →=13(c +b -2a ).∴OG →=OA →+AG →=a +13(c +b -2a )=13(a +b +c ).。

高中数学第二章平面向量2.3.2平面向量的坐标运算(1)课件苏教版必修4

高中数学第二章平面向量2.3.2平面向量的坐标运算(1)课件苏教版必修4
答案
知识点三 思考 1
平面向量的坐标运算
设i、j 是与x轴、y轴同向的两个单位向量,若设a =(x1 ,y1) ,b
=(x2,y2),则a=x1i+y1j,b=x2i+y2j,根据向量的线性运算性质,向 量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?
答 a+b=(x1+x2)i+(y1+y2)j,
第2章 §2.3 向量的坐标表示
2.3.2 平面向量的坐标运算(一)
学习目标
1.了解平面向量的正交分解,掌握向量的坐标表示. 2.掌握两个向量和、差及数乘向量的坐标运算法则. 3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.
问题导学
题型探究
达标检测
问题导学
知识点一 平面向量的正交分解
则(-1,2)=λ1(1,2)+λ2(-2,3)=(λ1-2λ2,2λ1+3λ2),
λ =1, 1 7 -1=λ1-2λ2, ∴ 解得 4 2=2λ1+3λ2, λ= . 2 7
1 4 ∴a=7e1+7e2.
解析答案
1
2
3
4
5
→ 1→ 4.已知两点 M(3,2),N(-5,-5),MP=2MN,则点 P
返回
题型探究
类型一 求向量的坐标
例1 如图,在直角坐标系xOy中,OA
重点难点 个个击破
= 4 , AB = 3 , ∠AOx = 45°, ∠OAB → → =105°, OA =a, AB =b.四边形 OABC为平行四边形. (1)求向量a,b的坐标;
解析答案
→ (2)求向量BA的坐标;

