自动控制原理总经典总结
自动控制原理知识点总结
自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。
控制系统由传感器、控制器和执行器组成。
2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。
反馈控制系统具有稳定性好、抗干扰能力强的特点。
3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。
传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。
4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。
比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。
5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。
常用的稳定性分析方法有判据法、频域法和根轨迹法等。
6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。
常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。
7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。
根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。
8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。
灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。
9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。
鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。
10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。
自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。
自动控制原理部分章节归纳总结
线性系统:用线性微分方程描述。 线性定常系统:用线性微分方程描述,微分方程的系数是常数。
f dy ky F (t) dt
线性时变系统:用线性微分方程描述,微分方程的系数是随时间而变化的。
f dy k(t) y F (t) dt
结构图的基本连接方式有三种:串联、并联、反馈 1. 串联方框的简化(等效)
n 个环节串联后的总传递函数等于各环节的传递函数的乘积
n
G(s) G1(s) G2 (s) Gn (s) Gi (s)
i 1
2).环节的并联(输入相同,输出相同)
并联连接:n 个环节的输入相同,而总输出为各环节输出的代数和。 3). 引出点和比较点的移动
2) 传递函数只取决于系统和元件的结构和参数,与输入信号无关; 3) 传递函数与微分方程有相通性,可经简单置换而转换; 4) 传递函数的拉氏反变换是系统的脉冲响应; 5) 传递函数是在零初始条件下定义的,它只反应系统的零状态特性;零初始条件含 义要明确。 传递函数的局限性 1) 原则上不反映非零初始条件时系统响应的全部信息; 2) 适合于描述单输入/单输出系统; 3) 只能用于表示线性定常系统。 4) 传递函数中的各项系数和相应微分方程中的各项系数对应相等,完全取决于系统结
2 线性定常离散控制系统(m≤n)
a0c(k n) a1c(k n 1) an1c(k 1) anc(k) b0r(k m) b1r(k m 1) bm1r(k 1) bm r(k)
r:输入采样序列。
c:输出采样序列
总结:(1)、(2)线性系统具有齐次性、叠加性。
当系统输入信号为阶跃函数时,其输出信号称为阶跃响应。 微分方程的列写步骤
自动控制原理知识点总结
自动控制原理知识点总结咱们先来聊聊啥是自动控制原理哈。
这东西就像是一个神奇的魔法,能让各种机器和系统乖乖听话,按照咱们想要的方式工作。
比如说,家里的空调,它能自动调节温度,让房间始终保持舒适,这背后就是自动控制原理在起作用。
还有汽车的自动驾驶,飞机的自动导航,工厂里那些自动化的生产线,都离不开它。
那自动控制原理到底都有啥知识点呢?首先得说说控制系统的组成。
这就好比一个乐队,有指挥的(控制器),有演奏乐器的(执行器),有接收声音的(传感器),还有最终呈现音乐的(被控对象)。
传感器就像是人的眼睛和耳朵,能感知到外界的变化,然后把这些信息传给控制器。
控制器呢,就相当于大脑,它接收到信息后,经过一番思考,下达指令给执行器。
执行器就像是手脚,负责去执行这些指令,让被控对象做出相应的动作。
反馈也是个特别重要的概念。
就好比你学骑自行车,眼睛看到自己歪了,然后调整方向,这就是反馈。
在控制系统里,通过反馈能让系统更加稳定和精确。
比如说,一个温度控制系统,如果没有反馈,温度可能一会儿高一会儿低。
但有了反馈,就能根据实际温度和设定温度的偏差,不断调整加热或者制冷的力度,让温度稳稳地保持在设定值。
再说说控制系统的性能指标。
这就像是评价一个学生的成绩一样,有稳定性、准确性和快速性。
稳定性就好比你站在平衡木上不能掉下来;准确性呢,就是你考试的分数要接近满分;快速性就是你做题要又快又好。
还有系统的数学模型,这可是个关键。
就像给系统拍了个“X光片”,能让我们清楚地看到它内部的结构和工作原理。
常见的有微分方程、传递函数和状态空间表达式。
记得有一次,我去工厂参观,看到一个自动化的生产设备出了故障。
工人们急得团团转,后来技术人员来了,一番检查后,发现是控制器的参数设置出了问题。
经过重新调整,设备又欢快地运转起来了。
当时我就深刻体会到,掌握好自动控制原理是多么重要啊!控制系统的校正也是个重点。
如果系统性能不达标,就像一个偏科的学生,得给他补补课。
