2016年上海市闸北区中考数学二模试卷(解析版)
2016年中考数学模拟试题(二)及答案(沪教版使用地区专用)

2016年中考数学模拟试题(二)(沪教版使用地区专用)时间120分钟满分150分2015.8.30一、选择题(本大题共6题,每题4分,满分24分)1.如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG:AD是() A. 2:3 B. 1:2 C. 1:3 D. 3:42.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是() A. BD:AB=CE:AC B. DE:BC=AB:AD C. AB:AC=AD:AE D. AD:DB=AE:EC3.下列有关向量的等式中,不一定成立的是()A.=﹣ B. ||=|| C.+= D. |+|=||+||4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A. cosA= B. tanA= C. sinA= D. cosA=5.在下列y关于x的函数中,一定是二次函数的是()A. y=x2 B. y= C. y=kx2 D. y=k2x6.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A. 4.5米 B. 6米 C. 7.2米 D. 8米二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.8.点P是线段AB的黄金分割点(AP>BP),则= .9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD =9,则S△EFC= .10.如果α是锐角,且tanα=cot20°,那么α= 度.11.计算:2sin60°+tan45°= .12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是.(请写成1:m的形式)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:(填“是”或“否”).16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA= .16题图 17题图18题图17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有对相似三角形.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C 恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m= (用含n的代数式表示m).三、解答题(本大题共7题,满分78分)19(10分).解方程:﹣=2.20(10分).已知二次函数y=﹣2x2+bx+c的图象经过点A (0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21(10分).如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.22(10分).如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23(12分).如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.24(12分).如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.25(14分).如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.参考答案一、选择题1.A.2.故选B.3.故选D.4.故选:C.5.故选:A.6.故选:B.二、填空题7..8..9. 4 .10.70 度.11.+1 .12.1:.(请写成1:m的形式)13.m>1 .14.(3,﹣1).15.是(填“是”或“否”).16..17. 3 对相似三角形.18. m= 2n+1 (用含n的代数式表示m).三、解答题19.解:去分母得:2﹣3x+x+2=2x2﹣8,整理得:x2+x﹣6=0,即(x﹣2)(x+3)=0,解得:x=2或x=﹣3,经检验x=2是增根,分式方程的解为x=﹣3.20.解:(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得,解得,所以此函数的解析式为y=﹣2x2﹣4x+4;y=﹣2x2﹣4x+4=﹣2(x2+2x+1)+2+4=﹣2(x+1)2+6;(2)∵y=﹣2(x+1)2+6,∴C(﹣1,6),∴△CAO的面积=×4×1=2.21.解:∵四边形ABCD是平行四边形,∴==,==,∵AE=3ED,∴==,==,∴=﹣=﹣;∵EF=CE,∴==﹣,∴=+=+﹣=+.22.解:过点C⊥AB于点D,在Rt△ACD中,∵∠ACD=35°,AC=100m,∴AD=100•sin∠ACD=100×0.574=57.4(m),CD=100•cos∠ACD=100×0.819=81.9(m),在Rt△BCD中,∵∠BCD=45°,∴BD=CD=81.9m,则AB=AD+BD=57.4+81.9≈139(m).答:A、B之间的距离约为139米.23.(1)证明:∵四边形ABCD为等腰梯形,∴∠ABE=∠C,且∠BAE=∠DBC,∴△ABE∽△BCD;(2)解:过D作DG⊥BC于点G,∵AD=1,BC=3,∴CG=(BC﹣AD)=1,BG=2,又∵在Rt△DGC中,CD=2,CG=1,∴DG=,在Rt△BDG中,tan∠DBC==;(3)解:由(2)在Rt△BGD中,由勾股定理可求得BD=,由(1)△ABE∽△BCD可得=,即==,解得BE=,又∵AD∥BC,∴=,且DF=BD﹣BF,∴=,解得BF=.24.解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).25.(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F在点B处时,DB=BC=AB•sinA=2×=,AD=AB﹣AD=2﹣;当点E在点A处时,AD=AC=AB•cosA=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴tan∠HOC==,∴∠HOC=60°①若点K在线段AC上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K在线段AC的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x的值为﹣1或3﹣.。
中考数学二模试卷(含解析)

上海市浦东新区2016年中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.2016的相反数是()A.B.﹣2016 C.﹣D.20162.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣14.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,156.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .8.不等式x﹣1<2的解集是.9.分解因式:8﹣2x2= .10.计算:3()+2(﹣2)= .11.方程的根是.12.已知函数f(x)=,那么f()= .13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为米.14.正八边形的中心角等于度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为.17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= .18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:2sin45°﹣20160++()﹣1.20.(10分)解方程:.21.(10分)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.22.(10分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(12分)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD 于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.24.(12分)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.25.(14分)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC 上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.2016年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.2016的相反数是()A.B.﹣2016 C.﹣D.2016【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2016的相反数是﹣2016.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【考点】根的判别式.【分析】把a=1,b=3,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣1【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个选项中得函数解析式,根据系数的正负结合各函数的性质即可得出其增减性,由此即可得出结论.【解答】解:A、y=﹣中k=﹣1<0,∴函数y=﹣的图象在第二、四象限内y随着x的增大而增大;B、y=x2﹣1中a=1>0,∴函数y=x2﹣1的图象在第二、三象限内y随着x的增大而减小,在第一、四象限内y随着x的增大而增大;C、y=﹣中k=1>0,∴函数y=的图象在第一、三象限内y随着x的增大而减小;D、y=﹣x﹣1中k=﹣1<0,b=﹣1<0,∴函数y=﹣x﹣1的图象在第二、三、四象限内y随着x的增大而减小.故选A.【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是逐项分析四个选项的增减性.本题属于基础题,难度不大,解决该题型题目时,熟悉各函数的性质及各函数的图象是解题的关键.4.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为: =.故选A.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,15【考点】众数;折线统计图;中位数.【分析】根据中位数和众数的概念求解.把数据按大小排列,第4个数为中位数;17℃出现的次最多,为众数.【解答】解:17℃出现了2次,最多,故众数为17℃;共7个数据,从小到大排列为8,9,11,14,15,17,第4个数为14,故中位数为14℃.故选C.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.【考点】三角形的重心.【分析】延长AM交BC于点D,根据△ABC是等边三角形可知AD⊥BC,设AM=2x,则DM=x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.【解答】解:延长AM交BC于点D,∵△ABC是等边三角形,∴AD⊥BC.设AM=2x,则DM=x,∴AD=3x,∴AB===2x.∵△ABC和△AMN都是等边三角形,∴△ABC∽△AMN,∴=()2=()2=.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .【考点】有理数的减法;绝对值.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.不等式x﹣1<2的解集是x<3 .【考点】解一元一次不等式.【分析】解不等式x﹣1<2,即可得到不等式x﹣1<2的解集,本题得以解决.【解答】解:x﹣1<2两边同时加1,得x﹣1+1<2+1x<3,故答案为:x<3.【点评】本题考查解一元一次不等式,解题的关键是会解一元一次不等式的方法.9.分解因式:8﹣2x2= 2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).【点评】本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.10.计算:3()+2(﹣2)= ﹣﹣.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:3()+2(﹣2)=3﹣3+2﹣4=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.11.方程的根是x=﹣4 .【考点】无理方程.【分析】9的算术平方根是3,故5﹣x=9,x=﹣4.【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【点评】记准算术平方根的被开方数是非负数这一要求,是解决这类问题的关键.12.已知函数f(x)=,那么f()= 3 .【考点】函数值.【分析】将x=代入计算即可.【解答】解:f()====3.故答案为:3.【点评】本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为18 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义得出AC的长,进而利用勾股定理得出AB的长.【解答】解:∵传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,∴可得:BC=9m,则=,解得:AC=9,则AB===18(m).故答案为:18.【点评】此题主要考查了坡角的定义,根据题意得出AC的长是解题关键.14.正八边形的中心角等于45 度.【考点】正多边形和圆.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720 .【考点】条形统计图;用样本估计总体.【分析】用所有学生数乘以样本中课外阅读时间不少于6小时的人数所占的百分比即可.【解答】解:估计该校1200名学生一周的课外阅读时间不少于6小时的人数是:1200×=720(人),故答案为:720.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为1或5 .【考点】圆与圆的位置关系.【分析】由于⊙O1与⊙O2相切,则分两圆内切和外切讨论得到R+2=3或R﹣2=3,然后解两个一次方程即可.【解答】解:∵⊙O1与⊙O2相切,∴R+2=3或R﹣2=3,∴R=1或R=5.故答案为1或5.【点评】本题考查了圆与圆的位置关系:设两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R ﹣r(R>r);两圆内含⇔d<R﹣r(R>r).17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= 4 .【考点】解二元一次方程组;有理数的混合运算.【分析】已知等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.【考点】翻折变换(折叠问题).【分析】设AD=x,再根据折叠的性质得∠PDE=∠ADE=90°,∠1=∠A,PD=AD=x,于是可判断点P在边AC上,所以PC=20﹣2x,然后利用等角的余角相等得到∠1=∠3,则∠A=∠3,则可判断Rt△BCP∽Rt△ABC,利用相似比可计算出x.【解答】解:如图,设AD=x,在△ABC中,∠A CB=90°,BC=15,AC=20,∴AB=25,∵DE⊥AB,∴∠AED=∠ACB=90°,∵△ADE沿DE翻折得到△PDE,∴∠PED=∠AED=90°,∠1=∠A,PD=AD=x,∴CD=20﹣x,∵∠CPD=90°,∴∠1+∠2=90°,∠A+∠B=90°,∴∠2=∠B,∴PC=BC=15,∵CD2=CP2+PD2,即(20﹣x)2=152+x2,∴x=,∴AD=.故答案为:.【点评】此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)(2016•浦东新区二模)计算:2sin45°﹣20160++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣1+2+2=1+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2016•浦东新区二模)解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】本题的最简公分母是(x+2)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(10分)(2016•浦东新区二模)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.【考点】垂径定理.【分析】首先过点O作OD⊥AB于D,应用直角三角形的性质和三角函数的求法,求出AD的长度是多少;然后应用垂径定理,求出弦AB的长是多少即可.【解答】解:如图,过点O作OD⊥AB于D,,∵OA2+OC2=AC2,∴AC2=42+32=25,∴AC=5.在Rt△AOC中,cos∠OAC==,在Rt△ADO中,cos∠OAD=,∴==,∴AD=×4=.∵OD⊥AB,∴AB=2AD=2×=.【点评】此题主要考查了垂径定理的应用,直角三角形的性质和三角函数的求法,要熟练掌握.22.(10分)(2016•浦东新区二模)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接利用每吨的成本×生产吨数=总成本为210万元,进而得出等式求出答案.【解答】解:(1)设函数解析式为:y=kx+b,将(0,10),(40,6)分别代入y=kx+b 得:,解得:,所以y=﹣x+10(0≤x≤40);(2)由(﹣x+10)x=210,解得:x1=30,x2=70,由于0≤x≤40,所以x=30,答:该产品的生产数量是30吨.【点评】此题主要考查了一次函数的应用,正确利用待定系数法求出一次函数解析式是解题关键.23.(12分)(2016•浦东新区二模)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即: =,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即: =,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.24.(12分)(2016•浦东新区二模)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)把B(3,6)代入y=ax2﹣4ax+2,求出a的值,得到二次函数的解析式,进而求出点A的坐标;(2)先求出抛物线的对称轴,根据对称性得出C点坐标,求出BC=2,AB=5,tan∠CBA=,过点C作CH⊥AB于点H,再求出CH=,AH=,根据正切函数定义即可求出∠CAB的正切值;(3)由AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7),设P(x,0)根据PB=PB1,分B1的坐标为(0,﹣3)或(0,7)两种情况利用勾股定理求得x值.【解答】解:(1)∵二次函数y=ax2﹣4ax+2的图象过点B(3,6),∴6=9a﹣12a+2,解得a=﹣,所以二次函数的解析式为y=﹣x2+x+2,∵二次函数y=﹣x2+x+2的图象与y轴交于点A,∴点A的坐标为(0,2);(2)∵y=﹣x2+x+2=﹣(x﹣2)2+,∴对称轴为直线x=2,∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC=2,AB==5,tan∠CBA=,过点C作CH⊥AB于点H,则CH=,BH=,AH=,∴tan∠CAB==;(3)由题意,AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7).设P(x,0).①如果点B1(0,7),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+72,解得x=﹣,即P(﹣,0);②如果点B1′(0,﹣3),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+32,解得x=6,即P(6,0);综上所述,所求点P的坐标为(﹣,0)或(6,0).【点评】本题主要考查待定系数求二次函数解析式、解直角三角形、勾股定理等,求二次函数解析式是基础,构建直角三角形求三角函数值是基本做法,通过勾股定理得出点坐标间联系是关键.25.(14分)(2016•浦东新区二模)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理得到△ADE∽△ACB,根据相似三角形的性质求出DE和BG,求出EF;(2)作DH⊥AC于H,根据相似三角形的性质得到y关于x的函数解析式;(3)根据点G在边BC上和点G在边AB上两种情况,根据相似三角形的性质解答.【解答】解:(1)∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵D为斜边AB的中点,∴AD=BD=5,∵DEFG为矩形,∴∠ADE=90°,∴∠ADE=∠C,又∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,DE=,∵△ADE∽△FGB,∴=,则BG=,∴EF=DG=AB﹣AD﹣BG=;(2)如图2,作DH⊥AC于H,∴DH∥BC,又AD=DB,∴DH=BC=3,∵DH⊥AC,∠C=90°,∠DEF=90°,∴△DHE∽△ECF,∴==,∴EC=2DH=6,EH=x﹣6,∴DE2=32+(x﹣6)2=x2﹣6x+45,∴y=DE•EF=2DE2=x2﹣12x+90,(3)如图3,当点G在边BC上时,∵,DE=3,∴EF=,∴AC=9,如图4,当点G在边AB上时,设AD=DB=a,DE=2b,EF=3b,∵△ADE∽△FGB,∴=,即=,整理得,a2﹣3ab﹣4b2=0,解得,a=4b,a=﹣b(舍去),∴AD=2DE,∵△ADE∽△ACB,∴AC=2BC=12,综上所述,点G恰好落在Rt△ABC的边上,AC的长为9或12.【点评】本题的是矩形的性质、勾股定理的应用、相似三角形的判定和性质、二次函数解析式的求法以及三角形中位线定理,掌握相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键,注意分情况讨论思想的运用.。