解析 因为点 P 在 MN 的延长线上,|MP|=2|PN|,
→ → 又MN=(0,5)-(2,-1)=(-2,6),所以MP=(-4,12),

数学苏教版必修4学案:第2章 2.2 2.2.3 向量的数乘

数学苏教版必修4学案:第2章 2.2 2.2.3 向量的数乘

2.2.3向量的数乘预习课本P68~71,思考并完成下列问题1.向量数乘的定义是什么?2.向量数乘运算满足哪三条运算律?3.什么是向量共线定理?[新知初探]1.向量的数乘运算(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0.(2)运算律:设λ,μ为任意实数,则有:①λ(μa)=(λμ)a;②(λ+μ)a=λa+μ a;③λ(a+b)=λa+λb;特别地,有(-λ)a=-(λa)=λ(-a);λ(a -b )=λa -λb .[点睛] (1)实数与向量可以进行数乘运算,但不能进行加减运算. (2)λa 的结果为向量,所以当λ=0时,得到的结果为0而不是0. 2.向量共线定理如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使b =λa .[小试身手]1.化简:2(3a -2b )+3(a +5b )-5(4b -a )=_________. ★答案★:14a -9b2.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA =a ,OB =b ,则DC =________.★答案★:b -a3.已知向量a 与b 反向,且|a |=r ,|b |=R ,b =λa ,则λ=________. ★答案★:-Rr4.在△ABC 中,已知点D 在AB 边上,且AD =2DB ,CD =13CA +λCB ,则λ=________.★答案★:23向量数乘的基本运算[典例] (1)(-5)×4a ;(2)5(a +b )-4(a -b )-3a ; (3)(3a -5b +2c )-4(2a -b +3c ). [解] (1)原式=(-5×4)a =-20a .(2)原式=5a +5b -4a +4b -3a =-2a +9b .(3)原式=3a -5b +2c -8a +4b -12c =-5a -b -10c .向量基本运算的方法向量的基本运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量.[活学活用] 化简下列各式: (1)3(6a +b )-9⎝⎛⎭⎫a +13b ; (2)12⎣⎡⎦⎤(3a +2b )-⎝⎛⎭⎫a +12b -2⎝⎛⎭⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a . 解:(1)原式=18a +3b -9a -3b =9a .(2)原式=12⎝⎛⎭⎫2a +32b -a -34b =a +34b -a -34b =0. (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .用已知向量表示未知向量[典例] 在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB =a ,AC =b ,试用a ,b 表示AD ,AG .[解] AD =12(AB +AC )=12a +12b ; AG =AB +BG =AB +23BE =AB +13(BA +BC )=23AB +13(AC -AB )=13AB +13AC =13a +13b .用已知向量表示未知向量的方法(1)利用三角形法则可以把任何一个向量用两个向量的和或差来表示.(2)当用已知向量线性表示未知向量时,要注意向量选取的恰当性,常常借助图形与平面几何知识(如三角形的中线性质、中位线性质、平行四边形性质等)并结合向量共线定理,把问题解决.如图,ABCD 是一个梯形,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,已知AB =a ,AD =b ,试用a ,b 表示BC 和MN .解:连结CN ,因为N 是AB 的中点,AB =2CD ,所以AN∥DC且AN=DC,所以四边形ANCD是平行四边形,所以CN=-AD=-b,又CN+NB+BC=0,所以BC=-NB-CN=-12a+b;MN =MC+CN=14a-b.向量共线的判定及应用1.如图所示,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=13BD.求证:M,N,C三点共线. 证明:设BA=a,BC=b,则由向量减法的三角形法则可知:CM=BM-BC=12BA-BC=12a-b.又因为N在BD上且BN=13BD,所以BN=13BD=13(BC+CD)=13(a+b),所以CN=BN-BC=13(a+b)-b=13a-23b=23⎝⎛⎭⎫12a-b,所以CN=23CM,又因为CN与CM的公共点为C,所以M,N,C三点共线.题点二:利用向量的共线求参数2.设a,b不共线,AB=2a+pb,BC=a+b,CD=a-2b,若A,B,D三点共线,则实数p=________.解析:因为BC=a+b,CD=a-2b,所以BD=BC+CD=2a-b.又因为A,B,D三点共线,所以AB,BD共线.设AB=λBD,所以2a+pb=λ(2a-b),所以2=2λ,p=-λ,所以λ=1,p=-1.★答案★:-1题点三:利用向量共线判定几何图形形状3.如图所示,正三角形ABC 的边长为15,AP =13AB +25AC ,BQ =15AB +25AC . 求证:四边形APQB 为梯形. 证明:因为PQ =PA +AB +BQ=-13AB -25AC +AB +15AB +25AC =1315AB ,所以PQ ∥AB .又|AB |=15,所以|PQ |=13,故|PQ |≠|AB |,于是四边形APQB 为梯形.向量共线定理应用的注意点(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行.层级一 学业水平达标1.化简:16[]2(2a +8b )-4(4a -2b )=_______.解析:原式=16(4a +16b -16a +8b )=16(-12a +24b )=-2a +4b .★答案★:-2a +4b2.若2⎝⎛⎭⎫y -13a -12(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则向量y =________. 解析:2⎝⎛⎭⎫y -13a -12(c +b -3y )+b =2y -23a -12c -12b +32y +b =0,所以72y =23a +12c -12b ,所以y =421a -17b +17c . ★答案★:421a -17b +17c3.若AP =13BP ,AB =t BP ,则t 的值是________.解析:由题意AP =13BP ,所以AB =-23BP ,所以t =-23.★答案★:-234.已知a ,b 是非零向量,AB =a +2b ,DC =2a +4b ,则四边形ABCD 的形状一定是________.解析:因为 DC =2AB ,所以DC ∥AB ,且DC =2AB ,所以四边形ABCD 一定是梯形.★答案★:梯形5.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =________(用a ,b 表示).解析:由AN =3NC ,得4AN =3AC =3(a +b ),AM =a +12b ,所以MN =AN -AM =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . ★答案★:-14a +14b6.已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM 成立,则m =________.解析:因为AB +AC =(AM +MB )+(AM +MC )=MB +MC +2AM .由MA +MB +MC =0得,MB +MC =AM ,所以AB +AC =3AM ,故m =3.★答案★:37.如图,在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =________.解析:AF =AD +DF ,又AB +AD =a ,AD -AB =b , ∴AB =12a -12b ,AD =12a +12b ,DC =AB =12a -12b ,∴AF =AD +13DC =23a +13b .★答案★:23a +13b8.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC =________. 解析:设AB =a ,AC =b ,则EB =-12b +a ,FC =-12a +b ,从而EB +FC =⎝⎛⎭⎫-12b +a +⎝⎛⎭⎫-12a +b =12(a +b )=AD .★答案★:AD 9.计算:(1)14⎣⎡⎦⎤(a +2b )+3a -13(6a -12b ); (2)(λ+μ)(a +b )-(λ-μ)(a -b ).解:(1)原式=14(a +2b )+34a -112(6a -12b )=14a +12b +34a -12a +b =⎝⎛⎭⎫14+34-12a +⎝⎛⎭⎫12+1b =12a +32b . (2)原式=(λ+μ)a +(λ+μ)b -(λ-μ)a +(λ-μ)b =[(λ+μ)-(λ-μ)]a +[(λ+μ)+(λ-μ)]b =2μa +2λb .10.如图所示,已知△OAB 中,点C 是以A 为对称中心的B 点的对称点,D 是把OB 分成2∶1的一个内分点,DC 和OA 交于E ,设OA =a ,OB =b .(1)用a 和b 表示向量OC ,DC ; (2)若OE =λOA ,求实数λ的值.解:(1)依题意,A 是BC 中点,∴2OA =OB +OC , 即OC =2OA -OB =2a -b ,DC =OC -OD =OC -23OB=2a -b -23b =2a -53b .(2)若OE =λOA ,则CE =OE -OC =λa -(2a -b )=(λ-2)a +b . ∵CE 与DC 共线.∴存在实数k ,使CE =k DC . ∴(λ-2)a +b =k ⎝⎛⎭⎫2a -53b ,解得λ=45.层级二 应试能力达标1.已知向量a ,b 是两个不共线的向量,且向量ma -3b 与a +(2-m )b 共线,则实数m 的值为________.解析:因为向量ma -3b 与a +(2-m )b 共线且向量a ,b 是两个不共线的向量,所以存在实数λ,使得ma -3b =λ[a +(2-m )b ],即(m -λ)a +(mλ-2λ-3)b =0,因为a 与b 不共线,所以⎩⎪⎨⎪⎧m =λ,mλ-2λ-3=0,解得m =-1或m =3.★答案★:-1或32.若AB =5e ,CD =-7e ,且|AD |=|BC |,则四边形ABCD 的形状是________. 解析:因为AB =5e ,CD =-7e ,所以CD =-75AB .所以AB 与CD 平行且方向相反,易知|CD |>|AB |.又因为|AD |=|BC |,所以四边形ABCD 是等腰梯形.★答案★:等腰梯形3.点C 在线段AB 上,且AC =35AB ,若AC =λCB ,则λ=________.解析:∵AC =35AB ,∴AC =32CB ,AC 与CB 方向相同,故λ=32.★答案★:324.已知OP 1=a ,OP 2=b ,P P 12=λPP 2 (λ≠0),则OP =_________.解析:因为P P 12=λPP 2,所以OP 2-OP 1=λ(OP 2-OP ),所以OP =1λOP 1+λ-1λOP 2.★答案★:1λ a +λ-1λb5.若点M 是△ABC 所在平面内的一点,且满足5AM =AB +3AC ,则△ABM 与△ABC 的面积比为________.解析:设AB 的中点为D ,由5AM =AB +3AC ,得3AM -3AC =2AD -2AM ,即3CM =2MD .如图所示,故C ,M ,D 三点共线,且MD =35CD ,也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比为35.★答案★:356.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP =m OA ,OQ =n OB ,m ,n ∈R ,则1n +1m 的值为________.解析:设OA =a ,OB =b ,由题意知OG =23×12(OA +OB )=13(a +b ),PQ =OQ -OP =nb -ma ,PG =OG -OP =⎝⎛⎭⎫13-m a +13b , 由P ,G ,Q 三点共线,得存在实数λ使得PQ =λPG , 即nb -ma =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m =3.★答案★:37.已知O ,A ,B 是不共线的三点,且OP =m OA +n OB (m ,n ∈R). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP =m OA +(1-m )OB =OB +m (OA -OB ), 所以OP -OB =m (OA -OB ), 即BP =m BA ,所以BP 与BA 共线.又因为BP 与BA 有公共点B ,则A ,P ,B 三点共线, (2)若A ,P ,B 三点共线,则存在实数λ,使BP =λBA , 所以OP -OB =λ(OA -OB ).又OP =m OA +n OB . 故有m OA +(n -1)OB =λOA -λOB , 即(m -λ)OA +(n +λ-1)OB =0.因为O ,A ,B 不共线,所以OA ,OB 不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,所以m +n =1.8.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB =a ,AC =b ,试用a ,b 表示AG .解:AG =AB +BG =AB +λBE=AB +λ2(BA +BC )=⎝⎛⎭⎫1-λ2AB +λ2(AC -AB ) =(1-λ)AB +λ2AC =(1-λ)a +λ2b .又AG =AC +CG =AC +m CF =AC +m2(CA +CB )=(1-m )AC +m 2AB =m2a +(1-m )b , 所以⎩⎨⎧1-λ=m 2,1-m =λ2,解得λ=m =23,所以AG =13a +13b .。