2016年上海市中考数学试卷(含详细答案及解析)

2016年上海市中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.(4分)如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.2.(4分)下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab3.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.(4分)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次C.4次 D.4.5次5.(4分)已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+ D.﹣﹣6.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每小题4分,共48分7.(4分)计算:a3÷a=.8.(4分)函数y=的定义域是.9.(4分)方程=2的解是.10.(4分)如果a=,b=﹣3,那么代数式2a+b的值为.11.(4分)不等式组的解集是.12.(4分)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.(4分)已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.(4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.(4分)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.(4分)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.(4分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)18.(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.(10分)计算:|﹣1|﹣﹣+.20.(10分)解方程:﹣=1.21.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.(10分)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.(12分)已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE 是平行四边形.24.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.(14分)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2016年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.(4分)(2016•上海)如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(4分)(2016•上海)下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.(4分)(2016•上海)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.(4分)(2016•上海)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次C.4次 D.4.5次【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.(4分)(2016•上海)已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+ D.﹣﹣【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.(4分)(2016•上海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.(4分)(2016•上海)计算:a3÷a=a2.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.(4分)(2016•上海)函数y=的定义域是x≠2.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.(4分)(2016•上海)方程=2的解是x=5.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.(4分)(2016•上海)如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.(4分)(2016•上海)不等式组的解集是x<1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.(4分)(2016•上海)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.(4分)(2016•上海)已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.(4分)(2016•上海)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.(4分)(2016•上海)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.(4分)(2016•上海)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.(4分)(2016•上海)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.(4分)(2016•上海)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.(10分)(2016•上海)计算:|﹣1|﹣﹣+.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.(10分)(2016•上海)解方程:﹣=1.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.(10分)(2016•上海)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D 在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.(10分)(2016•上海)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【分析】(1)设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.(12分)(2016•上海)已知:如图,⊙O是△ABC的外接圆,=,点D 在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE 是平行四边形.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.(12分)(2016•上海)如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan ∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).连接AC,∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),=×4×5=10,S△ACD=×4×4=8,又S△ABC=S△ABC+S△ACD=18.∴S四边形ABCD(3)过点C作CH⊥AB,垂足为点H.=×AB×CH=10,AB=5,∵S△ABC∴CH=2,在RT△BCH中,∠BHC=90°,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.(14分)(2016•上海)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)①EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;②GA=GE时,则∠GAE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(0<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.参与本试卷答题和审题的老师有:2300680618;caicl;HJJ;sd2011;王学峰;星期八;知足长乐;sks;zhjh;曹先生;gsls;弯弯的小河;gbl210;sjzx;张其铎;家有儿女;梁宝华;LG(排名不分先后)菁优网2017年4月8日。
2016上海中考数学二模试卷含闵行,普陀,杨浦,虹口,黄浦,松江,浦东,长宁8个区包括答案

闵行区2015-2016学年第二学期九年级质量调研考试2016.4数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果单项式22n a b c是六次单项式,那么n的值取(A)6;(B)5;(C)4;(D)3.2(A;(B(C1;(D1.3.下列函数中,y随着x的增大而减小的是(A)3y x=;(B)3y x=-;(C)3yx=;(D)3yx=-.4.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是(A)平均数;(B)中位数;(C)众数;(D)方差.5.下列图形中,既是轴对称又是中心对称图形的是(A)正五边形;(B)等腰梯形;(C)平行四边形;(D)圆.6.下列四个命题,其中真命题有(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为sin20a⋅o.(A)1个;(B)2个;(C)3个;(D)4个.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ▲ .8.在实数范围内分解因式:32a a -= ▲ . 92=的解是 ▲ . 10.不等式组30,43x x x -≥⎧⎨+>-⎩的解集是 ▲ .11.已知关于x 的方程20x x m --=没有实数根,那么m 的取值范围是 ▲ .12.将直线213y x =-+向下平移3个单位,那么所得到的直线在y 轴上的截距为 ▲ .13.如果一个四边形的两条对角线相等,那么称这个四边 形为“等对角线四边形”.写出一个你所学过的特殊 的等对角线四边形的名称 ▲ .14.如图,已知在梯形ABCD 中,AD // BC ,且BC = 3AD ,点E 是边DC 的中点.设AB a =uu u r r ,AD b =uuu r r ,那么 AE =uu u r ▲ (用a r 、b r的式子表示).15.布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是 ▲ .16.9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是 ▲ .17.点P 为⊙O 内一点,过点P 的最长的弦长为10cm ,最短的弦长为8cm ,那么OP的长等于 ▲ cm .18.如图,已知在△ABC 中,AB = AC ,1tan 3B ∠=,将△ABC 翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BDDC的值为 ▲ . ABD C(第14题图)EABC(第18题图)(第16题图) 乘公车 y % 步行 x %骑车 25%私家车 15%学生出行方式扇形统计图师生出行方式条形统计图三、解答题:(本大题共7题,满分78分)19.(本题满分10分)110212(cos60)32--++-o.20.(本题满分10分)解方程:222421242xx x x x x-+=+--.21.(本题满分10分,其中每小题各5分)如图,已知在△ABC中,∠ABC = 30º,BC = 8,sin A∠=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.22.(本题满分10分,其中每小题各5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i =1∶512,且AB = 26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53º时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin530.8≈o,cos530.6≈o,tan53 1.33≈o,cot530.75≈o).BCD(第21题图)BDC(第22题图)F23.(本题满分12分,其中每小题各6分)如图,已知在矩形ABCD 中,过对角线AC 的中点O 作 AC 的垂线,分别交射线AD 和CB 于点E 、F ,交边DC 于 点G ,交边AB 于点H .联结AF ,CE . (1)求证:四边形AFCE 是菱形; (2)如果OF = 2GO ,求证:2GO DG GC =⋅. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =++与x 轴交于 点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线l . (1)求这条抛物线的关系式,并写出其对称轴和顶点M 的坐标;(2)如果直线y kx b =+经过C 、M 两点,且与x 轴交于点D ,点C 关于直 线l 的对称点为N ,试证明四边形CDAN(3)点P 在直线l 上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 求点P 的坐标.(第24题图)(第23题图)AB CDE FGOH25.(本题满分14分,其中第(1)小题各4分,第(2)、(3)小题各5分)如图,已知在△ABC中,AB = AC = 6,AH⊥BC,垂足为点H.点D在边AB上,且AD = 2,联结CD交AH于点E.(1)如图1,如果AE = AD,求AH的长;(2)如图2,⊙A是以点A为圆心,AD为半径的圆,交AH于点F.设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与⊙A外切,以点P为圆心,CP为半径的圆与⊙A内切,求边BC的长;(3)如图3,联结DF.设DF = x,△ABC的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围.(第25题图3)普陀区2015-2016学年度第二学期初三质量调研数学试卷 2016年4月13日(时间:100分钟,满分析150分)一、选择题:(本大题共6题,每题4分,满分24分)1、据统计,2015年上海市全年接待国际旅游入境者共80016000人次,80016000用科学记数法表示是( )(A )8.0016⨯610; (B )8.0016710⨯; (C )8100016.8⨯; (D )9100016.8⨯2、下列计算结果正确的是( )(A )824a a a =⋅; (B )()624a a =; (C )()222b a ab =; (D )()222b a b a -=-.3、下列统计图中,可以直观地反映出数据变化的趋势的统计图是( )(A )折线图; (B )扇形图; (C )统形图; (D )频数分布直方图。
上海市2016年中考数学试卷及答案解析

上海市2016年中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.【考点】倒数.【解析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【解析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【解析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次 C.4次 D.4.5次【考点】加权平均数.【解析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷2080÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=, =,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣【考点】*平面向量.【解析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【解析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a= a2.【考点】同底数幂的除法.【专题】计算题.【解析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.函数y=的定义域是x≠2 .【考点】函数自变量的取值范围.【解析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程=2的解是x=5 .【考点】无理方程.【解析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.如果a=,b=﹣3,那么代数式2a+b的值为﹣2 .【考点】代数式求值.【专题】计算题;实数.【解析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.不等式组的解集是x<1 .【考点】解一元一次不等式组.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【考点】根的判别式;解一元一次方程.【解析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x 的值增大而减小,那么k的取值范围是k>0 .【考点】反比例函数的性质.【解析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【专题】计算题.【解析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【考点】三角形中位线定理.【解析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000 .【考点】条形统计图;扇形统计图.【解析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【解析】分别利用锐角三角函数关系得出BD ,DC 的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30, tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m ),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD 中,BC=2,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分别落在点A ′、C ′处.如果点A ′、C ′、B 在同一条直线上,那么tan ∠ABA ′的值为.【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【解析】设AB=x ,根据平行线的性质列出比例式求出x 的值,根据正切的定义求出tan ∠BA ′C ,根据∠ABA ′=∠BA ′C 解答即可. 【解答】解:设AB=x ,则CD=x ,A ′C=x+2, ∵AD ∥BC , ∴=,即=,解得,x 1=﹣1,x 2=﹣﹣1(舍去),∵AB ∥CD ,∴∠ABA ′=∠BA ′C , tan ∠BA ′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.【考点】实数的运算;负整数指数幂.【解析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.解方程:﹣=1.【考点】解分式方程.【解析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【考点】解直角三角形;勾股定理.【解析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求yB关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【解析】(1)设设yB 关于x的函数解析式为yB=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设yA 关于x的解析式为yA=k1x.将(3,180)代入可求得yA关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得yA ,yB的值,最后求得yA与yB的差即可.【解答】解:(1)设yB 关于x的函数解析式为yB=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以yB 关于x的函数解析式为yB=90x﹣90(1≤x≤6).(2)设yA 关于x的解析式为yA=k1x.根据题意得:3k1=180.解得:k1=60.所以yA=60x.当x=5时,yA=60×5=300(千克);x=6时,yB=90×6﹣90=450(千克).450﹣300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【解析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【考点】二次函数综合题.【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x 2﹣4x ﹣5,得顶点D 的坐标为(2,﹣9). 连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5), 又S △ABC =×4×5=10,S △ACD =×4×4=8, ∴S 四边形ABCD =S △ABC +S △ACD =18.(3)过点C 作CH ⊥AB ,垂足为点H . ∵S △ABC =×AB ×CH=10,AB=5,∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3,∴tan ∠CBH==.∵在RT △BOE 中,∠BOE=90°,tan ∠BEO=,∵∠BEO=∠ABC , ∴,得EO=,∴点E 的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.如图所示,梯形ABCD 中,AB ∥DC ,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE=∠DAB .(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【考点】四边形综合题.【专题】综合题.【解析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.上海市2016年中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次 C.4次 D.4.5次5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=, =,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a= .8.函数y=的定义域是.9.方程=2的解是.10.如果a=,b=﹣3,那么代数式2a+b的值为.11.不等式组的解集是.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x 的值增大而减小,那么k的取值范围是.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.20.解方程:﹣=1.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线(千克)与时间x(时)的函数图象,根据图象提供的信息,段OG表示A种机器人的搬运量yA解答下列问题:关于x的函数解析式;(1)求yB(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.。
上海市2016年二模数学第24题汇编

2016年二模第24题汇编如图1,一条抛物线的顶点为E(-1,4),且过点A(-3,0),与y轴交于点C.点D是这条抛物线上一点,它的横坐标为m,且-3<m<-1,过点D作DK⊥x轴,垂足为K,DK 分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.(2016崇明)图1 备用图如图1,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于A(-1, 0)、C(3, 0)两点,与y轴交于点B,点P为OB上一点,过点B作射线AP的垂线,垂足为点D,射线BD 交x轴于点E.(1)求该抛物线的解析式;(2)联结BC,当点P的坐标为2(0,)3时,求△EBC的面积;(3)当点D落在抛物线的对称轴上时,求点P的坐标.(2016奉贤)图1 备用图如图1,在平面直角坐标系中,直线AB 过点A (3,0)、B (0,m )(m >0),tan ∠BAO =2. (1)求直线AB 的表达式; (2)反比例函数1k y x=的图像与直线AB 交于第一象限内的C 、D 两点(BD <BC ),当AD =2DB 时,求k 1的值;(3)设线段AB 的中点为E ,过点E 作x 轴的垂线,垂足为点M ,交反比例函数2k y x=的图像于点F ,联结OE 、OF ,当△OEF 与△OBE 相似时,请直接写出满足条件的所有k 2的值.(2016虹口)图1如图1,在直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1, 0)、B(4, 0)两点,与y 轴交于点C(0, 2).(1)求抛物线的表达式;(2)求证:∠CAO=∠BCO;(3)若点P是抛物线上的一点,且∠PCB+∠ACB=∠BCO,求直线CP的表达式.(2016黄浦)图1如图1,在平面直角坐标系中,经过点A(-1,0)的抛物线y=-x2+bx+3与y轴交于点C,点B与点A,点D与点C分别关于抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上的一个动点,过点E作EF平行x轴交直线AD于点F,且F 在E的右边.过点E作EG⊥AD于点G,设点E的横坐标为m,△EFG的周长为l,试用m 表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,如果以A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.(2016嘉定宝山)图1如图1,在平面直角坐标系中,抛物线y=ax2+bx-1经过点A(2,-1),它的对称轴与x 轴相交于点B.(1)求点B的坐标;(2)如果直线y=x+1与此抛物线的对称轴交于点C,与此抛物线在对称轴右侧交于点D,且∠BDC=∠ACB,求此抛物线的表达式.(2016静安青浦)如图1,已知在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于点A(-1,0)和点B,与y轴交于点C(0, 3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.(2016闵行)图1如图1,在平面直角坐标系中,二次函数213y x bx c =++的图像与y 轴交于点A ,与双曲线8y x=有一个公共点B ,它的横坐标为4.过点B 作直线l //x 轴,与二次函数图像交于另一点C ,直线AC 的截距是-6.(1)求二次函数的解析式; (2)求直线AC 的表达式;(3)平面内是否存在点D ,使A 、B 、C 、D 为顶点的四边形是等腰梯形,如果存在,求出点D 的坐标;如果不存在,请说明理由. (2016普陀)如图1,平面直角坐标系中,已知B(-1, 0),一次函数y=-x+5的图像与x轴、y轴分别交于A、C两点.二次函数y=-x2+bx+c的图像经过A、B两点.(1)求这个二次函数的解析式;(2)点P是该二次函数图像的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.(2016松江)图1如图1,直线y=mx+4与反比例函数kyx(k>0)的图像交于A、B两点,与x轴、y轴分别交于D、C,tan∠CDO=2,AC∶CD=1∶2.(1)求反比例函数的解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=-1上,点N在反比例函数的图像上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.(2016徐汇)如图1,已知在直角坐标系中,抛物线y=ax2-8ax+3(a<0)与y轴交于点A,顶点为D,其对称轴交x轴于点B,点P在抛物线上,且位于抛物线对称轴的右侧.(1)当AB=BD时,求抛物线的表达式;(2)在(1)的条件下,当DP//AB时,求点P的坐标;(3)点G在对称轴BD上,且∠AGB=12∠ABD,求△ABG的面积.(2016杨浦)图1 备用图如图1,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数6yx的图像与PN交于点C,与PM交于点D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB//CD;(2)在直角坐标平面内是否存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在,请说明理由.(2016闸北)如图1,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,已知点A 的坐标为(1,0),与y轴相交于点C(0,3),抛物线的顶点为P.(1)求这条抛物线的解析式,并写出顶点P的坐标;(2)如果点D在此抛物线上,DF⊥x轴于点F,DF与直线PB相交于点E,设点D的横坐标为t(t>3),且DE∶EF=2∶1,求点D的坐标;(3)在第(2)题的条件下,求证:∠DPE=∠BDE.(2016长宁金山)图1。
点直线与圆的位置关系

点直线与圆的位置关系一.选择题1. (2016·河南三门峡·二模)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则的长为( )A.πB.2πC.3πD.5π答案:B2. (2016·河南三门峡·一模)如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现( )A. 3次B. 4次C. 5次D. 6次答案:B3. (2016·湖南省岳阳市十二校联考·一模)如下图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.下面四个结论:①ED是⊙O的切线;②BC=2OE;③△BOD为等边三角形;④△EOD∽△CAD正确的是()A.①② B.②④ C.①②④D.①②③④【考点】切线的判定;相似三角形的判定与性质.【分析】如图,通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得ED是⊙O的切线;证得OE是△ABC的中位线,证得BC=2OE,由OE∥BC,证得∠AEO=∠C,通过三角形全等证得∠DEO=∠C,∠ODE=∠OAE=90°,从而∠ODE=∠ADC=90°,从而证得△EOD∽△CAD.【解答】证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;∵AB是直径,∴AD⊥BC,∴∠DAE+∠C=90°,∵AE=DE,∴∠DAE=∠ADE,∵∠ADE+∠EDC=90°,∴∠EDC=∠C,∴DE=EC,∴AE=EC,∵OA=OB,∴OE∥BC,BC=2OE,∴∠AEO=∠C,∵△AOE≌△DOE,∴∠DEO=∠C,∠ODE=∠OAE=90°,∴∠ODE=ADC=90°,∴△EOD∽△CAD.∴正确的①②④,故选C.【点评】本题考查了切线的判定,三角形全等的判定和性质,平行线的判定和性质以及三角形相似的判定等,熟练掌握性质定理是解题的关键.4. (2016·黑龙江大庆·一模)下列命题:①等腰三角形的角平分线平分对边;②对角线垂直且相等的四边形是正方形;③正六边形的边心距等于它的边长;④过圆外一点作圆的两条切线,其切线长相等.其中真命题有()个.A .1个B .2个C .3个D .4个答案:A5. (2016·黑龙江齐齐哈尔·一模)如图,⊙O 的直径AB=2,点D 在AB 的延长线上,DC 与⊙O 相切于点C ,连接AC. 若∠A=30°,则CD 长为 ( )A.13B.33C.233D.3 答案:D6. (2016·浙江杭州萧山区·模拟)在平面直角坐标系xOy 中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是( )A .相交B .相切C .相离D .以上三者都有可能【考点】直线与圆的位置关系;坐标与图形性质;特殊角的三角函数值.【分析】设直线经过的点为A ,若点A 在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA 的长和半径2比较大小再做选择.【解答】解:设直线经过的点为A ,∵点A 的坐标为(si n45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A 在圆内,∴直线和圆一定相交,故选A .【点评】本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A 和圆的位置关系是解题关键.7. (2016青岛一模)如图,在Rt△ABC 中,∠C=90°,∠B=30°,以点C 为圆心,4为半径的⊙C 与AB 相切于点D ,交CA 于E ,交CB 于F ,则图中阴影部分的面积为( ) B O AA.B.C.16﹣4πD.16﹣2π【考点】扇形面积的计算;切线的性质.【分析】利用切线的性质以及直角三角形的性质得出DC、BC的长,再利用勾股定理得出AC 的长,进而得出答案.【解答】解:连接CD,∵⊙C与AB相切于点D,∴∠CDB=90°,由题意可得:DC=4,则BC=2×4=8,设AC=x,则AB=2x,故x2+82=(2x)2,解得:x=,∴S△ABC=××8=,故图中阴影部分的面积为:﹣S扇形CEF=﹣=﹣4π.故选:A.8.(2016泰安一模)如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.B.C.πD.【考点】弧长的计算;切线的性质;特殊角的三角函数值.【专题】计算题;压轴题.【分析】连OB,OC,由AB切⊙O于点B,根据切线的性质得到OB⊥AB,在Rt△OBA中,OA=2,AB=3,利用三角函数求出∠BOA=60°,同时得到OB=OA=,又根据平行线的性质得到∠BOA=∠CBO=60°,于是有∠BOC=60°,最后根据弧长公式计算出劣弧BC的长.【解答】解:连OB,OC,如图,∵AB切⊙O于点B,∴OB⊥AB,在Rt△OBA中,OA=2,AB=3,sin∠BOA===,∴∠BOA=60°,∴OB=OA=,又∵弦BC∥OA,∴∠BOA=∠CBO=60°,∴△OBC为等边三角形,即∠BOC=60°,∴劣弧BC的弧长==.故选:A.9. (2016·重庆铜梁巴川·一模)如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°【分析】先根据切线的性质得到∠OAB=90°,再利用互余计算出∠AOB=52°,然后根据圆周角定理求解.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∵∠B=38°,∴∠AOB=90°﹣38°=52°,∴∠D=∠AOB=26°.故选D.10. (2016·山东枣庄·模拟) 如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3 B.2.4 C.2.5 D.2.6【考点】切线的性质;勾股定理的逆定理.【分析】首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.【解答】解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD===,∴⊙C的半径为,故选B.【点评】此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.11. (2016·江苏常熟·一模)⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【分析】圆心O到直线l的距离d=3,而⊙O的半径R=4.又因为d<R,则直线和圆相交.【解答】解:∵圆心O到直线l的距离d=3,⊙O的半径R=4,则d<R,∴直线和圆相交.故选A.【点评】考查直线与圆位置关系的判定.要掌握半径和圆心到直线的距离之间的数量关系.12. (2016·江苏省南京市钟爱中学·九年级下学期期初考试)已知⊙O是以坐标原点O为圆心,5为半径的圆,点M 的坐标为(﹣3,4),则点M 与⊙O 的位置关系为( )A .M 在⊙O 上B .M 在⊙O 内C .M 在⊙O 外D .M 在⊙O 右上方答案:A13. (2016·上海市闸北区·中考数学质量检测4月卷)若1O 与2O 相交于两点,且圆心距125O O cm ,则下列哪一选项中的长度可能为此两圆的半径?…………………( ▲ )(A )1cm 、2cm ; (B )2cm 、3cm ;(C )10cm 、 15cm ; (D )2cm 、 5cm . 答案:D 14. (2016·广东东莞·联考)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图象大致是( )A .B .C .D .【考点】动点问题的函数图象.【分析】根据已知得出S 与x 之间的函数关系式,进而得出函数是二次函数,当x=﹣=2时,S 取到最小值为: =0,即可得出图象.【解答】解:∵A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,∴AO=2,OP=x ,则AP=2﹣x ,∴tan60°==, 解得:AB=(2﹣x )=﹣x+2,∴S △ABP =×PA×AB=(2﹣x )••(﹣x+2)=x 2﹣2x+2, 故此函数为二次函数,∵a=>0,∴当x=﹣=2时,S取到最小值为: =0,根据图象得出只有D符合要求.故选:D.【点评】此题主要考查了动点函数的图象,根据已知得出S与x之间的函数解析式是解题关键.二.填空题1. (2016·吉林长春朝阳区·一模)如图,AB是⊙O的直径,BC是弦,连结OC,过点C的切线交BA的延长线于点D,若OC=CD=2,则的长是.(结果保留π)【考点】切线的性质;弧长的计算.【分析】根据切线的性质和OC=CD证得△OCD是等腰直角三角形,证得∠COB=135°,然后根据弧长公式求得即可.【解答】解:∵CD是⊙O的切线,∴OC⊥CD,∵OC=CD=2,∴△OCD是等腰直角三角形,∴∠COD=45°,∴∠COB=135°,∴的长==.故答案为.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,切线的性质的应用是解题的关键.2. (2016·河北石家庄·一模)如图,P是双曲线y=(x>0)的一个分支上的一点,以点P为圆心,1个单位长度为半径作⊙P,当⊙P与直线y=3相切时,点P的坐标为(1,4)或(2,2).【考点】反比例函数综合题.【分析】利用切线的性质以及反比例函数的性质即可得出,P点的坐标应该有两个求出即可;【解答】解:(1)设点P的坐标为(x,y),∵P是双曲线y=(x>0)的一个分支上的一点,∴xy=k=4,∵⊙P与直线y=3相切,∴p点纵坐标为:2,∴p点横坐标为:2,∵⊙P′与直线y=3相切,∴p点纵坐标为:4,∴p点横坐标为:1,∴x=1或2,P的坐标(1,4)或(2,2);故答案为:(1,4)或(2,2);【点评】此题主要考查了反比例函数的性质以及切线的性质和直线与圆的位置关系,利用数形结合解决问题是解题关键.3. (2016·黑龙江齐齐哈尔·一模)若圆锥的主视图为等腰直角三角形,底面半径为1,则圆锥侧面积为____________.答案:24. (2016·山东枣庄·模拟)小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.【考点】切线的性质;轨迹.【专题】应用题;压轴题.【分析】根据切线的性质得到OH=PH,根据锐角三角函数求出PH的长,得到答案.【解答】解:如图,当圆心O移动到点P的位置时,光盘在直尺边上沿着CD向右滚动到再次与AB相切,切点为Q,∵ON⊥AB,PQ⊥AB,∴ON∥PQ,∵ON=PQ,∴OH=PH,在Rt△PHQ中,∠P=∠A=30°,PQ=1,∴PH=,则OP=,故答案为:.5. (2016·上海浦东·模拟)已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为 1 或5【点评】本题考查的是直线与圆相切的知识,掌握圆的切线垂直于过切点的半径是解题的关键.6. (2016·江苏丹阳市丹北片·一模)如图,已知⊙P的半径为1,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为.答案:()1,2±,(0,-1)7. (2016·江苏丹阳市丹北片·一模)如图是一块学生用直角三角板,其中∠A′=30°,三角板的边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).将直径为4cm的⊙O移向三角板,三角板的内ABC的斜边AB恰好等于⊙O的直径,它的外△A′B′C′的直角边A′C′ 恰好与⊙O相切(如图2),则边B′C′的长为cm.答案:3+38. (2016·江苏省南京市钟爱中学·九年级下学期期初考试)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=(填度数).答案:130°9. (2016·上海市闸北区·中考数学质量检测4月卷)在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆C不重合的点,给出如下定义:若点'P为射线..CP上一点,满足2r'CPCP=⋅,则称点'P为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点'P的示意图.写出点M (12,0)关于以原点O为圆心,1为半径的⊙O的反演点'M的坐标▲ .答案:(2,0);三.解答题1. (2016·河南洛阳·一模)(9分)如图8,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作☉A,交AB于点D,交CA的延长线于点E,过点E作A.B的平行线EF交OA 于点F,连接AF,BF,DF.(l)求证:△ABC≌△ABF;ABCA'B'OO宽宽宽C'B'A'CBA图1 图2xyP'CPO(2)填空:①当∠CAB= °时,四边形ADFE 为菱形;②在①的条件下,BC= cm 时,四边形ADFE 的面积是63cm 2.(1)证明:∵EF ∥AB , ∴∠E=∠CAB ,∠EFA=∠FAB , ∵∠E=∠EFA ,∴∠FAB=∠CAB ,…………………………………………………………………………..3 在△ABC 和△ABF 中,AF AC FAB CAB AB AB=⎧⎪∠=∠⎨⎪=⎩ ∴△ABC ≌△ABF(SAS);.........................................5 (2)①60°,②6. (9)2. (2016·辽宁丹东七中·一模)(10分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠. (1)求证:AD 是半圆O 的切线; (2)若2=BC ,2=CE ,求AD 的长(1)证明:∵AB 为半圆O 的直径, ∴ 90=∠BCA又∵BC ∥OD , ∴AC OE ⊥, ∴090=∠+∠DAE D .∵BAC D ∠=∠, ∴90BAC DAE ∠+∠=︒. ∴半径OA⊥AD 于点A ,∴AD 是半圆O 的切线.(2)解:∵在⊙O 中,AC OE ⊥于E , ∴222==CE AC .在ABC Rt ∆中,322)22(2222=+=+=BC AC AB ,3OA =∵D BAC ∠=∠,OAD C ∠=∠O B AC E DOBACE∴DOA ∆∽ABC ∆: ∴BC OAAC AD =, ∴2322=AD ∴6=AD3. (2016·湖南湘潭·一模)(本小题10分)如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠. (1)求证:PC 是O ⊙的切线; (2)求证:12BC AB =; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若4AB =,求MN ·MC 的值.解:(1)∵ACO A OC OA ∠=∠=,, 又∵PCB COB A COB ∠=∠∠=∠2,2A ACO PCB ∴∠=∠=∠.