【课堂新坐标】(教师用书)高中数学 2.3.2 平面向量的坐标运算教案 苏教版必修4

【课堂新坐标】(教师用书)高中数学 2.3.2 平面向量的坐标运算教案 苏教版必修4

2.3.2 平面向量的坐标运算(教师用书独具)●三维目标1.知识与技能(1)掌握平面向量的坐标运算,能准确表述向量的加法、减法、实数与向量的坐标运算法则,并能进行相关运算.(2)理解用坐标表示的平面向量共线的条件.2.过程与方法(1)通过向量的正交分解及坐标运算,进一步体会向量的工具作用.(2)通过学习平面向量共线的坐标表示及应用,提高分析问题、解决问题的能力.3.情感、态度与价值观培养学生学习数学的兴趣,勤于思考、勇于创新的精神和良好的学习习惯.●重点难点重点:平面向量的加、减、数乘的坐标运算.难点:平面向量平行条件的理解.(教师用书独具)●教学建议1.关于平面向量的坐标的概念教学教学时,建议教师从学生熟悉的平面向量基本定理出发,结合物理知识中力的正交分解,自然引出向量的正交分解,并类比平面直角坐标系中“点与坐标”的关系,得出“平面向量的坐标”的概念,并强调指出平面直角坐标系中“点的坐标同以原点为起点的向量是一一对应的”.2.关于平面向量的坐标的线性运算的教学教学时,建议教师让学生结合向量加、减及数乘向量的定义和向量的坐标的概念自主推导出平面向量的坐标的线性运算,并就每种运算的特征加以概括;在此基础上要求学生通过练习熟练掌握平面向量的坐标的线性运算.3.关于平面向量平行的坐标表示的教学教学时,建议教师引导学生从向量共线定理出发,自主推导出向量共线时的坐标关系,并会应用向量的坐标关系解决与平行有关的平面几何证明问题.●教学流程创设问题情境,引入平面向量的坐标概念.⇒引导学生结合向量加、减及数乘运算,推导出平面向量的坐标的线性运算.⇒引导学生结合向量共线定理,推导出向量平行的坐标表示,并总结利用向量坐标关系判断向量平行的方法.⇒通过例1及其变式训练,使学生掌握结合图形用坐标表示向量的方法.⇒通过例2及其互动探究,使学生掌握平面向量坐标的线性运算方法.⇒通过例3及其变式训练,使学生掌握利用平行向量的坐标表示,解决有关向量平行问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,任作一向量OA →.根据平面向量基本定理,OA →=x i +y j ,那么(x ,y )与A 点的坐标相同吗?【提示】 相同.2.如果向量OA →也用(x ,y )表示,那么这种向量OA →与实数对(x ,y )之间是否一一对应? 【提示】 是一一对应.(1)平面向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面上的向量a ,由平面向量基本定理知,有且只有一对有序实数x ,y ,使得a =x i +y j ,则把有序实数对(x ,y )称为向量a 的(直角)坐标,记作a =(x ,y ).(2)平面向量的坐标运算①已知向量a =(x 1,y 1),b =(x 2,y 2)和实数λ,那么a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1).②已知A (x 1,y 1),B (x 2,y 2),O 为坐标原点,则AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2设a =(1,3),b =(2,6),向量b 与a 共线吗? 【提示】 b =(2,6)=2(1,3)=2a ,∴b 与a 共线.设向量a =(x 1,y 1),b =(x 2,y 2)(a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y2-x 2y 1=0,那么a ∥b .图2-3-10在直角坐标系xOy 中,向量a ,b ,c 的方向如图2-3-10所示,且|a |=2,|b |=3,|c |=4,分别计算出它们的坐标.【思路探究】 利用三角函数求出各向量在x 轴、y 轴上的分量的模的大小,以此确定向量的横、纵坐标.【自主解答】 设a =(a 1,a 2),b =(b 1,b 2),c =(c 1,c 2),则a 1=|a |cos 45°=2×22=2,a 2=|a |sin 45°=2×22=2, b 1=|b |cos 120°=3×(-12)=-32,b 2=|b |sin 120°=3×32=332, c 1=|c |cos(-30°)=4×32=23, c 2=|c |sin(-30°)=4×(-12)=-2.因此a =(2,2),b =(-32,332),c =(23,-2).1.向量的坐标等于终点的坐标减去起点的相应坐标,只有当向量的起点在坐标原点时,向量的坐标才等于终点的坐标.2.求向量的坐标一般转化为求点的坐标,解题时常常结合几何图形,利用三角函数的定义和性质进行计算.图2-3-11如图2-3-11,已知O 是坐标原点,点A 在第二象限,|OA →|=2,∠xOA =150°,求向量OA →的坐标.【解】 过点A 作AB ⊥x 轴于点B ,作AC ⊥y 轴于点C ,设A (x ,y ),则x =|OA →|cos 150°=-3,y =|OA →|sin 150°=1.所以OA →(2)已知三点A (2,-1),B (3,4),C (-2,0),试求向量3AB →+12CA →,BC →-2AB →.【思路探究】 (1)中分别给出了两向量的坐标,可根据向量的直角坐标运算法则进行.(2)中给出了点的坐标,可运用终点坐标减去起点坐标得到相应向量的坐标,然后再进行运算.【自主解答】 (1)∵a =(1,-3),b =(-2,4),c =(0,5), ∴3a -b +c =3(1,-3)-(-2,4)+(0,5)=(3,-9)-(-2,4)+(0,5)=(3+2+0,-9-4+5) =(5,-8).【答案】 (5,-8)(2)∵A (2,-1),B (3,4),C (-2,0). ∴AB →=(3,4)-(2,-1)=(1,5), CA →=(2,-1)-(-2,0)=(4,-1), BC →=(-2,0)-(3,4)=(-5,-4),∴3AB →+12CA →=3(1,5)+12(4,-1)=(5,292),BC →-2AB →=(-5,-4)-2(1,5)=(-7,-14).平面向量坐标的线性运算的方法:(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.若题(2)中条件不变,如何求2AB →-3BC →+CA →呢? 【解】 ∵A (2,-1),B (3,4),C (-2,0), ∴AB →=(3,4)-(2,-1)=(1,5), BC →=(-2,0)-(3,4)=(-5,-4), CA →=(2,-1)-(-2,0)=(4,-1), ∴2AB →→→AB 与CD 是否平行?(2)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ).当k 为何值时,A ,B ,C 三点共线?【思路探究】 (1)判断AB →∥CD →→判断点A 是否在直线CD 上→结论.(2)求A ,B ,C 三点共线时k 的值,则一定有AB →=λAC →成立.先求AB →,AC →,再列方程组求解k .【自主解答】 (1)因为AB →=(2,4),AD →=(4,11)-(-1,1)=(5,10),AC →=(-2,-1)-(-1,1)=(-1,-2),所以AB →=-2AC →,AD →=-5AC →.所以AB →∥AC →∥AD →.由于AB →与AC →,AD →有共同的起点A , 所以A ,B ,C ,D 四点共线. 因此直线AB 与CD 重合. (2)AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →= (10-k ,k -12),若A ,B ,C 三点共线,则AB →∥AC →, ∴(4-k )(k -12)=-7×(10-k ), 解得k =-2或11,∴当k =-2或11时,A ,B ,C 三点共线.1.对于根据向量共线的条件求值的问题,一般有两种处理思路,一是利用共线向量定理a =λb (b ≠0)列方程组求解,二是利用向量共线的坐标表达式x 1y 2-x 2y 1=0直接求解.2.利用x 1y 2-x 2y 1=0求解,解决向量共线问题的优点在于不需要引入参数“λ”,从而减少未知数个数,而且使问题的解决具有代数化的特点、程序化的特征.已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,求实数x 的值. 【解】 因为a =(1,1),b =(2,x ),所以a +b =(3,x +1),4b -2a =(6,4x -2),由于a +b 与4b -2a 平行,得6(x +1)-3(4x -2)=0,解得x =2.忽略平行四边形顶点顺序的讨论致误已知A (2,1),B (3,2),C (-1,4),若A ,B ,C 是平行四边形的三个顶点,求第四个顶点D 的坐标.【错解】 设点D 的坐标为(x ,y ),则由AD →=BC →,得x -2=-1-3,y -1=4-2,即x =-2,y =3,故所求点D 的坐标为(-2,3).【错因分析】 错解中认为平行四边形的四个顶点的顺序是ABCD .事实上,本题没有给出是四边形ABCD ,因此,需要分类讨论.【防范措施】 在求平行四边形某一顶点的坐标时,常常需要对平行四边形顶点顺序进行讨论.【正解】 设点D 的坐标为(x ,y ).当四边形为平行四边形ABCD 时,则有AD →=BC →,从而有x -2=-1-3,y -1=4-2,即x =-2,y =3,故点D 的坐标为(-2,3).当四边形为平行四边形ADBC 时,则有AD →=CB →,从而有x -2=3-(-1),y -1=2-4,即x =6,y =-1,故点D 的坐标为(6,-1).当四边形为平行四边形ABDC 时,则有AC →=BD →,从而有x -3=-1-2,y -2=4-1,即x =0,y =5,故点D 的坐标为(0,5),故第四个顶点D 的坐标为(-2,3)或(6,-1)或(0,5).1.向量的坐标运算(1)向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标.(2)解题过程中要注意方程思想的运用及正确使用运算法则. 2.