又∵AB 是O ⊙的直径,90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥,而OC 是O ⊙的半径,∴PC 是O ⊙的切线.(2)∵P A PC AC ∠=∠∴=,,A ACO PCB P ∴∠=∠=∠=∠, 又∵,ACO A COB ∠+∠=∠PCB P CBO ∠+∠=∠,12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. (3)连接MA MB ,,∵点M 是弧AB 的中点,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,MBN MCB ∴△∽△,BM MN MC BM∴=,∴MN ·MC =BM 2, 又∵AB 是O ⊙的直径,AM=BM ,90AMB AM BM ∴∠==°,.∵22,4=∴=BM AB ,∴MN ·MC =BM 2=8O N B P CAM O N BPC AM4. (2016·河大附中·一模)(本题满分9分)如图(1),线段AB=4,以线段AB 为直径画☉O ,C 为☉O 上的动点,连接OC ,过点A 作☉O 的切线与BC 的延长线交于点D ,E 为AD 的中点,连接CE . (1)求证:CE 是☉O 的切线;第1题(2)①当CE= 时,四边形AOCE 为正方形? ②当CE= 时,△CDE 为等边三角形时?解:(1)连结AC 、OE ∵AB 为直径 ∴∠ACB=∠ACD=90° ∵E 为AD 中点 ∴EA=EC ∵OC=OA,OE=OC ∴△OCE ≌△OAE ∴∠OCE=∠OAE=90° ∴CE 是☉O 的切线(2)① 2 ② 3325. (2016·黑龙江大庆·一模)(本题9分) 如图,直径为10的半圆O ,tan∠DBC =43,∠BCD 的平分线交⊙O 于F ,E 为CF 延长线上一点,且∠EBF =∠GBF .(1)求证:BE 为⊙O 切线; (2)求证:CE FG BG ⋅=2; (3)求OG 的值.GFDB答案:证明:(1)由同弧所对的圆周角相等得∠FBD=∠DCF, 又∵CF 平分∠BCD,∴∠BCF=∠DCF, 已知∠EBF=∠GBF,∴∠EBF=∠∠BCF,∵BC 为⊙O 直径,∴∠BFC=90°,∴∠FBC+∠FCB=90°,∴∠FBC+∠EBF=90°,∴BE⊥BC,∴BE 为⊙O 切线; 3分(2)证明:由(1)知∠BFC=∠EBC=90°,∠EBF=∠ECB,∴△BEF∽△CEB,∴CE EF BE ⋅=2,又∠EBF=∠GBF,BF⊥EG,∴△BEF≌△BGF,∴BE=BG,EF=FG,∴CEFGBG⋅=2;6分(3)如图,过G作GH⊥BC于H,由已知CF平分∠BCD得GH=GD,又由tan∠DBC=43得sin∠DBC=53,∵BC=10,∴BD=8,BG=BD-GD=8- GD,∴538=-=GDGDBGGH,∴GD=GH=3,BG=5,BH=4,∵BC=10,∴OH=OB-BH=1,在Rt△OGH中,由勾股定理得OG=10.9分GFDB6. (2016·湖北襄阳·一模)(本题满分7分)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE︰EA=1︰2,PA=6,求⊙O的半径;答案:(1)连结OC. ∵PC2=PE·PO,∴PCPOPEPC=.∠P=∠P.∴△PCE∽△POC,…………………………2分∴∠PEC=∠PCO.又∵CD⊥AB,∴∠PEC=90°,∴∠PCO=90°.…………………………3分∴PC是⊙O的切线. …………………………4分(2)设OE=x.∵OE︰EA=1︰2,EA=x2,OA=OC=x3,∴OP=x3+6.又∵CE是高,∴Rt△OCE∽Rt△OPC,OCOPOEOC=. ………………5分∴OC2=OE·OP. 即).63()3(2+=xxx………………………6分∴11=x,02=x(不合题意,舍去).故OA=3.…………………………7分7. (2016·浙江丽水·模拟)(本题8分)已知:如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA 交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD 为⊙O 的切线; (2)若BC=10,AB=16,求OF 的长.解:(1)∵OC ⊥AB , AB ∥CD ∴OC ⊥DC .∴∠DCF=Rt ∠. ∴CD 是⊙O 的切线 (2)连结B0.设OB=x∵直径 AB =16 OC ⊥AB∴HA =B H=8 .∵BC=10 ∴CH=6. ∴OH=x-6.由勾股定理得222OB BH OH =+2228)6(x x =+-解得325=x ∵CB ∥AE ∴∠CBA=∠BAE ,∠HCB=∠HFA 又∵AH=BH △CHB ≌△FHA ∴CF=2CH=12 ∴OF=CF-OC=12-311325=.8. (2016·浙江金华东区·4月诊断检测(本题满分10分)如图,Rt △ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 边于点D ,过点D 作⊙O 的切线交BC 于E ,连结DE 交OC 于点F ,OF =CF ,连结OD 、OE . (1)求证:△ODE ≌△OBE ;(2)求证:四边形ODCE 为平行四边形; (3)求tan ∠ACO 的值.D D x ( h)y ( km )0 9 18360C答案:(1)略(4分);(2)略(4分);(3)31(2分) 9. (2016泰安一模)如图,BC 是⊙O 的直径,A 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线于点D ,取CD 的中点E ,AE 的延长线与BC 的延长线交于点P . (1)求证:AP 是⊙O 的切线; (2)若OC=CP ,AB=3,求CD 的长.【考点】切线的判定与性质.【分析】(1)先由圆周角定理得出∠BAC=90°,再由斜边上的中线性质得出AE=CD=CE=DE ,由CD 是切线得出CD ⊥OC ,即可得出OA ⊥AP ,周长结论;(2)先证明△AOC 是等边三角形,得出∠ACO=60°,再在Rt △BAC 和Rt △ACD 中,运用锐角三角函数即可得出结果.【解答】(1)证明:连结AO ,AC ;如图所示: ∵BC 是⊙O 的直径, ∴∠BAC=90°, ∴∠CAD=90°, ∵E 是CD 的中点, ∴AE=CD=CE=DE , ∴∠ECA=∠EAC , ∵OA=OC ,∴∠OAC=∠OCA , ∵CD 是⊙O 的切线, ∴CD ⊥OC ,∴∠ECA+∠OCA=90°, ∴∠EAC+∠OAC=90°, ∴OA ⊥AP ,∵A 是⊙O 上一点, ∴AP 是⊙O 的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==;∴∠P=30°,∴∠AOP=60°,∵OC=OA,∴△AOC是等边三角形,∴∠ACO=60°,在Rt△BAC中,∵∠BAC=90°,AB=3,∠ACO=60°,∴AC===3,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===2.10. (2016枣庄41中一模)如图,在平面直角坐标系xOy中,⊙P的圆心P为(﹣3,a),⊙P与y轴相切于点C.直线y=﹣x被⊙P截得的线段AB长为4,则过点P的双曲线的解析式为y=﹣.【考点】切线的性质;待定系数法求反比例函数解析式;垂径定理.【专题】计算题.【分析】作PH⊥x轴于H,交直线y=﹣x于E,作PD⊥AB于D,连结PC、PA,如图,根据切线的性质得PC⊥y轴,则PC=PA=OH=3,再根据垂径定理,由PD⊥AB得AD=BD=AB=2,则可根据勾股定理计算出PD=1,接着利用直线y=﹣x为第二、四象限的角平分线可判断△HOB 和△PDE都为等腰直角三角形,所以EH=OH=3,PE=PD=,则P(﹣3, +3),然后利用待定系数法求过点P的双曲线的解析式.【解答】解:作PH ⊥x 轴于H ,交直线y=﹣x 于E ,作PD ⊥AB 于D ,连结PC 、PA ,如图, ∵⊙P 与y 轴相切于点C , ∴PC ⊥y 轴, 而P (﹣3,a ),∴PC=3,即⊙P 的半径为3, ∴PA=OH=3, ∵PD ⊥AB , ∴AD=BD=AB=×4=2,在Rt △PAD 中,PD===1,∵直线y=﹣x 为第二、四象限的角平分线, ∴∠HOB=45°,易得△HOB 和△PDE 都为等腰直角三角形, ∴EH=OH=3,PE=PD=,∴PH=PE+EH=+3, ∴P (﹣3,+3),设过点P 的双曲线的解析式为y=, 把P (﹣3,+3)代入得k=﹣3(+3)=﹣3﹣9,∴过点P 的双曲线的解析式为y=﹣.故答案为y=﹣.11. (2016·天津北辰区·一摸)(本小题10分)已知四边形ABCD 是平行四边形,且以AB 为直径的⊙O 经过点D . (Ⅰ)如图(1),若45BAD ∠=︒,求证:CD 与⊙O 相切; (Ⅱ)如图(2),若6AD =,10AB =,⊙O 交CD 边于点F ,交CB 边延长线于点E , 求BE ,DF 的长;D B F A O D B A O(Ⅰ)证明:连接OD . ∵∠A =45°, ∴∠BOD =90°.∵ 四边形ABCD 是平行四边形, ∴ AB ∥CD . ∴∠CDO +∠BOD =180°. ∴∠CDO =∠BOD =90°.∴ CD 与⊙O 相切. …5分 (Ⅱ)连接DE ,EF ,BD . ∵ AB 是⊙O 直径, ∴ ∠ADB =90°.∵ AD ∥BC ,∴ ∠ADB =∠EBD =90°.∴ DE 是⊙O 直径. ∴ DE=AB=CD=10. ∴ BE=BC=AD =6. …7分在Rt△DEF 和Rt△CEF 中,222EF DE DF =-,222EF CE CF =- ∴ 2222DE DF CE CF -=-. 设 DF x =,则10CF x =-.∴ 22221012(10)x x -=--. 解得145x =.即145DF =. 12. (2016·天津南开区·二模)如图,已知AB 为⊙O 的直径,过⊙O 上的点C 的切线交AB 的延长线于点E ,AD ⊥EC 于点D 且交⊙O 于点F ,连接BC ,CF ,AC .(1)求证:BC=CF;(2)若AD=6,DE=8,求BE 的长;(3)求证:AF+2DF=AB .考点:切线的性质与判定 答案:见解析 试题解析:(1)证明:如图,连接OC ,∵ED 切⊙O 于点C ,∴CO ⊥ED , ∵AD ⊥EC ,∴CO ∥AD ,∴∠OCA=∠C AD ,∵∠OCA=∠OAC ,∴∠OAC=∠CAD ,∴=,∴BC=CF ;(2)解:图(1) D B CA O DBC F A O 图(2)在Rt△ADE中,∵AD=6,DE=8,根据勾股定理得AE=10,∵CO∥AD,∴△EOC∽△EAD,∴=,设⊙O的半径为r,∴OE=10﹣r,∴=,∴r=,∴BE=10﹣2r=;(3)证明:过C作CG⊥AB于G,∵∠OAC=∠CAD,AD⊥EC,∴CG=CD,在Rt△AGC和Rt△ADC中,∵,∴Rt△AGC≌Rt△ADC(HL),∴AG=AD,在Rt△CGB和Rt△CDF中,∵,∴Rt△CGB≌Rt△CDF(HL),∴GB=DF,∵AG+GB=AB,∴AD+DF=AB,AF+DF+DF=AB,∴AF+2DF=AB.13.(2016·天津市和平区·一模)已知,AB为⊙O的直径,C,D为⊙O上两点,过点D 的直线EF与⊙O相切,分别交BA,BC的延长线于点E,F,BF⊥EF(I)如图①,若∠ABC=50°,求∠DBC的大小;(Ⅱ)如图②,若BC=2,AB=4,求DE的长.【考点】切线的性质.【分析】(1)如图1,连接OD,BD,由EF与⊙O相切,得到OD⊥EF,由于BF⊥EF,得到OD∥BF,得到∠AOD=∠B=50°,由外角的性质得到结果;(2)如图2,连接AC,OD,根据AB为⊙O的直径,得出∠ACB=90°,由直角三角形的性质得到∠CAB=30°,于是AC=AB•cos30°=4×=2,AH=AO•cos30°=2×=,根据三角形的中位线的性质解得结果.【解答】解(1)如图1,连接OD,BD,∵EF与⊙O相切,∴OD⊥EF,∵BF⊥EF,∴OD∥BF,∴∠AOD=∠B=50°,∵OD=OB,∴∠OBD=∠ODB=∠AOD=25°;(2)如图2,连接AC,OD,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,AB=4,∴∠CAB=30°,∴AC=AB•cos30°=4×=2,∵∠ODF=∠F=∠HCO=90°,∴∠DHC=90°,∴AH=AO•cos30°=2×=,∵∠HAO=30°,∴OH=OA=OD,∵AC∥EF,∴DE=2AH=2.【点评】本题考查了切线的性质,垂径定理,锐角三角函数,平行线的性质和判定,辅助线的作法是解题的关键.14. (2016·天津五区县·一模)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC ∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.15. (2016·新疆乌鲁木齐九十八中·一模)如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.【考点】切线的判定;圆周角定理;解直角三角形.【分析】(1)首先连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线;(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长.【解答】(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥AP,∴AP是⊙O的切线,(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC•tan30°=3×=,∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°=30°,∴∠P=∠PAD,∴PD=AD=.【点评】此题考查了切线的判定、圆周角定理、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.16. (2016·云南省曲靖市罗平县·二模)如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=,AD=3,求直径AB的长.【考点】切线的判定.【专题】证明题.【分析】(1)由AB为⊙O的直径,可得∠D=90°,继而可得∠ABD+∠A=90°,又由∠DBC=∠A,即可得∠DBC+∠ABD=90°,则可证得BC是⊙O的切线;(2)根据点O是AB的中点,点E时BD的中点可知OE是△ABD的中位线,故AD∥OE,则∠A=∠BOC,再由(1)∠D=∠OBC=90°,故∠C=∠ABD,由tanC=可知tan∠ABD==,由此可得出结论.【解答】(1)证明:∵AB为⊙O的直径,∴∠D=90°,∴∠ABD+∠A=90°,∵∠DBC=∠A,∴∠DBC+∠ABD=90°,即AB⊥BC,∴BC是⊙O的切线;(2)∵点O是AB的中点,点E时BD的中点,∴OE是△ABD的中位线,∴AD∥OE,∴∠A=∠BOC.、∵由(1)∠D=∠OBC=90°,∴∠C=∠ABD,∵tanC=,∴tan∠ABD===,解得BD=6,∴AB===3.【点评】本题考查的是切线的判定,熟知经过半径的外端且垂直于这条半径的直线是圆的切线是解答此题的关键.17. (2016·云南省·二模)如图,将圆形纸片沿弦AB折叠后,圆弧恰好能经过圆心O,⊙O 的切线BC与AO延长线交于点C.(1)若⊙O半径为6cm,用扇形OAB围成一个圆锥的侧面,求这个圆锥的底面圆半径.(2)求证:AB=BC.【考点】切线的性质;圆锥的计算;翻折变换(折叠问题).(1)过O作OD⊥AB于E,交⊙O于D,根据题意OE=O A,得出∠OAE=30°,∠AOE=60°,【分析】从而求得∠AOB=2∠AOE=120°,根据弧长公式求得弧AB的长,然后根据圆锥的底面周长等于弧长得出2πr=4π,即可求得这个圆锥的底面圆半径;(2)连接OB,根据切线的性质得出∠OBC=90°,根据三角形外角的性质得出∠C=30°,从而得出∠BAC=∠C,根据等角对等边即可证得结论.【解答】解:(1)设圆锥的底面圆半径为r,过O作OD⊥AB于E,交⊙O于D,连接OB,有折叠可得 OE=OD,∵OD=OA,∴OE=OA,∴在Rt△AOE中∠OAE=30°,则∠AOE=60°,∵OD⊥AB,∴∠AOB=2∠AOE=120°,∴弧AB的长为:=4π,∴2πr=4π,∴r=2;(2)∵∠AOB=120°,∴∠BOC=60°,∵BC是⊙O的切线,∴∠CBO=90°∴∠C=30°,∴∠OAE=∠C,∴AB=BC.【点评】本题考查了折叠的性质,垂径定理,弧长的计算,切线的性质以及等腰三角形的判定和性质,找出辅助线构建直角三角形是解题的关键.18. (2016·山东枣庄·模拟)如图,等腰三角形ABC中,AC=BC=10,AB=12,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求cos∠E的值.【考点】切线的判定;勾股定理.【专题】证明题.【分析】(1)求证直线EF是⊙O的切线,只要连接OD证明OD⊥EF即可;(2)根据∠E=∠CBG,可以把求cos∠E的值得问题转化为求cos∠CBG,进而转化为求Rt△BCG 中,两边的比的问题.【解答】(1)证明:如图,方法1:连接OD、CD.∵BC是直径,∴CD⊥AB.∵AC=BC.∴D是AB的中点.∵O为CB的中点,∴OD∥AC.∵DF⊥AC,∴OD⊥EF.∴EF是O的切线.方法2:∵AC=BC,∴∠A=∠ABC,∵OB=OD,∴∠DBO=∠BDO,∵∠A+∠ADF=90°∴∠EDB+∠BDO=∠A+∠ADF=90°.即∠EDO=90°,∴OD⊥ED∴EF是O的切线.(2)解:连BG.∵BC是直径,∴∠BDC=90°.∴CD==8.∵AB•CD=2S△ABC=AC•BG,∴BG==.∴CG==.∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴cos∠E=cos∠CBG==.【点评】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.19. (2016·陕西师大附中·模拟) (8分)如图,AB是⊙O的直径,C是弧AB的中点,⊙O 的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交○O 于点H,连接BH。
2016上海各区初中数学二模试题及解答

十分遗憾最低的同学仍然只得了 56 了。这说明本次考试分数的众数是(
)
A、82;
B、91;
C、11;
D、56;
5、如果点 K、L、M、N 分别是四边形 ABCD 的四条边 AB、BC、CD、DA 的中点,且四边形 KLMN
是菱形,那么下列选项正确的是(
)
A、AB⊥BC;
B、AC⊥BD;
C、AB=BC;
6、如图 1,梯形 ABCD 中,AD∥BC,AB=DC,∠DBC=45°,
D、AC=BD;
AD
点 E 在 BC 上,点 F 在 AB 上,将梯形 ABCD 沿直线 EF 翻折,
F
使得点 B 与点 D 重合。如果 AD 1 ,那么 AF 的值是(
)
BC 4
BF
A、 1 ; 2
B、 3 ; 5
C、 2 ; 3
三、解答题(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)
1
计算: 273 (
3
1)2
1 2
1
2 3 1
M C
N
B
A
(第 18 题图)
20.(本题满分 10 分)
解方程组:
x 2y 1
x2
3xy
2y2
0
21.(本题满分 10 分,其中每小题各 5 分)
如图,在平面直角坐标系 xOy 中,一次函数 y kx b (k 0) 的图像经过 A(0, 2) , B(1, 0)
BF 相交于 H,BF 与 AD 的延长线相交于 G.求证:
(1)CD=BH; (2)AB 是 AG 和 HE 的比例中项.
A
D
G
HF
B
上海闸北区2016年中考数学二模试卷含答案解析