两个向量共线条件的表示方法 已知a =(x 1,y 1),b =(x 2,y 2), (1)当b ≠0时,a =λb . (2)x 1y 2-x 2y 1=0.(3)当x 2y 2≠0时,x 1x 2=y 1y 2,即两向量的相应坐标成比例.1.设平面向量a =(3,5),b =(-2,1),则a -2b =________. 【解析】 a -2b =(3,5)-2(-2,1)=(3,5)-(-4,2)=(7,3). 【答案】 (7,3)2.已知M (3,-2),N (-5,-1),MP →=12MN →,则P 点坐标为________.【解析】 设P (x ,y ),则MP →=(x -3,y +2),MN →=(-8,1). ∵MP →=12MN →,∴(2x -6,2y +4)=(-8,1).∴⎩⎪⎨⎪⎧2x -6=-8,2y +4=1.∴⎩⎪⎨⎪⎧x =-1,y =-32.【答案】 (-1,-32)3.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,是k =________. 【解析】 a -c =(3-k ,-6),b =(1,3),∵(a -c )∥b ,∴3-k 1=-63.∴k =5.【答案】 54.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →.求证:EF →∥AB →.【证明】 ∵AC →=(2,2),BC →=(-2,3),∴AE →=13AC →=(23,23),BF →=13BC →=(-23,1)∴E (-13,23),F (73,0).∴EF →=(83,-23).又AB →=(4,-1),所以AB →=32EF →.即EF →∥AB →.一、填空题1.下列说法正确的有________. (1)向量的坐标即此向量终点的坐标; (2)位置不同的向量其坐标可能相同;(3)一个向量的坐标等于它的始点坐标减去它的终点坐标; (4)相等的向量坐标一定相同.【解析】 我们所学的向量是自由向量,位置不同,可能是相同的向量,同时相等的向量坐标一定相同.故正确的说法是(2)(4).【答案】 (2)(4)2.若向量a =(3,2),b =(0,-1),则向量2b +a 的坐标是________.【解析】 2b +a =2(0,-1)+(3,2)=(0,-2)+(3,2)=(3,0). 【答案】 (3,0)3.已知a =(-1,x )与b =(-x,2)共线,且方向相同,则实数x =________.【解析】 设a =λb ,则(-1,x )=(-λx,2λ),所以有⎩⎪⎨⎪⎧-1=-λx ,x =2λ,解得⎩⎪⎨⎪⎧x =2,λ=22或⎩⎪⎨⎪⎧x =-2,λ=-22.又a 与b 方向相同,则λ>0,所以λ=22,x = 2. 【答案】24.(2013·连云港高一检测)已知点M (3,-2),N (-6,1),且MP →=2PN →,点P 的坐标为________.【解析】 设P (x ,y ),则MP →=(x -3,y +2), PN →=(-6-x,1-y ),∴由MP →=2PN →得⎩⎪⎨⎪⎧x -3=-12-2x ,y +2=2-2y ,解得⎩⎪⎨⎪⎧ x =-3,y =0,∴点P 的坐标为(-3,0).【答案】 (-3,0)5.设m =(a ,b ),n =(c ,d ),规定两向量之间的一个运算为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q =________.【解析】 设q =(x ,y ),则由题意可知 ⎩⎪⎨⎪⎧ x -2y =-4,y +2x =-3, 解得⎩⎪⎨⎪⎧x =-2,y =1,所以q =(-2,1).【答案】 (-2,1)6.已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),若A ,B ,C 三点共线,则实数k =________.【解析】 由题意得AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),∵AB →与BC →共线. ∴(4-k )×(k -5)-6×(-7)=0, 解得k =-2或11. 【答案】 -2或117.下列说法正确的有______________. (1)存在向量a 与任何向量都是平行向量;(2)如果向量a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则x 1y 1=x 2y 2;(3)如果向量a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则x 1y 2-x 2y 1=0;(4)如果向量a =(x 1,y 1),b =(x 2,y 2),且x 1y 1=x 2y 2,则a ∥b .【解析】 (1)当a 是零向量时,零向量与任何向量都是平行向量;(2)不正确,当y 1=0或y 2=0时,显然不能用x 1y 1=x 2y 2来表示;(3)(4)正确.【答案】 (1)(3)(4)8.已知向量m =(2,3),n =(-1,2),若a m +b n 与m -2n 共线,则a b等于________. 【解析】 a m +b n =(2a,3a )+(-b,2b )=(2a -b,3a +2b ),m -2n =(2,3)-(-2,4)=(4,-1),∵a m +b n 与m -2n 共线,∴b -2a -12a -8b =0,∴a b =-12.【答案】 -12二、解答题9.已知A (-2,4),B (3,-1),C (-3,-4). 设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ), ∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2) ,∴N (9,2).∴MN →=(9,-18).10.已知O (0,0),A (1,2),B (4,5) 及OP →=OA →+tAB →,求: (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否为平行四边形?若能,求出相应的t 值;若不能,请说明理由.【解】 (1)设P (x ,y ),AB →=(3,3),由OP →=OA →+tAB →得(x ,y )=(1,2)+t (3,3),即⎩⎪⎨⎪⎧x =1+3t ,y =2+3t .若P 在x 轴上,则y P =0,即2+3t =0,∴t =-23.若P 在y 轴上,则x P =0,即1+3t =0,∴t =-13.若P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0,∴-23<t <-13.(2)四边形OABP 不能为平行四边形. 因为若四边形OABP 能构成平行四边形, 则OP →=AB →,即(1+3t,2+3t )=(3,3). ∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3, t 无解,故四边形OABP 不能为平行四边形. 11.已知a =(1,2),b =(-2,1),x =a +(t 2+1)b ,y =-1k a +1tb ,是否存在正实数k ,t 使得x ∥y ?若存在,求出取值范围;若不存在,请说明理由. 【解】 不存在.理由:依题意,x =a +(t 2+1)b=(1,2)+(t 2+1)(-2,1)=(-2t 2-1,t 2+3).y =-1k a +1tb=-1k (1,2)+1t(-2,1)=(-1k -2t,-2k +1t).假设存在正实数k ,t ,使x ∥y ,则(-2t 2-1)(-2k +1t )-(t 2+3)·(-1k -2t)=0,化简得t 2+1k +1t =0,即t 3+t +k =0. ∵k ,t 为正实数,∴满足上式的k ,t 不存在,∴不存在这样的正实数k ,t ,使x ∥y .(教师用书独具)已知△AOB 中,O (0,0),A (0,5),B (4,3),OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,求点M 的坐标.【思路探究】 由已知条件易求得点C ,D 的坐标,再由点M 是AD 与BC 的交点,即A ,M ,D 三点共线与B ,M ,C 三点共线可得到以点M 的坐标为解的方程组,解方程组即可.【自主解答】 ∵点O (0,0),A (0,5),B (4,3), ∴OA →=(0,5),OB →=(4,3),OC →=14OA →=(0,54), ∴点C 的坐标为(0,54).同理可得D (2,32). 设点M (x ,y ),则AM →=(x ,y -5),∵A ,M ,D 共线,∴AM →与AD →共线.又AD →=(2-0,32-5)=(2,-72), ∴-72x -2(y -5)=0, 即7x +4y =20.①∵CM →=(x ,y -54),CB →=(4-0,3-54)=(4,74), CM →与CB →共线,∴74x -4(y -54)=0, 即7x -16y =-20.②由①②得x =127,y =2, ∴M 的坐标为(127,2).在求点或向量的坐标中充分利用两个向量共线,要注意方程思想的应用,在题目中充分利用向量共线、向量相等等条件作为列方程的依据.如图所示,已知点A (4,0),B (4,4),C (2,6),求AC 和OB 的交点P 的坐标.【解】 法一 设OP →=tOB →=t (4,4)=(4t,4t ),则AP →=OP →-OA →=(4t,4t ) -(4,0)=(4t -4,4t ),AC →=(2,6)-(4,0)=(-2,6).由AP →,AC →共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34. 所以OP →=(4t,4t )=(3,3),所以P 点的坐标为(3,3).法二 设P (x ,y ),则OP →=(x ,y ),OB →=(4,4).因为OP →,OB →共线,所以4x -4y =0.①又CP →=(x -2,y -6),CA →=(2,-6),且向量CP →,CA →共线,所以-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,所以P点的坐标为(3,3).。