2016年上海市闸北区中考数学二模试卷2446分)一.选择题:(本大题共分,满分题,每题1 ).下列代数式中,属于分式的是(3b4a C DA3 B.﹣..﹣.2).的值为(DB2 C2 A2 .不存在.﹣.土.3).下列方程中,没有实数根的方程是(22222=0xx2x1=0 Cx2=0 xAx1=0 2xBxD﹣+﹣+.﹣..+.﹣+4).方程组的解是(D C A B....CDABDA=ABDACD5)∠,则不一定能使△≌△.如图,已知∠的条件是(CADBAD=AB=AC ABD=DC BCB=C D∠.∠.∠.∠.=5cmO6OOO,则下列哪一选项中的长度可能为此两与⊙.若⊙相交于两点,且圆心距2211)圆的半径?(5cm 2cm15cm DB2cm3cm C10cm1cmA2cm 、...、、、.48412分)分,满分题,每题二.填空题:(本大题共25 =aa7.÷.计算:2 3x6x=8.﹣.分解因式:9..不等式组的解集是y=10..函数的定义域是2 y=x11x=2xb..二次函数的对称轴是直线﹣+m412个白球,它们除颜色外都相同.经过大量实验,从中任取一个球个黑球,.袋子里有m.,则恰好是黑球的概率是的值是134********”“,项目中,跳绳个数如下:,.某中学九()班个同学在体育测试分钟跳绳148152118.,,.这组数据中,中位数是第1页(共17页)14201310020142015年连续增长,且这两年的增长率年的年利润为年和.某企业万元,2015125x,那么可列出的方相同,据统计万元.若设这个相同的增长率为年的年利润为.程是15ABDEACBC=90CBDEG°,,△是等腰直角三角形,且∠的延长线交于点.如图,,∥CGE= 度.则∠=2ABCDACADDC=116中,点在,若.如图,在△边上且,:,那么:.表示)(用向量、CPC17xOyr不重合的点,给出如下定是与圆心.在平面直角坐标系中,⊙,点的半径为2CPCPCPP=rPCP′?′′的反演点.如图,则称点关于⊙为射线为点义:若点上一点,满足1OCPPM 0′为圆心,,的示意图.写出点及其关于⊙的反演点)关于以原点为点(MO′.为半径的⊙的反演点的坐标DB18ABCABCα重合,与边的等腰△绕着点上的点顺时针旋转,底角为.如图,使得点=CEADtanAB=5CE=ECα.,、.已知,则点与点重合,联结787分)(本大题共题,满分三.解答题:1﹣19cos301°.)﹣(.计算:|+|﹣20..解方程:第2页(共17页)21ABCABC=45ADBCDDEAB°⊥.已知:如图,在△中,∠边上的中线,过点是,作DB=3EsinDAB=.求:于点∠,且,AB1的长;()CAB2的余切值.()∠yBBA22A、地,同时乙步行从.甲骑自行车从地,如图所示,地出发前往地出发前往甲yxhyyAykm 与直线((分别表示甲、乙离开)之间的关系,且直线地)与已用时间甲乙M.相交于点乙xx1y;的函数关系式(不必注明自变量)求的取值范围)(与甲AB2两地之间距离.(、)求ADBCBC=2ADEBCB=9023ABCD°的中点.∥,点.如图,直角梯形中,∠,为边,1AECD 为平行四边形;()求证:四边形CADEAF=EFGAFACEF2CDFAC求交于点∠,、,(与)在且∠边上取一点,联结.、设AECADF;证:△∽△FGEG32ECA=45°的比值.)的条件下,当∠时.求:()在(:OM=6OMPNOMNxy24,在原点,轴和、轴的正半轴上,.如图,矩形的顶点分别在AxCPNON=3y=CPMDCA,⊥交于,过点,反比例函数的图象与轴于点交于,与作DDByGBDBAC.作⊥与轴于点,交于点过点1ABCD;)求证:(∥BCE2BEDC为腰的梯形是等、为顶点,()在直角坐标平面内是否若存在点,使以、、E的坐标;若不存在请说明理由.腰梯形?若存在,求点第3页(共17页)BCABDBC=425ABCAB=AC=6B相交于点.如图,在△相交于点中,与边,,⊙,与边BxE.,设⊙的半径为x1BAC的值;)当⊙相切时,求(与直线yxy2DC的函数解析式,并写出定义域;关于的长为()设,求PEBP3AC公共弦的长.,求⊙为直径的⊙经过点与⊙()若以第4页(共17页)2016年上海市闸北区中考数学二模试卷参考答案与试题解析2464分)题,每题(本大题共分,满分一.选择题:1 ).下列代数式中,属于分式的是(3bC D4aA3 B .﹣..﹣.分式的定义.【考点】如果不含有字如果含有字母则是分式,【分析】判断分式的依据是看分母中是否含有字母,母则不是分式.AA3错误;【解答】解:是整式,故、abBB错误;﹣是整式,故、CC正确;、是分式不是整式,故3 D4aDb错误;、﹣是整式,故C.故选:2).的值为(BD2 C2 A2 .不存在..土.﹣算术平方根.【考点】直接根据算术平方根的定义求解.【分析】2=24.,所以解:因为的算术平方根是【解答】A.故选3).下列方程中,没有实数根的方程是(22222=0 xxx2=0 DAx2x1=0 Bx2x1=0 Cx﹣﹣.+.+.+﹣+﹣.根的判别式.【考点】0 那么一元二次方程没有实数根.分别求出每一个方程中判别式△的值,【分析】如果△<,=4A4=80,∴方程有两个不相等的两个实数根;+解:、∵△>【解答】=44=0B,∴方程有两个相等的两个实数根;﹣、∵△0=1C8=7,∴方程没有实数根;、∵△<﹣﹣D=18=90,∴方程有两个不相等的两个实数根;+、∵△>C.故选4).方程组的解是(C ABD....解二元一次方程组.【考点】第5页(共17页)yx、本题解法有多种.可用加减消元法或代入消元法解方程组,解得【分析】DCAB 四个选项的数值代入原方程检验,能使每个方程的左右两边的值;也可以将、、、yx的值即是方程的解.相等的、24xy=13,得﹣【解答】解:将方程组中乘以2y=268x①,﹣2y=73x①相加,得与方程将方程+ x=3.y=13x=34x中,得代入再将﹣1y=.﹣B.故选ACDCDAABD5BDA=)≌△.如图,已知∠∠的条件是(,则不一定能使△CAD BAD=CB=C DABD=DC BAB=AC ∠.∠.∠.∠.全等三角形的判定.【考点】SSSAAS SASASA,根据以上定理逐个判断即可.,【分析】全等三角形的判定定理有,,SASAD=ADBD=DCBDA=CDAA,,∠,、∠,符合全等三角形的判定定理【解答】解:ACDABD,故本选项错误;≌△能推出△ABDAD=ADAB=ACBDA=CDAB,不符合全等三角形的判定定理,不能推出△,∠,、∠ACD,故本选项正确;≌△ABDCDAAD=ADAASCB=CBDA=能推出△,,、∠∠∠,,∠符合全等三角形的判定定理ACD,故本选项错误;≌△ASABAD=CADCDADBDA=AD=AD,能推出∠,∠、∠,符合全等三角形的判定定理∠,ABDACD,故本选项错误;≌△△B.故选=5cmOO6OO,则下列哪一选项中的长度可能为此两与⊙.若⊙相交于两点,且圆心距2112)圆的半径?(5cm 2cm10cm15cm D2cmA1cm2cm B3cm C、、.、、...圆与圆的位置关系.【考点】=5cmOOOO,根据圆和圆的位置与两圆与⊙【分析】由各选项中⊙的半径以及圆心距2121 OO的位置关系即可求解.的圆心距、半径的数量之间的关系,得出⊙与⊙21 rd521RA,∴两圆外离,故本选项错误;>>+【解答】解:、∵+,∴rB5=23d=R,∴两圆外切,故本选项错误;++、∵,∴10d=RrC5=15,∴两圆内切,故本选项错误;,∴、∵﹣﹣RrdR52D552r,∴两圆相交,故本选项正确;<+<、∵﹣<<+,∴﹣D.故选第6页(共17页)48412分)二.填空题:(本大题共分,满分题,每题523 a7a=a..计算:÷同底数幂的除法.【考点】根据同底数幂相除,底数不变指数相减计算即可.【分析】52523﹣=a=aaa.÷【解答】解:26x=3xx83x2 ..分解因式:()﹣﹣-运用公式法.因式分解【考点】3x3x ,进行分解.【分析】首先确定公因式为,然后提取公因式26x=3xx23x .【解答】解:()﹣﹣3xx2 .()故答案为:﹣391x..不等式组的解集是<<解一元一次不等式组.【考点】大小小大中间找、同小取小、分别求出每一个不等式的解集,根据口诀:同大取大、【分析】大大小小无解了确定不等式组的解集.112xx,,得:+>【解答】解:解不等式>36x2x,,得:<<解不等式31x,<∴不等式组的解集为:<31x.<故答案为:<110y=x..函数≤的定义域是函数自变量的取值范围;二次根式有意义的条件.【考点】根据二次根式的意函数关系中主要有二次根式.【分析】本题主要考查自变量的取值范围,义,被开方数是非负数.01x,【解答】解:根据题意得:≥﹣x1.解得≤2 x=111y=xb2x..二次函数的对称轴是直线﹣+二次函数的性质.【考点】将二次函数配方成顶点式即可确定对称轴方程.【分析】2b y=x2x+﹣【解答】解:∵21 b2x1=x﹣﹣++211b=x﹣)(++ x=1.故对称轴是直线1.故答案为:m412个白球,它们除颜色外都相同.经过大量实验,从中任取一个球个黑球,.袋子里有4m.,则恰好是黑球的概率是的值是第7页(共17页)概率公式.【考点】m 的值即可.【分析】根据概率公式列出从中任取一个球恰好是黑球的概率公式,求出m4,个黑球,【解答】解:袋子里有个白球,若从中任取一个球恰好是黑球的概率是根据题意可得:=,m=4.解得4.故答案为:134********”“,分钟跳绳)班,个同学在体育测试.某中学九(项目中,跳绳个数如下:134152148118.,,.这组数据中,中位数是中位数.【考点】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中【分析】间哪个数就是中位数.148152118126134,,,,【解答】解:按照从小到大的顺序排列为:,134 .中位数为:134;故答案为:20152014142013100年连续增长,且这两年的增长率万元,年的年利润为年和.某企业x1252015,那么可列出的方万元.若设这个相同的增长率为相同,据统计年的年利润为2 1001x=125.程是)( +由实际问题抽象出一元二次方程.【考点】x=120141001)万元,增长前的量×((+增长率)【分析】一般用增长后的量,+年年利润是2014x2015年的年利润,即可列出方程.在,就是年的基础上再增长2x1001x20141001x2015)(+【解答】解:设增长率为,根据题意)万元,年为+(年为万元.2 =1251001x;()+则2 1001x=125.+故答案为:)(GDEABACBC=90CBDE15°,是等腰直角三角形,且∠的延长线交于点.如图,∥,,△CGE=135度.则∠平行线的性质;等腰直角三角形.【考点】DGBABC的度数,再由平行线的性质求出∠【分析】先根据等腰直角三角形的性质求出∠的度数,根据补角的定义即可得出结论.C=90ACB°,【解答】解:∵△是等腰直角三角形,且∠ABC=45°.∴∠DEAB,∥∵DGB=ABC=45°,∠∴∠CGE=180=13545°°°.∴∠﹣第8页(共17页)135.故答案为:=ADDC=1216ABCDAC::在,边上且.如图,在△,若中,点,那么22.表示)+ (用向量、*平面向量.【考点】DAC边上,,直接利用三角形法则求解,即可求得,又由点在【分析】由DC=12AD,即可求得答案.且::,【解答】解:∵,==,+∴+ 2DACADDC=1,边上且:∵点:在2=2=2.∴+22.故答案为:+17xOyCrPC不重合的点,给出如下定.在平面直角坐标系,点中,⊙是与圆心的半径为2PP=rCCPPCPCP′?′′的反演点.如图,则称点上一点,满足义:若点为点为射线关于⊙PCPM 0O1′为圆心,为点的示意图.写出点及其关于⊙)关于以原点的反演点(,OM20 ′.(为半径的⊙)的反演点,的坐标相似三角形的判定与性质;坐标与图形性质;点与圆的位置关系.【考点】2PP=rCPCPCPCP′?′′的反演点列式【分析】根据点为点为射线,点上一点,满足关于⊙计算即可.Ma0 ′,【解答】解:设点,的坐标为()2 a=1 ,由题意得,a=2 ,解得,M20 ′,的坐标为()则设点,20 .(),故答案为:18ABCBABCDα重合,上的点顺时针旋转,使得点底角为.如图,与边的等腰△绕着点CEADCEtan=AB=5CE= α.,则点与点重合,联结、.已知,第9页(共17页)旋转的性质;等腰三角形的性质.【考点】BH=CHBCFBCHEFAH,先利用三角形函数的定义和于于⊥,,则【分析】如图,作⊥BE=BC=8BC=2BH=8CBE=BH=4α,接勾股定理可计算出,再根据旋转的性质得∠,则,CEFRtBEFEFBFRt中利用勾股定理中利用三角函数的定义可计算出然后在和△着在,△CE.计算BH=CHEFBCFAHBCH,⊥【解答】解:如图,作,⊥,则于于=RtABHtanABH=tan=α,中,△∠在AH=3tBH=4t,设,则=5tAB=,∴5t=5t=1,,解得∴BC=2BH=8,∴DABCABCB重合,与边∵等腰△绕着点上的点顺时针旋转,使得点CBE=BE=BC=8α,,∴∠RtBEFtan==EAF=tanα,中,在∠△BH=4xBE=5xAH=3x,设,,则5x=8x=,∴,解得EF=BF=,,∴=CF=8,∴﹣CE=CEFRt= 中,△.在.故答案为787分)(本大题共题,满分三.解答题:1﹣191cos30°.+|﹣)|﹣(.计算:实数的运算;负整数指数幂;特殊角的三角函数值.【考点】第10页(共17页)【分析】原式第一项利用特殊角的三角函数值计算,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.13=2=.﹣﹣解:原式﹣++【解答】20..解方程:解分式方程.【考点】x经检验即可得到【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,分式方程的解.2 x1=3x35x,﹣【解答】解:去分母得:﹣﹣+ x3x1=0,+整理得:()﹣)(x=3x=1,解得:,﹣21 1x=3x=.﹣经检验是增根,分式方程的解为ABDEADBCDABC21ABC=45°⊥是.已知:如图,在△,中,∠作边上的中线,过点DB=3EsinDAB=.求:∠,于点,且AB1的长;)(CAB2的余切值.()∠解直角三角形.【考点】AE=4RtADEBE=DE=31RtBDE,根据线段的【分析】(△)在,在△中,求得中,得到和差即可得到结论;BC=62CHHAB,由等腰直角三角形的性质得到)作,根据已知条件得到(⊥于BH=CH=6,根据三角函数的定义即可得到结论.BDE1RtDEABBD=3ABC=45°,△中,∠⊥,【解答】解:()在BE=DE=3,∴DE=3sinRtADEDAB=,∠在,△中,AE=4AB=AE3=7BE=4;,++∴AB2CHH,()作于⊥ADBCBD=3,∵是边上是中线,BC=6,∴ABC=45°,∵∠BH=CH=6,∴AH=76=1,﹣∴页)17页(共11第CAB==RtCHAcot.中,在∠△yBA22AB、地出发前往.甲骑自行车从地,同时乙步行从地出发前往地,如图所示,甲yhyAykmxy 与直线地)之间的关系,且直线(分别表示甲、乙离开()与已用时间甲乙M.相交于点乙x1yx;(的取值范围))求的函数关系式(不必注明自变量与甲B2A两地之间距离.)求(、一次函数的应用.【考点】x0My=kx1yk的函数),由点≠【分析】(关于)设的坐标利用待定系数法即可求出(甲甲关系式;yy=mxn2,由函数图象得出点的坐标,结合点的坐标利用待定系数法即可求出)设(+乙乙xx=0y值即可得出结论.的函数关系式,再令求出关于k01y=kx,≠)【解答】解:(()设甲7.5yM0.5的图象上,()在直线∵点,甲0.5k=7.5k=15.,解得:∴=15xyxy.关于∴的函数关系式为甲甲n2y=mx,+()设乙00.57.52)代入函数关系式得:将点(,点(,,).,解得:105xyxy=.的函数关系式为+﹣∴关于乙乙y=10y=5x10x=0.+令,则﹣中乙AB10千米.、两地之间距离为∴BCBCBC=2ADEABCD23B=90AD°的中点.,点中,∠,,为边∥.如图,直角梯形1AECD为平行四边形;)求证:四边形(CADF2CDAFACEAF=EFGEFAC求边上取一点,联结、设在∠与交于点且∠,.(、,)AECADF;证:△∽△32FGECA=45EG°的比值.时.求:)在(()的条件下,当∠:第12页(共17页)相似形综合题.【考点】ADBC=2ADCE=ADEBCBC=2CE1与为,得到中点,得到,再由,再由【分析】()由CE平行,利用一组对边平行且相等的四边形为平行四边形即可得证;AECD2为平行四边形,得到对角相等,再由已知角相等,利用两对角相等的()由四边形三角形相似即可得证;AB=BC=2aABC3AD=BE=CE=aECA=45°,,由∠,得到△)设为等腰直角三角形,即(ADFAECRtABEAE表示与三角形中,根据勾股定理表示出相似得比例,在,△由三角形DCCFAEDFCDDF平行得比例,即可求出所求式子之比.,再由出表示出.由与﹣BCBC=2ADE1中点,,点)∵解:【解答】(为BC=2CE,∴AD=CE,∴ADCE,∥∵AECD为平行四边形;∴四边形2AECD为平行四边形,)∵四边形(D=AEC,∴∠∠EAF=CAD,∵∠∠DAFEAC=,∴∠∠ADFAEC,∽△∴△AB=BC=2aAD=BE=CE=aECA=45ABC3°,,得到△,由∠(为等腰直角三角形,即)设=RtABEAE=a,△∴在中,根据勾股定理得:ADFAEC,∵△∽△==,∴,即DF=a ∴,DF=CF=CDa=aa ﹣∴﹣,DCAE,∵∥=== .∴第13页(共17页)24OMPNOMNxyOM=6,、轴和.如图,矩形分别在的顶点轴的正半轴上,在原点,AxCCAy=PNCPMDON=3,的图象与作交于,过点,与轴于点交于⊥,反比例函数GACBDDDByB.作与⊥过点,轴于点交于点CD1AB;)求证:(∥BCDEB2EC为腰的梯形是等(、)在直角坐标平面内是否若存在点,使以、、为顶点,E的坐标;若不存在请说明理由.腰梯形?若存在,求点反比例函数综合题.【考点】=CD1即可证得;和【分析】(的坐标,证明)首先求得CDABPN2DB两种情况进行讨论,即可求解.)分成和∥∥(OM=6ON=31OMPN,(是矩形,)证明:∵四边形,【解答】63P.,∴)的坐标是(DCy=CPNDPM上,都在反比例函数上,点的图象上,且点在在∵点和C23D61.,,),点∴点()(DBxyCA轴,又∵⊥⊥轴,10B0A2.),的坐标是(的坐标是(,)∴,AG=1GD=4CG=2BG=2.,,∵,===,∴,=,∴ABCD;∴∥PN2DB①,)解:∵(∥DEEDBCECNBPD=BC,是等腰梯形,此时直角△∴当≌直角△时,四边形111 PE=CN=2,∴1 3E14;的坐标是(,∴点)DEABABCDE=BC=2BCDE②为等腰梯形,上,在直线,四边形∵∥,当2221xy=AB,+直线的解析式是﹣xDEE1=BC=2x,),+(∴设点,﹣22第14页(共17页)22 x=8x6,+()∴()﹣=x=4x.解得:,(舍去)21 E 的坐标是().∴,﹣2BCDBABAB=AC=625ABCBC=4相交于点与边中,,与边,相交于点,⊙.如图,在△xEB.,设⊙的半径为ACx1B的值;与直线(相切时,求)当⊙xDC2yy的函数解析式,并写出定义域;的长为关于,求()设E3ACPPB公共弦的长.(,求⊙)若以与⊙为直径的⊙经过点圆的综合题.【考点】AG1BH即可;【分析】(,再由割线定理,求出)根据勾股定理,求出2DFCF,由勾股定理建立函数关系式;)由相似得出比例式,表示出(,EGBE3CEBQPBGE即可,,,求出,再用△(∽△)根据圆的性质求出1ACBHAGBC,解:【解答】(,)作⊥⊥AB=ACAGBC,,∵⊥BG=CG=2,∴=4AG=,∴ACBC=BHAG,∵××第15页(共17页)BH==,∴x=BAC 相切时,∴当⊙;与直线DFBC2,⊥()作DFAG,∥∴,∴,∴DF=x,∴CF=4x,﹣∴222 CF=DECFDRtCD,△中,在+4=xy=,(<≤∴)BCPQ3①,作(⊥)EFBP的公共弦,,⊙∵是⊙PE,经过点∵⊙PA=PE=PC,∴AEBC,∴⊥AC=AB,∵BE=CE=2,∴PQAEPAC中点,,且∵∥是CP=3PQ=AE=2,∴,CQ=1BQ=3,,∴BP=,∴BGEBQP,∽△∵△,∴,∴EG=,∴EF=;∴EF=E C②重合时,当点,与点.第16页(共17页)31201610日年月第17页(共17页)。
中考数学真题模拟试卷

2016年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3B.3C.﹣D.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3【考点】二次函数图象与几何变换.【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数2345人数22106A.3次B.3.5次C.4次D.4.5次【考点】加权平均数.【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷2080÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣【考点】*平面向量.【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D 与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a=a2.【考点】同底数幂的除法.【专题】计算题.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.函数y=的定义域是x≠2.【考点】函数自变量的取值范围.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程=2的解是x=5.【考点】无理方程.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【考点】代数式求值.【专题】计算题;实数.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.不等式组的解集是x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【考点】根的判别式;解一元一次方程.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【考点】反比例函数的性质.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【专题】计算题.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【考点】三角形中位线定理.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【考点】条形统计图;扇形统计图.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.【考点】实数的运算;负整数指数幂.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.解方程:﹣=1.【考点】解分式方程.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【考点】解直角三角形;勾股定理.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE 中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【分析】(1)设设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【考点】二次函数综合题.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).连接AC,∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),=×4×5=10,S△ACD=×4×4=8,又S△ABC=S△ABC+S△ACD=18.∴S四边形ABCD(3)过点C作CH⊥AB,垂足为点H.=×AB×CH=10,AB=5,∵S△ABC∴CH=2,在RT△BCH中,∠BHC=90°,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x 的取值范围.【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.。
上海各区初中数学二模试题及解答

1.下列计算中,正确的是 ……………………………………………………………………( ▲ )
(A) a3 a3 a6
(B) a3 a2 a6
(C) (a3 )2 a9
(D) (a2 )3 a6
2.下列说法不.一.定.成立的是 …………………………………………………………………( ▲ )
16、如图 2,如果在大厦 AB 所在的平地上选择一点 C,测得大厦顶端 A 的
仰角为 30°,然后向大厦方向前进 40 米,到达点 D 处(C、D、B 三点在同
一直线上),此时测得大厦顶端 A 的仰角为 45°,那么大厦 AB 的高度 为_______米(保留根号);
C
D 图2 B
17、对于实数 m、n,定义一种运算“*”为:m*n=mn+n.如果关于 x 的方程 x*(a*x)= 1 有两个相等的
(A) 直线 x 4
(B) 直线 x 4
(C) 直线 x 8
(D) 直线 x 8
4.一个不透明的盒子中装有 3 个红球,2 个黄球和 1 个绿球,这些球除了颜色外无其他差别,
从中随机摸出一个小球,恰好是黄球的概率为 …………………………………………( ▲ )
(A) 1 6
(B) 1 3
两点,与反比例函数 y m (m 0) 的图像在第一象限内交于点 M, x
若 OBM 的面积是 2.
y
(1)求一次函数和反比例函数的解析式;
(2)若点 P 是 x 轴正半轴上一点且 AMP 90 ,
M
求点 P 的坐标.
1 2
1
2 3 1
2016年上海市闸北区中考数学一模试卷含答案解析

2016年上海市闸北区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A.B.C.D.2.抛物线y=﹣2x2+3的顶点在()A.x轴上B.y轴上C.第一象限D.第四象限3.如图,已知点D、E分别在△ABC的边BA、CA的延长上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC 4.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.B.C.D.5.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,CD⊥AB于点D,则cot∠BCD的值为()A.B.C.D.6.已知,二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下说法不正确的是()A.根据图象可得该函数y有最小值B.当x=﹣2时,函数y的值小于0C.根据图象可得a>0,b<0D.当x<﹣1时,函数值y随着x的增大而减小二、填空题(本大题共12题,每题4分,满分48分)7.已知,则的值是__________.8.如图,在△ABC中,DE∥BC,当△ADE与△ABC的周长比为1:3时,那么DE:BC=__________.9.如图,已知在梯形ABCD中,AB∥CD,点E和点F分别在AD和BC上,EF是梯形ABCD的中位线,若,,则用表示=__________.10.求值:sin60°﹣tan30°=__________.11.汽车沿着坡度为1:7的斜坡向上行驶了50米,则汽车升高了__________米.12.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是__________.13.周长为16的矩形的面积y与它的一条边长x之间的函数关系式为y=__________.(不需要写出定义域)14.在直角坐标系中,已知点P在第一象限内,点P与原点O的距离OP=2,点P与原点O 的连线与x轴的正半轴的夹角为60°,则点P的坐标是__________.15.如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时,正方形CDEF的面积是__________.16.如图,在梯形ABCD中,AD∥BC,AC平分∠BCD,∠BAC=∠D,若AD=4,BC=10,则AC=__________.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=__________.18.如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D 重合,此时折痕交DC于点G,则CG:GD的值为__________.三、解答题(本大题共7题,满分78分)19.解方程:.20.已知二次函数的图象的顶点在原点O,且经过点A(1,).(1)求此函数的解析式;(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线=,求:MN的长以及平移后抛物线的解析式.于点M和N,且S△PMN21.如图,已知平行四边形ABCD的对角线相交于点O,点E是边BC的中点,联结DE 交AC于点G.设=,=,(1)试用、表示向量;(2)试用、表示向量.22.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)23.如图,在△ABC中,AC=BC,∠BCA=90°,点E是斜边AB上的一个动点(不与A、B重合),作EF⊥AB交边BC于点F,联结AF、EC交于点G.(1)求证:△BEC∽△BFA;(2)若BE:EA=1:2,求∠ECF的余弦值.24.如图,在平面直角坐标系中,已知抛物线与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),对称轴为直线x=1,对称轴交x轴于点E.(1)求该抛物线的表达式,并写出顶点D的坐标;(2)设点F在抛物线上,如果四边形AEFD是梯形,求点F的坐标;(3)联结BD,设点P在线段BD上,若△EBP与△ABD相似,求点P的坐标.25.(14分)如图,梯形ABCD中,AD∥BC,∠A=90°,AD=4,AB=8,BC=10,M在边CD上,且.(1)如图①,联结BM,求证:BM⊥DC;(2)如图②,作∠EMF=90°,ME交射线AB于点E,MF交射线BC于点F,若AE=x,BF=y.当点F在线段BC上时,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.2016年上海市闸北区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A.B.C.D.【考点】平行投影.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选D.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.2.抛物线y=﹣2x2+3的顶点在()A.x轴上B.y轴上C.第一象限D.第四象限【考点】二次函数的性质.【分析】因为y=﹣2x2+3可看作抛物线的顶点式,根据顶点式的坐标特点,得出顶点坐标为(0,3),即可知顶点在y轴上.【解答】解:抛物线y=﹣2x2+3是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,3),即顶点在y轴上.故选B.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h.也考查了y轴上点的坐标特征.3.如图,已知点D、E分别在△ABC的边BA、CA的延长上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC 【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理的逆定理得出A、C、D正确,B不正确,即可得出结论.【解答】解:∵BD:AB=CE:AC,∴DE∥BC,选项A正确;∵DE:BC=AB:AD不能判定DE∥BC,∴选项B不正确;∵AB:AC=AD:AE,∴DE∥BC,选项C正确;∵AD:DB=AE:EC,∴DE∥BC,选项D正确.故选:B.【点评】本题考查了平行线分线段成比例定理的逆定理;熟记平行线分线段成比例定理的逆定理是解决问题的关键.4.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.B.C.D.【考点】黄金分割.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=2﹣2.故选A.【点评】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的是解题的关键.5.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,CD⊥AB于点D,则cot∠BCD的值为()A.B.C.D.【考点】解直角三角形.【分析】根据在Rt△ABC中,∠C=90°,AC=12,BC=5,CD⊥AB于点D,可以得到∠A 和∠BCD的关系,由∠A的三角函数值可以得到∠BCD的三角函数值,从而可以解答本题.【解答】解:∵在Rt△ABC中,∠C=90°,∴∠B+∠A=90°,∵CD⊥AB于点D,∴∠CDB=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∵在Rt△ABC中,∠C=90°,AC=12,BC=5,∴cot∠A=,∴cot∠BCD=.故选C.【点评】本题考查解直角三角形,解题的关键是找出各个角之间的关系,根据等角的三角函数值相等,运用数学转化的思想进行解答问题.6.已知,二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下说法不正确的是()A.根据图象可得该函数y有最小值B.当x=﹣2时,函数y的值小于0C.根据图象可得a>0,b<0D.当x<﹣1时,函数值y随着x的增大而减小【考点】二次函数的性质.【分析】由抛物线开口向上得a>0,由当x=﹣2时,图象在x轴的下方,得出函数值小于0,对称轴x=﹣1在y轴的左侧得b>0,根据二次函数的性质可得当x<﹣1时,y随x的增大而减小;由此判定得出答案即可.【解答】解:由图象可知:A、抛物线开口向上,该函数y有最小值,此选项正确;B、当x=﹣2时,图象在x轴的下方,函数值小于0,此选项正确;C、对称轴x=﹣1,a>0,则b>0,此选项错误;D、当x<﹣1时,y随x的增大而减小正确,此选项.故选:C.【点评】此题考查二次函数的性质,根据图象判定开口方向,得出对称轴,利用二次函数的增减性解决问题.二、填空题(本大题共12题,每题4分,满分48分)7.已知,则的值是.【考点】比例的性质.【分析】根据等比性质:⇒=,可得答案.【解答】解:由等比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用等比性质是解题关键.8.如图,在△ABC中,DE∥BC,当△ADE与△ABC的周长比为1:3时,那么DE:BC=1:3.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,如何根据相似三角形的性质即可解题.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=△ADE的周长:△ABC的周长比=1:3.故答案为:.【点评】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ADE∽△ABC是解题的关键.9.如图,已知在梯形ABCD中,AB∥CD,点E和点F分别在AD和BC上,EF是梯形ABCD的中位线,若,,则用表示=2﹣.【考点】*平面向量.【分析】由在梯形ABCD中,AB∥CD,EF是梯形ABCD的中位线,可得EF∥AB∥CD,EF=(AB+CD),则可得=2﹣,继而求得答案.【解答】解:∵在梯形ABCD中,AB∥CD,EF是梯形ABCD的中位线,∴EF∥AB∥CD,EF=(AB+CD),∴=2﹣=2﹣.故答案为:2﹣.【点评】此题考查了平面向量的知识以及梯形的中位线的性质.注意能灵活应用梯形中位线的性质是解此题的关键.10.求值:sin60°﹣tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】根据sin60°=,tan30°=得到原式=﹣,然后通分合并即可.【解答】解:原式=﹣=﹣=.故答案为.【点评】本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.11.汽车沿着坡度为1:7的斜坡向上行驶了50米,则汽车升高了5米.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解.【解答】解:∵坡度为1:7,∴设坡角是α,则sinα==∴上升的高度是:50×=5(米).故答案是:5.【点评】本题主要考查了坡度的定义,正确求得坡角的正弦值是解题的关键.12.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是m<1.【考点】二次函数的最值.【分析】根据二次函数y=(m+1)x2+2的顶点是此抛物线的最高点,得出抛物线开口向下,即m+1<0,即可得出答案.【解答】解:∵抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,∴抛物线开口向下,∴m﹣1<0,∴m<1,故答案为m<1.【点评】此题主要考查了利用二次函数顶点坐标位置确定图象开口方向,此题型是中考中考查重点,同学们应熟练掌握.13.周长为16的矩形的面积y与它的一条边长x之间的函数关系式为y=8x﹣x2.(不需要写出定义域)【考点】根据实际问题列二次函数关系式.【分析】首先根据矩形周长为16,一条边长x可表示出另一边长为8﹣x,再根据矩形面积=长×宽列出函数解析式即可.【解答】解:∵矩形周长为16,一条边长x,∴另一边长为8﹣x,∴面积:y=(8﹣x)x=8x﹣x2.故答案为:8x﹣x2.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是掌握矩形的面积公式=长×宽.14.在直角坐标系中,已知点P在第一象限内,点P与原点O的距离OP=2,点P与原点O 的连线与x轴的正半轴的夹角为60°,则点P的坐标是(1,).【考点】解直角三角形;坐标与图形性质.【分析】作PM⊥x轴于点M,构造直角三角形,根据三角函数的定义求解.【解答】解:作PM⊥x轴于点M,如图所示:∵OP=2,∴sin60°==,cos60°==,∴PM=,OM=1.故P点坐标为:(1,).故答案为:(1,).【点评】本题考查了解直角三角形和坐标与图形性质的知识,难度不大,注意掌握一个角的余弦和正弦的计算方法.15.如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时,正方形CDEF的面积是6.【考点】相似三角形的判定与性质;正方形的性质.【分析】根据正方形的性质得到DE∥BC,由平行线的性质得到∠AED=∠B,∠ADE=∠EFB=90°,推出△ADE∽△BEF,根据相似三角形的性质得到,代入数据即可得到结论.【解答】解:∵四边形CDEF是正方形,∴DE∥BC,∴∠AED=∠B,∠ADE=∠EFB=90°,∴△ADE∽△BEF,∴,即,∴DE•EF=2×3=6,∴正方形CDEF的面积是6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,正方形的性质,熟练掌握相似三角形的性质定理是解题的关键.16.如图,在梯形ABCD中,AD∥BC,AC平分∠BCD,∠BAC=∠D,若AD=4,BC=10,则AC=2.【考点】相似三角形的判定与性质.【分析】根据平行线的性质得出∠DAC=∠ACB,根据相似三角形的判定得出△ADC∽△CAB,得出比例式,代入求出即可.【解答】解:∵AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠D,∴△ADC∽△CAB,∴=,∴=,解得:AC=2.故答案为:2.【点评】本题考查了相似三角形的性质和判定,平行线的性质的应用,能求出△ADC∽△CAB是解此题的关键.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=.【考点】平行线分线段成比例;三角形的重心.【分析】由三角形的重心定理得出=,=,由平行线分线段成比例定理得出=,即可得出结果.【解答】解:∵线段AD、BE是△ABC的中线,∴=,=,∵EF∥BC,=,∴=.故答案为:.【点评】本题考查了平行线分线段成比例定理、三角形的重心定理;熟练掌握三角形的重心定理,由平行线分线段成比例定理得出FG:DG=1:2是解决问题的关键18.如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G,则CG:GD的值为.【考点】翻折变换(折叠问题).【分析】连接GE,由矩形的性质得出∠BAD=∠C=ADC=∠B=90°,AB=CD,AD=BC,由折叠的性质得出∠DAG=∠EAG=22.5°,AG⊥DE,由线段垂直平分线的性质得出GD=GE,得出∠GDE=∠GED=∠DAG=22.5°,由三角形的外角性质得出∠CGE=45°,证出△CEG是等腰直角三角形,得出GD=GE=CG,即可得出结果.【解答】解:如图所示:连接GE,∵四边形ABCD是矩形,∴∠BAD=∠C=ADC=∠B=90°,AB=CD,AD=BC,由折叠的性质得:∠DAE=∠BAE=45°,∠DAG=∠EAG=22.5°,AG⊥DE,∴GD=GE,∴∠GDE=∠GED=∠DAG=22.5°,∴∠CGE=∠GDE+∠GED=45°,∴△CEG是等腰直角三角形,∴GD=GE=CG,∴CG:GD=.故答案为:.【点评】本题考查了矩形的性质、翻折变换的性质、线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质、等腰直角三角形的判定与性质;熟练掌握翻折变换和矩形的性质,证明△CEG是等腰直角三角形是解决问题的关键.三、解答题(本大题共7题,满分78分)19.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+x2﹣1=3x﹣3,整理得:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知二次函数的图象的顶点在原点O,且经过点A(1,).(1)求此函数的解析式;(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线于点M和N,且S△PMN =,求:MN的长以及平移后抛物线的解析式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)根据题意可直接设y=ax2把点(1,﹣3)代入得a=﹣3,所以y=﹣3x2;(2)设平移后y=x2+d(d>0),则MN=d,根据题意得出S=×2×d=3,即可求得d的值,从而求得平移后的解析式.【解答】解:(1)∵抛物线顶点是原点,可设y=ax2,把点A(1,)代入,得a=,,所以这个二次函数的关系式为y=x2;(2)设平移后y=x2+d(d>0),∴MN=d,S=×2×d=3,∴d=3,∴y=x2+3.【点评】主要考查了用待定系数法求函数解析式以及二次函数的图象与几何变换,熟练掌握待定系数法和平移的规律是解题的关键.21.如图,已知平行四边形ABCD的对角线相交于点O,点E是边BC的中点,联结DE 交AC于点G.设=,=,(1)试用、表示向量;(2)试用、表示向量.【考点】*平面向量.【分析】(1)由=,=,利用三角形法则,可求得,又由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得答案;(2)易得△ADG∽△CEG,然后由相似三角形的对应边成比例,证得AG:CG=AD:CE=2:1,继而求得,则可求得答案.【解答】解:(1)∵=,=,∴=+=+,∵四边形ABCD是平行四边形,∴==(+)=+;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△ADG∽△CEG,∴AG:CG=AD:CE,∵点E是边BC的中点,∴AD:CE=2:1,∴AG:CG=2:1,∴AG:AC=2:3,∴==+,∴=﹣=+﹣=﹣.【点评】此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质.注意掌握三角形法则的应用是关键.22.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)【考点】解直角三角形的应用.【分析】由题意得出AB∥DE,证出△ABF∽△DEF,由相似三角形的性质得出,求出AB,再由三角函数求出AC,即可得出结果.【解答】解:根据题意得:AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△ABF∽△DEF,∴,即,解得:AB=3.6米,∵cos∠BAC=,∴AC=≈=6(米),∴AB+AC=3.6+6=9.6米.答:这棵大树没有折断前的高度为9.6米.【点评】本题考查了解直角三角形的应用、相似三角形的应用;熟练掌握解直角三角形,由相似三角形的性质求出AB是解决问题的关键.23.如图,在△ABC中,AC=BC,∠BCA=90°,点E是斜边AB上的一个动点(不与A、B重合),作EF⊥AB交边BC于点F,联结AF、EC交于点G.(1)求证:△BEC∽△BFA;(2)若BE:EA=1:2,求∠ECF的余弦值.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据已知条件得到△BEF∽△ABC,根据相似三角形的性质得到,根据相似三角形判定定理即可得到结论;(2)由已知条件的,根据三角函数的定义得到tan∠EAF=,根据相似三角形的性质得到∠BAF=∠BCE,即可得到结论.【解答】解:(1)∵在△ABC中,AC=BC,∠BCA=90°,∵EF⊥AB,∴∠BEF=90°,∵∠B=∠B,∴△BEF∽△ABC,∴,∴△△BEC∽△BFA;(2)∵BE=EF,BE:EA=1:2,∴,∴tan∠EAF=,设EF=k,AE=2k,∴AF=,∵△BEC∽△BFA,∴∠BAF=∠BCE,∴cos∠ECF=cos∠EAF==.【点评】本题考查了相似三角形的判定和性质,锐角三角函数的定义,等腰直角三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,在平面直角坐标系中,已知抛物线与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),对称轴为直线x=1,对称轴交x轴于点E.