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。

高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。

会用基底表示平面内任一向量。

2、掌握向量夹角的定义以及两向量垂直的定义。

学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。

如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。

活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。

因为OC=OM+ON,所以c=6 e1+6e2。

向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。

活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。

必修四 2.2 平面向量的线性运算(教案)

必修四 2.2  平面向量的线性运算(教案)

人教版新课标普通高中◎数学④必修2.2 平面向量的线性运算教案 A第1课时教学目标一、知识与技能1.掌握向量的加减法运算,并理解其几何意义.2.会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培养数形结合解决问题的能力.3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;二、过程与方法1.位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题.2.运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解.三、情感、态度与价值观1.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识.2.体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量.教学难点:理解向量加减法的定义.教学关键:向量加法的三角形法则和平行四边形法则的探究引导.教学突破方法:由物理中力的合成与分解拓展延伸,引导学生探讨得到结论.教法与学法导航教学方法;启发诱导,讲练结合.学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学准备教师准备:多媒体或实物投影仪、尺规.1教师备课系统──多媒体教案2 学生准备:练习本、尺规.教学过程一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法.二、主题探究,合作交流提出问题:1.类比数的加法,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同?师生互动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图.某对象从A点经B点到C点,两次位移AB、BC的结果,与A 点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题.图(1)表示橡皮条在两个力的作用下,沿着G C的方向伸长了EO;图(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F 叫做F1与F2的合力.人教版新课标普通高中◎数学④必修合力F与力F1、F2有怎样的关系呢?由图(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a +b,即a+b=AB+BC=AC.求两个向量和的运算,叫做向量的加法.2.向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法平行四边形法则的物理模型.对于零向量与任一向量a,我们规定a+0=0+a=a.提出问题1.两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?2.思考|a+b|,|a|,|b|存在着怎样的关系?3.数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?师生互动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与3教师备课系统──多媒体教案结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:1.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.2.当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.3.如下左图,作AB=a,AD=b,以AB、A D为邻边作ABC D,则BC=b,DC=a.因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a.如上右图,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,AD=AB+BD=AB+(BC+CD)=a+(b+c),所以(a+b)+c=a+(b+c).综上所述,向量的加法满足交换律和结合律.提出问题①如何理解向量的减法?②向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a)=a.我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么4人教版新课标普通高中◎数学④必修a=-b,b=-a,a +b=0.A.平行四边形法则如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b.又b+BC=a,所以BC=a-b.由此,我们得到a-b的作图方法.B.三角形法则如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b 可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.②向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.三、拓展创新,应用提高例1如下左图,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.5教师备课系统──多媒体教案 6 解:作法一:在平面内任取一点O (上中图),作OA =a ,AB =b ,则OB =a +b .作法二:在平面内任取一点O (上右图),作OA =a ,OB =b .以OA 、OB 为邻边作OACB ,连接OC ,则OC =a +b . 例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如下图所示,一艘船从长江南岸A 点出发,以5 k m/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 k m/h .(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如上右图所示,AD 表示船速,AB 表示水速,以A D 、AB 为邻边作ABC D ,则AC 表示船实际航行的速度.(2)在Rt △ABC 中,|AB |=2,|BC |=5,所以|AC |=2952|||AB |2222=+=+BC ≈5.4. 因为tan ∠CAB =229,由计算器得∠CAB =68°. 答:船实际航行速度的大小约为5.4 km/h ,方向与水的流速间的夹角为68°. 点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.例3 如图(1)已知向量a 、b 、c 、d ,求作向量a -b ,c -d .活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需人教版新课标普通高中◎数学④ 必修 7 要选点平移作出两个同起点的向量. 作法:如图(2),在平面内任取一点O ,作OA =a ,OB =b ,OC =c ,OD =d .则BA =a -b ,DC =c -d .例4 如图,ABC D 中, AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC =a +b ,同样,由向量的减法,知DB =AB -AD =a -b .四、小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.课堂作业1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b ③0-a =-a ④-(-a )=a ⑤a +(-a )=0A .5B .4C .3D .22.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF -DB 等于( )A .FDB .FC C .FED .BE3.下列式子中不能化简为AD 的是( )A .(AB +CD )+BC B .(AD +MB )+(BC +CM )C .BM AD MB -+ D .OC -OA +CD教师备课系统──多媒体教案8 4.已知A、B、C三点不共线,O是△ABC内一点,若OA+OB+OC=0,则O是△ABC的()A.重心B.垂心C.内心D.外心参考答案:1.C 2.D 3.C 4.A.第2课时教学目标一、知识与技能1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.二、过程与方法充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.三、情感、态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.教学重点、难点教学重点:实数与向量积的意义、两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.教学关键:两个向量共线的等价条件的探究过程的引导.教学突破方法:从向量共线的定义出发,引导学生分组讨论,得出结果.教法与学法导航教学方法:问题式教学,启发诱导.学习方法:合作探讨,在向量加减法的基础上进行推广.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前一节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相人教版新课标普通高中◎数学④ 必修 9同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.二、主题探究,合作交流 提出问题: ① 探究:已知非零向量a ,试一试作出a +a +a 和(-a )+(-a )+(-a ).② 你能说明它们的几何意义吗?③ 引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?师生互动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图可发现,OC =OA +AB +BC =a +a +a .类似数的乘法,可把a +a +a 记作3a ,即OC =3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a |=3|a |.同样,由下图可知,PN =MN QM PQ ++=(-a )+(-a )+(-a ),即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1) |λa |=|λ||a |;(2) 当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反.由(1)可知,λ=0时,λa =0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律:教师备课系统──多媒体教案10 设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a 与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.三、拓展创新,应用提高例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图,已知任意两个非零向量a、b,试作OA=a+b,OB=a+2b,OC=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?人教版新课标普通高中◎数学④ 必修11活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A 、B 、C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:分别作向量OA 、OB 、OC 过点A 、C 作直线AC (如上图).观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.事实上,因为AB =OB -OA =a +2b -(a +b )=b , 而AC =OC -OA =a +3b -(a +b )=2b , 于是AC =2AB .所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3 如图,ABC D 的两条对角线相交于点M ,且AB =a ,AD =b ,你能用a 、b 表示MA MB MC 、、和MD 吗?活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.教师备课系统──多媒体教案12解:在ABC D 中,∵AC =AB +AD =a +b ,DB =AB -AD =a -b , 又∵平行四边形的两条对角线互相平分, ∴MA =21-AC =21-(a +b )=21-a -21b , MB =21DB =21(a -b )=21a -21b ,MC =21AC =21a +21b ,MD =MB -=-21DB =-21a +21b .点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.四、小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件.2.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化.课堂作业1.31[21(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( ) A .1 B .-1 C .±1 D .0 3.若向量方2x -3(x -2a )=0,则向量x 等于( )A .56a B .-6a C .6a D .56-a 4.在△ABC 中,AE =51AB ,EF ∥BC ,EF 交AC 于F ,设AB =a ,AC =b ,则BF用a 、b 表示的形式是BF =_________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA +OC OB +=31e 1-21e 2,则OP ON OM ++=________.人教版新课标普通高中◎数学④ 必修136.已知△ABC 的重心为G ,O 为坐标原点,OA =a ,OB =b ,OC =c , 求证:OG =31(a +b +c ).参考答案:1.B2. C3. C 4.-a +51b 5.31e 1-21e 2. 6.连接A G 并延长,设A G 交BC 于M . ∵AB =b -a ,AC =c -a ,BC =c -b ,∴AM =AB +21BC =(b -a )+21(c -b )=21(c +b -2a ). ∴AG =32AM =31(c +b -2a ).∴OG =OA +AG =a +31(c +b -2a )=31(a +b +c ).教案 B第1课时教学目标一、知识与技能1.理解向量加减法的含义,并掌握加减法的三角形法则和平行四边形法则; 2.会用向量加法的交换律与结合律进行向量运算. 二、过程与方法经历向量加减法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.三、情感、态度与价值观经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质. 教学重点、难点重点:运用向量加减法的三角形法则和平行四边形法则,作两个向量的和向量和差向量.难点: 理解向量的加减法法则及其几何意义.教师备课系统──多媒体教案14教学设想一、创设情境:类比是人类思维中最具创新的一部分,数能进行加减乘除的运算,向量也具有数的特征,那么向量也应该是可以进行运算的,那么向量的运算又如何呢?二、探究新知:(一)教师引导学生仔细阅读课本,分组讨论,归纳如下: 1.定义:求两个向量的和的运算,叫做向量的加法. 注意:两个向量的和仍旧是向量(简称和向量)2.三角形法则:强调:(1)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点. (2)可以推广到n 个向量连加.(3)a a a =+=+00.(4)不共线向量都可以采用这种法则——三角形法则. 3.已知向量a 、b ,求作向量a +b . 作法:在平面内取一点O , 作a OA = b AB =, 则b a OB +=.4.加法的交换律和平行四边形法则 上题中b +a 的结果与a +b 是否相同,验证结果相同.从而得到:(1)向量加法的平行四边形法则;(2)向量加法的交换律:a +b =b +a . 5. 向量加法的结合律:ABC Daca +b+c ba +bb+c ●A B a +b a +b a a b b a b a a +b b O ABaaa bb b人教版新课标普通高中◎数学④ 必修15(a +b ) +c =a + (b +c )证:作图:使a AB =, b BC =, c CD =,则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+,∴(a +b ) +c =a + (b +c ).从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.(二)教师引导学生仔细阅读课本,类比向量加法的定义和运算法则,分组讨论,归纳如下:1.用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a . (2) 规定:零向量的相反向量仍是零向量.-(-a )= a .任一向量与它的相反向量的和是零向量.a +(-a )= 0. 如果a 、b 互为相反向量,则a = -b , b = -a ,a + b = 0.(3) 向量减法的定义:.向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a +(-b ).求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b . 3.求作差向量:已知向量a 、b ,求作差向量. ∵(a -b )+ b = a +(-b )+ b = a + 0 = a .作法:在平面内取一点O , 作OA = a ,OB = b . 则BA = a - b .即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.AOABaB ’b -bbBa + (-b )abO a bBa ba -b教师备课系统──多媒体教案16注意:(1)BA 表示a - b .强调:差向量“箭头”指向被减数.(2)用“相反向量”定义法作差向量,a - b = a + (-b ).显然,此法作图较繁,但最后作图可统一.4.探究:(1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a .(2)若a ∥b , 如何作出a - b ? 三、例题讲解例1 如图,O 为正六边形ABC D EF 的中心,作出下列向量:(1)OA +OC ;(2)BC +FE ;(3)OA +FE .解:(1)因四边形OABC 是以OA 、OC 为邻边的平行四边形,OB 是其对角线, 故OA +OC =OB .(2)因BC =FE ,故BC +EF 与BC 方向相同,长度为BC 的长度的2倍, 故BC +FE =AD . (3)因OD =FE , 故OA +FE =OA +OD =0.点评: 向量的运算结合平面几何知识,在长度和方向两个方面做文章.应深刻理解向a -b A A B B B ’ O a -b a a bb O A O B a -b a -b B A O -b。