(1)求该抛物线的表达式,并写出顶点D的坐标;(2)设点F在抛物线上,如果四边形AEFD是梯形,求点F的坐标;(3)联结BD,设点P在线段BD上,若△EBP与△ABD相似,求点P的坐标.【考点】二次函数综合题.【分析】(1)根据函数值相等的亮点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据平行线的一次项的系数相等,可得EF的解析式,根据解方程组,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得PB的长,根据勾股定理,可得P点的横坐标,根据自变量与函数值的对应关系,可得P点坐标.【解答】解:(1)由A、B关于x=1对称,得B(3,0),设抛物线的解析式为y=ax2+bx+c(a≠0),将A、B、C点坐标代入,得,解得.抛物线的解析式为y=﹣x2+x+2,顶点坐标为D(1,);(2)①当AE∥DF时,不存在,舍去;②当AD∥EF时,AD的解析式为y=x+,EF的解析式为y=x﹣,联立得,解得,F点坐标为(,),(3)∠PBE=∠DBA,如图:BD的解析式为y=﹣x+4,P在BD上,设P(m,﹣m+4)DB===,BA=3﹣(﹣1)=4,BE=3﹣1=2.①当△PBE∽△DBA时,=,即=,解得BP=,(3﹣m)2+(m﹣4)2=,解得m=2,m=4(不符合题意,舍),当m=2时,﹣m+4=,P1(2,);②当△EBP∽△DBA时,=,即=,解得BP=,(3﹣m)2+(m﹣4)2=,解得m=,m=(不符合题意,舍),当m=时,﹣m+4=,P2(,),综上所述:P点坐标为P1(2,),P2(,).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用平行线的一次项的系数相等得出EF的解析式是解题关键;利用两组对边对应成比例且夹角相等的两个三角形相似得出PB的长是解题关键,要分类讨论,以防遗漏.25.(14分)如图,梯形ABCD中,AD∥BC,∠A=90°,AD=4,AB=8,BC=10,M在边CD上,且.(1)如图①,联结BM,求证:BM⊥DC;(2)如图②,作∠EMF=90°,ME交射线AB于点E,MF交射线BC于点F,若AE=x,BF=y.当点F在线段BC上时,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.【考点】相似形综合题.【分析】(1)连接BD,作DN⊥BC于N,则四边形ABND是矩形,得出DN=AB=8,BN=AD=4,求出CN=BC﹣BN=6,由勾股定理求出CD,得出CD=BC=10,由等腰三角形的性质和平行线的性质得出∠ADB=∠DBC=∠BDC,求出DM=4=AD,由SAS证明△ADB≌△MDB,得出对应角相等即可;(2)由角的互余关系得出∠C=∠MBA,∠CMF=∠BME,证出△CMF∽△BME,得出对应边成比例,即可得出结果;(3)分两种情况:①当点E在线段AB上时,△CMF∽△BME,△CMF为等腰三角形,得出△BME为等腰三角形,当BE=BM=8时,AE=0;当BM=ME时,由三角函数求出BE=>AE,舍去;当BE=ME时,由三角函数求出BE=,得出AE=AB﹣BE=;②当点E在BC延长线上时,同(2)可证△CMF∽△BME,△BME为等腰三角形,由∠MBE >90°,得出BE=BM=8,因此AE=16;即可得出结果.【解答】(1)证明:连接BD,如图1所示:作DN⊥BC于N,则∠DNC=90°,四边形ABND是矩形,∴DN=AB=8,BN=AD=4,∴CN=BC﹣BN=10﹣4=6,CD==10,∴CD=BC=10,∴∠DBC=∠BDC,∵AD∥BC,∴∠ADB=∠DBC=∠BDC,∵,∴DM=4=AD,在△ADB和△MDB中,,∴△ADB≌△MDB(SAS),∴∠DMB=∠A=90°,BM=AB=8,∴BM⊥DC;(2)解:∵∠C=∠MBA=90°﹣∠MBC,∠CMF=∠BME=90°﹣∠FMB,∴△CMF∽△BME,∴,即,解得:y=x+4(0≤x≤8);(3)解:分两种情况:①当点E在线段AB上时,△CMF∽△BME,△CMF为等腰三角形,∴△BME为等腰三角形,当BE=BM=8时,AE=0;当BM=ME时,BE=2×BM×cos∠MBA=2×8×=>AE,舍去当BE=ME时,BE===,∴AE=AB﹣BE=8﹣=;②当点E在BC延长线上时,如图2所示:同(2)可证△CMF∽△BME,△BME为等腰三角形,又∵∠MBE>90°,∴BE=BM=8,∴AE=16.综上所述:若△MCF是等腰三角形,AE的值为0或或16.【点评】本题是四边形综合题目,考查了梯形的性质、相似三角形的判定与性质、全等三角形的判定与性质、矩形的判定与性质、等腰三角形的判定与性质、三角函数等知识;本题综合性强,难度较大,特别是(3)中,需要进行分类讨论才能得出结果.你们好,我是上海中考公众号的小编,需要找历年其他科目的中考、一模、二模试卷的童鞋可以关注上海中考公众号给我留言,我会发给你们;对上海中考升学那些什么四校八大推优、自荐、自主招生、历年招生录取数据、填志愿等等等等这些闹不清楚的中考政策,有不懂的同学可以给我留言,一一给你掰扯清楚。
闸北区中考数学二模试卷及答案精选文档

闸北区中考数学二模试卷及答案精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2015学年第二学期九年级质量抽测卷(2016年4月)数 学 卷(满分150分,考试时间100分钟)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列代数式中,属于分式的是……………………………………………………( ▲ )(A )3- ; (B ) 12a b - ; (C )1x;(D )34a b -.2的值为…………………………………………………………………………( ▲ ) (A )2 ; (B )2-; (C )2±; (D )不存在.3.下列方程中,没有实数根的方程是………………………………………………( ▲ )(A )2210x x +-=; (B )2210x x ++=; (C )220x x -+=;(D )220x x --=.4.方程组⎩⎨⎧=-=+134723y x y x 的解是………………………………………………………( ▲ )(A )⎩⎨⎧=-=31y x ; (B )⎩⎨⎧-==13y x ; (C ) ⎩⎨⎧-=-=13y x ; (D )⎩⎨⎧-=-=31y x . 5.如图,已知∠BDA =∠CDA ,则不一定...能使△ABD ≌△ACD 的条件是………( ▲ )(A )BD =DC (B )AB =AC (C )∠B =∠C (D )∠BAD =∠CAD6.若1O 与2O 相交于两点,且圆心距125O O =cm ,则下列 哪一选项中的长度可能为此两圆的半径…………………( ▲ ) (A )1cm 、2cm ; (B )2cm 、3cm ; (C )10cm 、 15cm ; (D )2cm 、 5cm .二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:52a a ÷= ▲ . 8.分解因式:236x x -= ▲ . 9.不等式组1226x x +>⎧⎨<⎩的解集是 ▲ .10.函数y =的定义域是 ▲ .11.二次函数22y x x b =-+的对称轴是直线x = ▲ .12.袋子里有4个黑球,m 个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m 的值是 ▲ . CDA B(第5题图)13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是▲ .14.某企业2013年的年利润为100万元,2014年和2015年连续增长,且这两年的增长率相同,据统计2015年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是▲ .15.如图,AB∥DE,△ACB是等腰直角三角形,且∠C= 90°,CB的延长线交DE于点G,则∠CGE=▲ 度.16.如图,在△ABC中,点D在AC边上且AD:DC=1:2,若AB m=,BD n=,那么DC= ▲ (用向量m、n表示).17.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点'P为射线..CP上一点,满足2r'CPCP=⋅,则称点'P为点P关于⊙C的反演点P及其关于⊙C的反演点'P的示意图.写出点M (12,0)点O为圆心,1为半径的⊙O的反演点'M的坐标▲ .18.如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=34,AB=5,则CE= ▲ .三.解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:11cos30133-⎛⎫+- ⎪⎝⎭.(第18题图)α CBA(第16题(第15题图)ACD EBG(第21题AB CE20.(本题满分10分)解方程:253111x x x -+=-+.21.(本题满分10分,第(1)小题5分,第(2)小题5分) 已知:如图,在△ABC 中,∠ABC=45°,AD 是BC 边上的中线, 过点D 作DE ⊥AB 于点E ,且sin∠DAB=53,DB=求:(1)AB 的长; (2)∠CAB 的余切值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)甲骑自行车从A 地出发前往B 地,同时乙步行从B出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围); (2)求A 、B 两地之间距离.23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点.(第22题图)(1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、 AC 、 EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD .求证:△AEC ∽△ADF; (3)在(2)的条件下,当∠ECA=45°时.求:FG:EG 的比值.24.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,矩形OMPN 的顶点O 在原点,M 、N 分别在x 轴和y 轴的正半轴上,OM=6,ON=3,反比例函数x y 6的图像与PN 点C 作CA ⊥x 轴于点A ,过点D 作DB ⊥y 轴于点(1)求证:AB//CD ;(2)在直角坐标平面内是否若存在点E ,使以B 、C 、D 、E 为顶点,BC 为腰的梯形是等腰梯形若存在,求点E 的坐标;若不存在请说明理由.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,在△ABC 中,AB=AC=6,BC=4,⊙B 与边AB 相交于点D ,与边BC 相交于点E ,设⊙B 的半径为x . (1)当⊙B 与直线AC 相切时,求x 的值;(2)设DC 的长为y ,求y 关于x 的函数解析式,并写出定义域;A(第23题图)ABCED F G(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.2015学年第二学期九年级质量抽测卷(2016年4月)数学卷参考答案与评分标准一.选择题:(本大题共6题,每题4分,满分24分)1.C; 2.A; 3.C; 4.B; 5.B; 6. D.二.填空题:(本大题共12题,每题4分,满分48分)7.3a; 8.3x(x-2); 9.1<x<3; 10.x≤1; 11. 1; 12.4;13.134; 14.2100(1)125x; 15.135; 16.22m n;17.(2,0);18.三.解答题:(本大题共7题,满分78分)19.(本题满分10分)解:原式=3131322……………………2分×4=8分=72………………………………………2分20.(本题满分10分)解:2513(1)x x x ………………………………3分2230x x………………………………………3分x-3)(x+1)=0(解得x1=3,x2=-1 …………………………………2分经检验,x=-1是增根,舍去,……………………1分∴原方程的解为x=3 …………………………………1分21.(本题满分10分,第(1)小题5分,第(2)小题5分)解(1)在Rt△BDE中,DE⊥AB,BD=∠ABC=45°,∴BE=DE=3,……………………………………2分在Rt△ADE中,sin∠DAB=35,DE=3,∴AE=4,…………………………………………2分∴AB=AE+BE=4+3=7 ………………………1分(2)作CH⊥AB,垂足为H …………………………1分∵AD是BC边上的中线,DB=∴BC=,…………………………………1分∵∠ABC=45°,∴BH=CH=6,…………………1分∴AH=7-6=1 ……………………………………1分即在Rt△CHA 中,1cot6AHCABCH………1分22.(本题满分10分,第(1)小题4分,第(2)小题6分)解:(1)设=(0)y kx k甲………………………………1分(第21题ABEH则=,∴k =15, ………………………2分∴15y x 甲.……………………………………1分 (2)解法一:设=+(0)y kx b k甲……………………………1分把点(,)、(2,0)分别代入,得:7.5=0.502k b k b…………………………………2分解得510k b∴=510y x 乙 ………………………………2分∴AB =5×2=10km . …………………………1分 解法二:设乙的速度为v km/h , ………………………1分则2v =+ ……………………………2分∴v =5 …………………………………………1分∴AB =5×2=10km . ………………………2分23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵AD ∥BC ,BC =2AD ,点E 是BC 上的中点,∴BC =2CE ………………1分∴AD =CE , ………………………………………2分∴四边形AECD 为平行四边形.……………………1分(2)∵四边形AECD 是平行四边形∴∠D =∠AEC ,………………………………………2分又∠EAF =∠CAD ,∴∠EAC =∠DAF , …………1分∴△AEC ∽△ADF …………………………………1分 (3)设AD =a ,则BC =2a ,又∵∠ECA =45°,∠B =90°, ∴AB =BC =2a ,AE =DC∵△AEC ∽△ADF∴AE ECAD DF,即a a DF ,∴55DFa ,……………………1分 ∴545555CF DC DFaa a . ……………………1分 ∵AE ∥DC∴FGFC EGAE =45a.……………………………………………2分24.(本题满分12分,第(1)小题6分,第(2)小题6分)解:∵矩形OMPN ,OM =6,ON =3∴点P (6,3)∵点C 、D 都在反比例函数6yx图像上, 且点C 在PN 上,点D 在PM 上,∴点C (2,3),点D (6,1)………………2分 又DB ⊥y 轴,CA ⊥x 轴,(第23题A B CE DF G∴A (2,0),B (0,1)∵BG =2,GD =4,CG =2,AG =1∴12AG GC , 2142BG GD …………………2分∴=AG BG GC GD…………………………………1分 ∴AB ∥CD . …………………………………1分 又解:求直线CD 的解析式为142yx ,直线AB 的解析式为112y x . 因为两直线的斜率相等,在y 轴上的截距不等,所以两直线平行.(酌情给分) (2)①∵PN ∥DB∴当DE 1=BC 时,四边形BCE 1D 是等腰梯形此时Rt △CNB ≌△Rt △E 1PD , ∴PE 1=CN =2,∴点E 1(4,3) ………………………2分 ②∵CD ∥AB ,当E 2在直线AB 上,DE 2=BC = 四边形BCDE 2为等腰梯形, 直线AB 的解析式为112yx ……1分 ∴设点E 2(x ,112x )DE 2=BC=22,∴8)21()6(22=+-x x ………………1分5281=x ,42=x (舍去)∴E 2(528,59-); ………………2分25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)作AG ⊥BC 于G ,BH ⊥AC 于H , ………………1分 ∵AB =AC ,AG ⊥BC ,∴BG =GC =2,…………1分 ∴AG 22226242CG …………1分又AG ·BC =BH ·AC ,∴4248263AG BC BH AC ………………1分∴当⊙B 与直线AC 相切时.823x . (2)作DF ⊥BC 于F ,则DF ∥AG ,∴BDDFAB AG,即642x ,∴223DF x ………………1分 1sin 3BF BD B x , ∴CF =4-13x , …………………………1分 在Rt △CFD 中,CD 2=DF 2+CF 2∴22122(4)()33yx x 163x …………………………1分 (0<x ≤4). ………………………………1分(3)解法一:作PQ ⊥BC 于Q . ……………………………1分∵EF 是⊙B 、⊙P 的公共弦,∴BP ⊥EF ,且EG =FG ,∵⊙P 经过点E ,∴PA =PE =PC ,∴AE ⊥BC ,又AC =AB ,∴BE =EC =2∵PQ ∥AE ,且P 是AC 的中点∴PQ =1222AE ,CP =3, ∴CQ=1,BQ =3,∴BP …………………………………1分 设BP 交EF 于点H设m B H =,由2222PH PE BH BE -=-,2222)m 17(3m2--=-………………………………………………1分解得m = ∴EF=2m =1分解法二:作PQ ⊥BC 于Q∵EF 是⊙B 、⊙P 的公共弦,∴BP⊥EF ,且EG =FG ,∵⊙P 经过点E ,∴PA =PE =PC ,∴AE ⊥BC , 又AC =AB ,∴BE =EC =2 ∵PQ ∥AE ,且P 是AC 的中点,∴PQ =1222AE ,CP =3, ∴CQ =1,BQ =3,∴BP 1分 而Rt △BQP ∽Rt △BGE , …………………………………………1分∴EG BEPQ BP ,即17,∴43417EG∴公共弦EF =17………………………………………………1分 当点E 和点C 重合时,341716 EF ……………………………2分。
上海市闸北区2016年高考数学二模试卷(文科) 含解析

2016年上海市闸北区高考数学二模试卷(文科)一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.已知函数f(x)=a x+a﹣x(a>0,a≠1),且f(1)=3,则f(0)+f(1)+f(2)的值是.2.已知集合A={x||x﹣2|<a},B={x|x2﹣2x﹣3<0},若B⊆A,则实数a的取值范围是.3.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是.4.已知x,y满足若使用z=ax+y取最大值的点(x,y)有无数个,则a的值等于.5.在直角坐标系xOy中,已知三点A(a,1),B(2,b),C(3,4),若向量,在向量方向上的投影相同,则3a﹣4b的值是.6.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b= .7.△ABC中,a,b,c分别是∠A,∠B,∠C的对边且ac+c2=b2﹣a2,若△ABC最大边长是且sinC=2sinA,则△ABC最小边的边长为.8.设等差数列{a n}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d= .9.已知函数,则关于x的方程f2(x)﹣3f(x)+2=0的实根的个数是.10.设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是.二、选择题本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分。