高中数学 第2章 平面向量 2.2.3 向量的数乘讲义 苏教版必修4-苏教版高一必修4数学教案

高中数学 第2章 平面向量 2.2.3 向量的数乘讲义 苏教版必修4-苏教版高一必修4数学教案

2.2.3 向量的数乘一般地,实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0.实数λ与向量a相乘,叫做向量的数乘.思考:λa=0,一定能得到λ=0吗?[提示]不一定.λa=0则λ=0或a=0.二、向量数乘的运算律1.λ(μa)=(λμ)a;2.(λ+μ)a=λa+μa;3.λ(a+b)=λa+λb.三、向量共线定理如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使b=λa.1.思考辨析(1)a=0,则λa=0.( )(2)对于非零向量a,向量-3a与向量3a方向相反.( )(3)对于非零向量a,向量-6a的模是向量3a的模的2倍.( )[答案](1)√(2)√(3)√2.5×(-4a)=________.-20a[5×(-4a)=5×(-4)a=-20a.]3.a=e1+2e2,b=3e1-2e2,则a+b=________.4e1[a+b=(e1+2e2)+(3e1-2e2)=4e1.]4.已知e1和e2不共线,则下列向量a,b共线的序号是________.①a =2e 1,b =2e 2;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2.②③ [∵e 1与e 2不共线,∴①不正确;对于②有b =-2a ;对于③有a =4b ;④不正确.] 向量数乘的基本运算 【例1】 计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎢⎡⎦⎥⎤(3a +2b )-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a ;(3)6(a -b +c )-4(a -2b +c )-2(-2a +c ).思路点拨:利用向量线性运算的法则化简,先去括号,再将共线向量合并. [解] (1)原式=18a -12b -18a +9b =-3b . (2)原式=12⎝ ⎛⎭⎪⎫3a +2b -23a -b -7612a +37b +12a=32a +b -13a -12b -712a -12b -712a =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c =6a +2b .向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”、“提取公因式”,但这里的“同类项”、“公因式”指向量,实数看作是向量的系数.向量也可以通过列方程来解,把所求向量当作未知量,利用解代数方程的方法求解.1.若向量a =3i -4j ,b =5i +4j ,则⎝ ⎛⎭⎪⎫13a -b -3⎝ ⎛⎭⎪⎫a +23b +(2b -a )=________.-16i +323j [原式=13a -b -3a -2b +2b -a=-113a -b=-113(3i -4j )-(5i +4j )=(-11-5)i +⎝ ⎛⎭⎪⎫443-4j =-16i +323j .]向量的共线问题【例2】 已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线. (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.思路点拨:对于(1),欲证A ,B ,D 共线,只需证存在实数λ,使BD →=λAB →即可;对于(2),若k e 1+e 2与e 1+k e 2共线,则一定存在实数λ,使k e 1+e 2=λ(e 1+k e 2).[解] (1)证明:∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B ,∴A ,B ,D 三点共线.(2)∵k e 1+e 2与e 1+k e 2共线,∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.1.证明三点共线,通常转化为证明这三点构成的其中两个向量共线,向量共线定理是解决向量共线问题的依据.2.若A ,B ,C 三点共线,则向量AB →,AC →,BC →在同一直线上,因此必定存在实数,使得其中两个向量之间存在线性关系.而向量共线定理是实现线性关系的依据.2.设e 1,e 2是两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,求k 的值.[解] BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2. 因为A ,B ,D 三点共线,故存在实数λ,使得AB →=λBD →, 即2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2. 由向量相等的条件,得⎩⎪⎨⎪⎧λ=2,k =-4λ,解得k =-8,所以k =-8.向量共线的有关结论 [探究问题]1.已知O 为平面ABC 内任一点,若A ,B ,C 三点共线,是否存在α,β∈R ,使OC →=αO A →+βOB →,其中α+β=1?提示:存在,因A ,B ,C 三点共线,则存在λ∈R ,使AC →=λAB →, ∴OC →-OA →=λ(OB →-OA →),∴OC →=(1-λ)OA →+λOB →. 令1-λ=α,λ=β,则 OC →=αOA →+βOB →,且α+β=1.2.已知O 为平面ABC 内任一点,若存在α,β∈R ,使OC →=αOA →+βOB →,α+β=1,那么A ,B ,C 三点是否共线?提示:共线,因为存在α,β∈R ,使OC →=αOA →+βOB →,且α+β=1, ∴β=1-α,∴OC →=αOA →+(1-α)OB →, ∴OC →=αOA →+OB →-αOB →, ∴OC →-OB →=α(OA →-OB →),∴BC →=αBA →,∴A ,B ,C 三点共线.【例3】 如图所示,已知△OAB 中,点C 是以A 为对称中心的B 点的对称点,D 是把OB →分成2∶1的一个内分点,DC 和OA 交于E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值.思路点拨:由已知得A 为BC 中点,D 为OB 的三等分点,由向量的线性运算法则可解第(1)问,第(2)问可由向量共线定理解决.[解] (1)依题意,A 是BC 中点, ∴2OA →=OB →+OC →, 即OC →=2OA →-OB →=2a -b , DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .(2)若OE →=λOA →,则CE →=OE →-OC →=λa -(2a -b )=(λ-2)a +b .∵CE →与DC →共线,∴存在实数k ,使CE →=kDC →, ∴(λ-2)a +b =k ⎝ ⎛⎭⎪⎫2a -53b ,解得λ=45. 用已知向量表示未知向量的求解思路:(1)先结合图形的特征,把待求向量放在三角形或平行四边形中;(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理,用已知向量表示未知向量;(3)求解过程体现了数学上的化归思想.3.如图,在▱OADB 中,设OA →=a ,OB →=b ,BM →=13BC →,CN →=13CD →.试用a ,b表示OM →,ON →及MN →.[解] 由题意知,在▱OADB 中,BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b )=16a -16b .则OM →=OB →+BM →=b +16a -16b =16a +56b ,ON →=23OD →=23(OA →+OB →)=23(a +b )=23a +23b ,MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .教师独具1.本节课的重点是向量的数乘运算及共线向量定理,难点是共线向量定理的应用. 2.掌握与向量数乘运算有关的三个问题 (1)向量的线性运算; (2)用已知向量表示未知向量; (3)共线向量定理及应用. 3.本节课的易错点当A 、B 、C 、D 四点共线时,AB →与CD →共线;反之不一定成立. 4.要掌握用已知向量表示其他向量的两种方法 (1)直接法 (2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.5.注意以下结论的运用(1)以AB ,AD 为邻边作▱ABCD ,且AB →=a ,AD →=b ,则对角线所对应的向量AC →=a +b ,DB →=a -b .(2)在△ABC 中,若D 为BC 的中点,则AD →=12(AB →+AC →).(3)在△ABC 中,若G 为△ABC 的重心,则GA →+GB →+GC →=0. 1.已知m ∈R ,下列说法正确的是( ) A .若m a =0,则必有a =0B .若m ≠0,a ≠0,则m a 与a 方向相同C .m ≠0,a ≠0,则|m a |=m |a |D .若m ≠0,a ≠0,则m a 与a 共线 D [A 错.若m a =0,则m =0或a =0;B 错.m >0时,m a 与a 同向,m <0时,m a 与a 反向;C 错.∵|m a |=|m ||a |,∴m >0时,|m a |=m |a |;m <0时|m a |=-m |a |.]2.△ABC 中,E ,F 分别是AB ,AC 的中点,且AB →=a ,AC →=b ,则EF →=________(用a ,b 表示).12(b -a ) [EF →=AF →-AE →=12AC →-12AB →=12(b -a ).] 3.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →可用OA →,OB →表示为________.2OA →-OB → [OC →=OB →+BC →=OB →+2AC →=OB →+2(OC →-OA →),∴OC →=2OA →-OB →.] 4.计算:(1)8(2a -b +c )-6(a -2b +c )-2(2a +c ); (2)(m +n )(a -b )-(m +n )(a +b ).[解] (1)原式=16a -8b +8c -6a +12b -6c -4a -2c =(16-6-4)a +(-8+12)b +(8-6-2)c =6a +4b .(2)原式=(m +n )a -(m +n )b -(m +n )a -(m +n )b =-2(m +n )b .。

教育最新K122018高中数学第二章平面向量第4课时2.2向量的数乘教案苏教版必修

教育最新K122018高中数学第二章平面向量第4课时2.2向量的数乘教案苏教版必修

第4课时 §2.2 向量的数乘【教学目标】一、知识与技能(1)向量数乘定义。

(2)向量数乘的运算律。

二、过程与方法在对有关数乘问题的解决中理解数乘概念和实际意义.三、情感、态度与价值观联系生活实际学习向量的数乘让学生感受数学美【教学重点难点】向量的数乘的定义和运算律一、复习:已知非零向量a ,求作a a +和()()a a -+-.如图:OB a a =+2a =,()()CE a a =-+-二、讲解新课:1.实数与向量的积的定义:一般地,实数λ与向量a 的积是一个向量,记作a λ,它的长度与方向规定如下: (1)||||||a a λλ=;(2)当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ= 时,0a λ=.2.实数与向量的积的运算律:(1)()()a a λμλμ=(结合律);a - E a a a O B A CD a -(2)()a a a λμλμ+=+(第一分配律);(3)a b λλλ+(a+b )=(第二分配律). 3.向量共线定理:内容:三、例题分析:例1、计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+例2、 如图,已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.例3、 判断下列各题中的向量是否共线:(1)21245a e e =-,12110b e e =-; (2)12a e e =+,1222b e e =-,且1e ,2e 共线.A B C D E(3)当1e ,2e 中至少有一个为零向量时,显然b 与a 共线.例4、设12,e e 是两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,若A ,B ,D 三点共线,求k 的值.五、课时小结:1.掌握实数与向量的积的定义;2.掌握实数与向量的积的运算律,并进行有关的计算;3.理解向量共线定理,并会判断两个向量是否共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时 §2.2 向量的数乘
【教学目标】
一、知识与技能
(1)向量数乘定义。

(2)向量数乘的运算律。

二、过程与方法
在对有关数乘问题的解决中理解数乘概念和实际意义.
三、情感、态度与价值观
联系生活实际学习向量的数乘让学生感受数学美
【教学重点难点】向量的数乘的定义和运算律
一、复习:
已知非零向量a ,求作a a + 和()()a a -+- .
如图:OB a a =+ 2a = ,()()CE a a =-+-
二、讲解新课:
1.实数与向量的积的定义:
一般地,实数λ与向量a 的积是一个向量,记作a λ ,它的长度与方向规定如下:
(1)||||||a a λλ= ;
(2)当0λ>时,a λ 的方向与a 的方向相同;
当0λ<时,a λ 的方向与a 的方向相反;
当0λ= 时,0a λ= .
2.实数与向量的积的运算律:
(1)()()a a λμλμ= (结合律);
a - E a a a O B A C
D a -
(2)()a a a λμλμ+=+ (第一分配律);
(3)a b λλλ+ (a+b )=(第二分配律)
. 3.向量共线定理:
内容:
三、例题分析:
例1、计算:(1)(3)4a -⨯ ;
(2)3()2()a b a b a +--- ;
(3)(23)(32)a b c a b c +---+
例2、 如图,已知3AD AB = ,3DE BC = .试判断AC 与AE 是否共线.
例3、 判断下列各题中的向量是否共线: (1)21245a e e =- ,12110
b e e =- ; (2)12a e e =+ ,1222b e e =- ,且1e ,2e 共线. A B C D
E。

相关文档
最新文档