11.若一个长方体共顶点的三个面的对角线长分别是a,b,c,则长方体的对角线长是( )A.B.C.D.12.向量,均为单位向量,其夹角为θ,则命题“p:|﹣|>1”是命题q:θ∈[,)的()条件()A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分非必要条件13.已知数列{a n}中,a n+1=3S n,则下列关于{a n}的说法正确的是( )A.一定为等差数列B.一定为等比数列C.可能为等差数列,但不会为等比数列D.可能为等比数列,但不会为等差数列三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.14.(文)如图几何体是由一个棱长为2的正方体ABCD ﹣A1B1C1D1与一个侧棱长为2的正四棱锥P﹣A1B1C1D1组合而成.(1)求该几何体的主视图的面积;(2)若点E是棱BC的中点,求异面直线AE与PA1所成角的大小(结果用反三角函数表示).15.某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P=(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本6(P+)万元(不含促销费用),产品的销售价格定为(4+)元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,该公司的利润最大?16.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为(,0).将函数f (x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)定义:当函数取得最值时,函数图象上对应的点称为函数的最值点,如果函数y=F(x)=的图象上至少有一个最大值点和一个最小值点在圆x2+y2=k2(k>0)的内部或圆周上,求k的取值范围.17.若动点M到定点A(0,1)与定直线l:y=3的距离之和为4.(1)求点M的轨迹方程,并画出方程的曲线草图;(2)记(1)得到的轨迹为曲线C,若曲线C上恰有三对不同的点关于点B(0,t)(t∈R)对称,求t的取值范围.18.已知数列{a n},S n为其前n项的和,满足S n=.(1)求数列{a n}的通项公式;(2)设数列的前n项和为T n,数列{T n}的前n项和为R n,求证:当n≥2,n∈N*时R n﹣1=n(T n﹣1);(3)若函数f(x)=的定义域为R,并且f (a n)=0(n∈N*),求证p+q>1.2016年上海市闸北区高考数学二模试卷(文科)参考答案与试题解析一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.已知函数f(x)=a x+a﹣x(a>0,a≠1),且f(1)=3,则f(0)+f(1)+f(2)的值是12 .【考点】指数函数的单调性与特殊点;函数的值.【分析】由f(1)=3可得到关于a的式子,由f(0)+f(1)+f(2)得到关于a的式子,寻找与已知表达式的联系即可求解.【解答】解:∵f(1)=a+a﹣1=3,f(0)=2,f(2)=a2+a ﹣2=(a+a﹣1)2﹣2=7,∴f(1)+f(0)+f(2)=12.故答案为:122.已知集合A={x||x﹣2|<a},B={x|x2﹣2x﹣3<0},若B⊆A,则实数a的取值范围是a≥3.【考点】集合的包含关系判断及应用.【分析】利用绝对值不等式的解法、一元二次不等式的解法分别解出A,B,再利用B⊆A即可得出.【解答】解:由|x﹣2|<a,可得2﹣a<x<2+a(a>0),∴A=(2﹣a,2+a)(a>0).由x2﹣2x﹣3<0,解得﹣1<x<3.B=(﹣1,3).∵B⊆A,则,解得a≥3.故答案为:a≥3.3.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是.【考点】复数代数形式的乘除运算.【分析】由|z|=1,得|z2|=1,结合z2=a+bi,得a2+b2=1,然后利用基本不等式求得a+b的最大值.【解答】解:∵|z|=1,∴|z2|=1,由z2=a+bi,得a2+b2=1,∴(a+b)2≤2(a2+b2)=2,故当时,a+b的最大值是.故答案为:.4.已知x,y满足若使用z=ax+y取最大值的点(x,y)有无数个,则a的值等于﹣1 .【考点】简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值的方法,因为目标函数取得的最大值的最优解有无穷多个,所以必有目标函数所在的直线z=ax+y 与三角形的某一边所在的直线重合,只需求出可行域边上所在直线的斜率即可.【解答】解:先根据约束条件画出可行域,当直线线z=ax+y和直线AB重合时,z取得最大值的有序数对(x,y)有无数个,∴﹣a=k AB=1,a=﹣1故答案为:﹣1.5.在直角坐标系xOy中,已知三点A(a,1),B(2,b),C(3,4),若向量,在向量方向上的投影相同,则3a﹣4b的值是 2 .【考点】平面向量数量积的运算.【分析】构造三个向量,起点是原点,那么三个向量的坐标和点的坐标相同,根据投影的概念,列出等式,用坐标表示,移项整理得到结果.【解答】解:向量,在向量方向上的投影相同,∴=•,∵A(a,1),B(2,b),C(3,4),∴3a+4=6+4b,∴3a﹣4b=2,故答案为:2.6.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b= 3 .【考点】椭圆的应用;椭圆的简单性质.【分析】由已知得|PF1|+|PF2|=2a,=4c2,,由此能得到b的值.【解答】解:∵F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.∴|PF1|+|PF2|=2a,=4c2,,∴(|PF1|+|PF2|)2=4c2+2|PF1||PF2|=4a2,∴36=4(a2﹣c2)=4b2,∴b=3.故答案为3.7.△ABC中,a,b,c分别是∠A,∠B,∠C的对边且ac+c2=b2﹣a2,若△ABC最大边长是且sinC=2sinA,则△ABC最小边的边长为 1 .【考点】正弦定理.【分析】根据余弦定理求出cosB=﹣,故b=,由sinC=2sinA得c=2a,代入余弦定理计算a.【解答】解:∵ac+c2=b2﹣a2,∴cosB==﹣,∴B=,∴b=.∵sinC=2sinA,∴c=2a,∴三角形的最短边为a.由余弦定理得cosB=,解得a=1.故答案为1.8.设等差数列{a n}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d= .【考点】极差、方差与标准差;等差数列的性质.【分析】根据等差数列{a n}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,知这组数据的平均数是a4,写出这组数据的方差,得到关于数列的公差的代数式,根据方差是1,得到关于d的方程,解方程即可.【解答】解:∵等差数列{a n}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1∴这组数据的平均数是a4,∴(9d2+4d2+d2+0+d2+4d2+9d2)=4d2=1∴d2=,∴d=,故答案为:9.已知函数,则关于x的方程f2(x)﹣3f(x)+2=0的实根的个数是 5 .【考点】根的存在性及根的个数判断;函数的零点.【分析】方程f2(x)﹣3f(x)+2=0等价于f(x)=2或f(x)=1,再利用函数分类讨论,即可得到方程f2(x)﹣3f(x)+2=0的实根个数.【解答】解:方程f2(x)﹣3f(x)+2=0等价于f(x)=2或f(x)=1∵函数,∴﹣1≤x≤1,f(x)∈[﹣1,1],|x|>1时,f(1)>0,∴f(x)=1时,cos或x2﹣1=1,∴x=0或x=±,f(x)=2时,x2﹣1=2,∴x=,综上知方程f2(x)﹣3f(x)+2=0的实根的个数是5.故答案为:5.10.设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是m<﹣1 .【考点】函数恒成立问题.【分析】已知f(x)为增函数且m≠0,分当m>0与当m<0两种情况进行讨论即可得出答案.【解答】解:已知f(x)为增函数且m≠0,当m>0,由复合函数的单调性可知f(mx)和mf(x)均为增函数,此时不符合题意.当m<0时,有因为y=2x2在x∈[1,+∞)上的最小值为2,所以1+,即m2>1,解得m<﹣1或m>1(舍去).故答案为:m<﹣1.二、选择题本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市闸北区中考数学二模试卷一.选择题:(本大题共6题,每题4分,满分24分)1.(4分)下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b2.(4分)的值为()A.2 B.﹣2 C.土2 D.不存在3.(4分)下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=04.(4分)方程组的解是()A.B.C.D.5.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD6.(4分)若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:a5÷a2=.8.(4分)分解因式:3x2﹣6x=.9.(4分)不等式组的解集是.10.(4分)函数y=的定义域是.11.(4分)二次函数y=x2﹣2x+b的对称轴是直线x=.12.(4分)袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是.13.(4分)某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是.14.(4分)某企业2013年的年利润为100万元,2014年和2015年连续增长,且这两年的增长率相同,据统计2015年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是.15.(4分)如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=度.16.(4分)如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=(用向量、表示).17.(4分)在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标.18.(4分)如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.三.解答题:(本大题共7题,满分78分)19.(10分)计算:cos30°+|1﹣|﹣()﹣1.20.(10分)解方程:.21.(10分)已知:如图,在△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,且sin∠DAB=,DB=3.求:(1)AB的长;(2)∠CAB的余切值.22.(10分)甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图所示,y甲、y乙分别表示甲、乙离开A地y(km)与已用时间x(h)之间的关系,且直线y甲与直线y乙相交于点M.(1)求y甲与x的函数关系式(不必注明自变量x的取值范围);(2)求A、B两地之间距离.23.(12分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.24.(12分)如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.25.(14分)如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.2016年上海市闸北区中考数学二模试卷参考答案与试题解析一.选择题:(本大题共6题,每题4分,满分24分)1.(4分)下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b【解答】解:A、3是整式,故A错误;B、a﹣b是整式,故B错误;C、是分式不是整式,故C正确;D、﹣4a3b是整式,故D错误;故选:C.2.(4分)的值为()A.2 B.﹣2 C.土2 D.不存在【解答】解:因为4的算术平方根是2,所以=2.故选A.3.(4分)下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=0【解答】解:A、∵△=4+4=8>0,∴方程有两个不相等的两个实数根;B、∵△=4﹣4=0,∴方程有两个相等的两个实数根;C、∵△=1﹣8=﹣7<0,∴方程没有实数根;D、∵△=1+8=9>0,∴方程有两个不相等的两个实数根;故选C.4.(4分)方程组的解是()A.B.C.D.【解答】解:将方程组中4x﹣y=13乘以2,得8x﹣2y=26①,将方程①与方程3x+2y=7相加,得x=3.再将x=3代入4x﹣y=13中,得y=﹣1.故选B.5.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【解答】解:A、BD=DC,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项错误;B、AB=AC,∠BDA=∠CDA,AD=AD,不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;C、∠B=∠C,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD≌△ACD,故本选项错误;D、∠BDA=∠CDA,AD=AD,∠BAD=∠CAD,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项错误;故选B.6.(4分)若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm【解答】解:A、∵5>2+1,∴d>R+r,∴两圆外离,故本选项错误;B、∵5=2+3,∴d=R+r,∴两圆外切,故本选项错误;C、∵5=15﹣10,∴d=R﹣r,∴两圆内切,故本选项错误;D、∵5﹣2<5<5+2,∴R﹣r<d<R+r,∴两圆相交,故本选项正确;故选D.二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:a5÷a2=a3.【解答】解:a5÷a2=a5﹣2=a3.8.(4分)分解因式:3x2﹣6x=3x(x﹣2).【解答】解:3x2﹣6x=3x(x﹣2).故答案为:3x(x﹣2).9.(4分)不等式组的解集是1<x<3.【解答】解:解不等式x+1>2,得:x>1,解不等式2x<6,得:x<3,∴不等式组的解集为:1<x<3,故答案为:1<x<3.10.(4分)函数y=的定义域是x≤1.【解答】解:根据题意得:1﹣x≥0,解得x≤1.11.(4分)二次函数y=x2﹣2x+b的对称轴是直线x=1.【解答】解:∵y=x2﹣2x+b=x2﹣2x+1+b﹣1=(x+1)2+b﹣1故对称轴是直线x=1.故答案为:1.12.(4分)袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是4.【解答】解:袋子里有4个黑球,m个白球,若从中任取一个球恰好是黑球的概率是,根据题意可得:=,解得m=4.故答案为:4.13.(4分)某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是134.【解答】解:按照从小到大的顺序排列为:118,126,134,148,152,中位数为:134.故答案为:134;14.(4分)某企业2013年的年利润为100万元,2014年和2015年连续增长,且这两年的增长率相同,据统计2015年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是100(1+x)2=125.【解答】解:设增长率为x,根据题意2014年为100(1+x)万元,2015年为100(1+x)2万元.则100(1+x)2=125;故答案为:100(1+x)2=125.15.(4分)如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=135度.【解答】解:∵△ACB是等腰直角三角形,且∠C=90°,∴∠ABC=45°.∵AB∥DE,∴∠DGB=∠ABC=45°,∴∠CGE=180°﹣45°=135°.故答案为:135.16.(4分)如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=2+2(用向量、表示).【解答】解:∵,,∴=+=+,∵点D在AC边上且AD:DC=1:2,∴=2=2+2.故答案为:2+2.17.(4分)在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标(2,0).【解答】解:设点M′的坐标为(a,0),由题意得,a=12,解得,a=2,则设点M′的坐标为(2,0),故答案为:(2,0).18.(4分)如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.【解答】解:如图,作AH⊥BC于H,EF⊥BC于F,则BH=CH,在Rt△ABH中,tan∠ABH=tanα==,设AH=3t,则BH=4t,∴AB==5t,∴5t=5,解得t=1,∴BC=2BH=8,∵等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,∴∠CBE=α,BE=BC=8,在Rt△BEF中,tan∠EAF=tanα==,设AH=3x,则BH=4x,BE=5x,∴5x=8,解得x=,∴EF=,BF=,∴CF=8﹣=,在Rt△CEF中,CE==.故答案为.三.解答题:(本大题共7题,满分78分)19.(10分)计算:cos30°+|1﹣|﹣()﹣1.【解答】解:原式=++﹣1﹣3=2﹣.20.(10分)解方程:.【解答】解:去分母得:x﹣5+x2﹣1=3x﹣3,整理得:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.21.(10分)已知:如图,在△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,且sin∠DAB=,DB=3.求:(1)AB的长;(2)∠CAB的余切值.【解答】解:(1)在Rt△BDE中,DE⊥AB,BD=3∠ABC=45°,∴BE=DE=3,在Rt△ADE中,sin∠DAB=,DE=3,∴AE=4,AB=AE+BE=4+3=7;(2)作CH⊥AB于H,∵AD是BC边上是中线,BD=3,∴BC=6,∵∠ABC=45°,∴BH=CH=6,∴AH=7﹣6=1,在Rt△CHA中,cot∠CAB==.22.(10分)甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图所示,y甲、y乙分别表示甲、乙离开A地y(km)与已用时间x(h)之间的关系,且直线y甲与直线y乙相交于点M.(1)求y甲与x的函数关系式(不必注明自变量x的取值范围);(2)求A、B两地之间距离.【解答】解:(1)设y甲=kx(k≠0),∵点M(0.5,7.5)在直线y甲的图象上,∴0.5k=7.5,解得:k=15.∴y甲关于x的函数关系式为y甲=15x.(2)设y乙=mx+n,将点(0.5,7.5),点(2,0)代入函数关系式得:,解得:.∴y乙关于x的函数关系式为y乙=﹣5x+10.令y乙=﹣5x+10中x=0,则y=10.∴A、B两地之间距离为10千米.23.(12分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.24.(12分)如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.【解答】(1)证明:∵四边形OMPN是矩形,OM=6,ON=3,∴P的坐标是(6,3).∵点C和D都在反比例函数y=的图象上,且点C在PN上,点D在PM上,∴点C(2,3),点D(6,1).又∵DB⊥y轴,CA⊥x轴,∴A的坐标是(2,0),B的坐标是(0,1).∵BG=2,GD=4,CG=2,AG=1.∴=,==,∴=,∴AB∥CD;(2)解:①∵PN∥DB,∴当DE1=BC时,四边形BCE1D是等腰梯形,此时直角△CNB≌直角△E1PD,∴PE1=CN=2,∴点E1的坐标是(4,3);②∵CD∥AB,当E2在直线AB上,DE2=BC=2,四边形BCDE2为等腰梯形,直线AB的解析式是y=﹣x+1,∴设点E2(x,﹣x+1),DE2=BC=2,∴(x﹣6)2+(x)2=8,解得:x1=,x2=4(舍去).∴E2的坐标是(,﹣).25.(14分)如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.【解答】解:(1)如图1,作AG⊥BC,BH⊥AC,∵AB=AC,AG⊥BC,∴BG=CG=2,∴AG==4,∵AG×BC=BH×AC,∴BH==,∴当⊙B与直线AC相切时,x=;(2)如图2,作DF⊥BC,∴DF∥AG,∴,∴,∴DF=x,∴CF=4﹣x,在Rt△CFD中,CD2=DE2+CF2,∴y==(0<x≤4),(3)①如图3,作PQ⊥BC,连接PE,AE,∵EF是⊙B,⊙P的公共弦,∵⊙P经过点E,∴PA=PE=PC,∴AE⊥BC,∵AC=AB,∴BE=CE=2,∵PQ∥AE,且P是AC中点,∴PQ=AE=2,CP=3,∴CQ=1,BQ=3,∴BP=,∵EF是⊙P,⊙B的公共弦,∴∠BGE=90°=∠BQP(两圆的连心线垂直于公共弦)∵∠EBG=∠PBQ∴△BQP∽△BGE,∴,∴,∴EG=,∴EF=;②当点E,与点C重合时,EF=.。