自动控制原理总结归纳报告
9.预测控制(Predictive Control)
预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制。目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。这
系统分析方法是控制系统综合设计的基础这部分的内容主要包括时域分析法、根轨迹法、频域响应法是控制理论的重点。在控制系统中稳定性、快速性和准确性是对控制系统的基本要求也是衡量系统性能的重要指标控制系统不同的分析问题方法都是紧紧围绕这三个方面展开的。只要抓住这个特点就抓住了系统分析的关键有助于加深对不同方法的理解。例如以我军某军舰上的雷达定位系统为例假设给定目标信号要求设计控制器使系统在给定输入下跟踪指定目标最小且抗干扰性最好。这些生动的工程实例大大激发了我的兴趣使我感受到了控制理论的魅力深刻理解了
既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。
分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。它的主要特点是:真正实现了分散控制;具有高度的灵活性和可扩展性;较强的数据通信能力;友好而丰富的人机联系以及极高的可靠性。
关键字:控制 方法 发展
正文:
一、自动控制理论的分析方法:(1)时域分析法;(2)频率法;(3)根轨迹法;(4)状态空间方法;(5)离散系统分析方法;(6)非线性分析方法
(完整版)自动控制原理知识点总结
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
(完整版)《自动控制原理》全书总结
在求解稳态误差时,需把握以下要点:
(1) 首先要将系统的开环传递函数变成尾1型。
(2) 只要将系统的结构图变换成单回路,系统的误差传
递函数总是如下形式,即
Es
1
We (s)
Xr
s
1 WK
s
则由终值定理得 :
e limet lims E s
t
s0
lim s s0 1
自动控制系统的时域分析
对控制性能的要求
稳定性
稳态特性
三性
(1)系统应是稳定的; 暂态特性
(2)系统达到稳定时,应满足给定的稳态误差
的要求;
(3)系统在暂态过程中应满足暂态品质的要求。
1、系统的响应过程及稳定性
一阶系统的单位阶跃响应
WB
(
s)
1 Ts
1
1t
单位阶越响应: xc (t) 1 e T , (t 0)
参数根轨迹的绘制
定义:以非根轨迹增益(比如比例微分环节或惯性 环节的时间常数 )为可变参数绘制的根轨迹。
Wk
(s)
10( s
s(10s
1) 1)
Wk
(s)
s(Ts
5 1)(s
1)
绘制思路:
变形
闭环传函
与常规(常义)根轨迹的 开环传函具 有相同形式
等效开环系统
例4.9 给定控制系统的开环传递函数为
1、已知传函绘制乃氏曲线,绘制伯特图。 2、已知伯特图求对应系统传函。 3、正确理解相位裕量和增益裕量的物理意义,
并会计算。 4、求相位穿越频率ωj,求穿越频率ωc. 5、最小相位系统的概念。
(8) 开环对数频率特性与系统性能之间的关系 i.低频段决定了系统的稳态误差。 ii. 中频段决定系统的暂态特性。 iii. 高频段决定系统的抗干扰能力。
(完整版)自动控制原理知识点总结
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结
自动控制原理知识点总结————————————————————————————————作者:————————————————————————————————日期:自动控制原理总结第一章 绪 论技术术语1. 被控对象:是指要求实现自动控制的机器、设备或生产过程。
2. 被控量:表征被控对象工作状态的物理参量(或状态参量),如转速、压力、温度、电压、位移等。
3. 控制器:又称调节器、控制装置,由控制元件组成,它接受指令信号,输出控制作用信号于被控对象。
4. 给定值或指令信号r(t):要求控制系统按一定规律变化的信号,是系统的输入信号。
5. 干扰信号n(t):又称扰动值,是一种对系统的被控量起破坏作用的信号。
6. 反馈信号b(t):是指被控量经测量元件检测后回馈送到系统输入端的信号。
7. 偏差信号e(t):是指给定值与被控量的差值,或指令信号与反馈信号的差值。
闭环控制的主要优点:控制精度高,抗干扰能力强。
缺点:使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求 :稳定性 快速性 准确性稳定性和快速性反映了系统的过渡过程的性能。
准确性是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章 控制系统的数学模型拉氏变换的定义:-0()()e d st F s f t t +∞=⎰几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加速函数4.指数函数e -at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数(δ函数) 拉氏变换的基本法则 1.线性法则 2.微分法则 3.积分法则1()d ()f t t F s s ⎡⎤=⎣⎦⎰L4.终值定理()lim ()lim ()t s e e t sE s →∞→∞==5.位移定理00()e()sf t F s ττ--=⎡⎤⎣⎦Le ()()atf t F s a ⎡⎤=-⎣⎦L传递函数:线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比称为系统(或元部件)的传递函数。
完整版)自动控制原理知识点汇总
完整版)自动控制原理知识点汇总自动控制原理总结第一章绪论在自动控制中,被控对象是要求实现自动控制的机器、设备或生产过程,而被控量则是表征被控对象工作状态的物理参量或状态参量,如转速、压力、温度、电压、位移等。
控制器是由控制元件组成的调节器或控制装置,它接受指令信号,并输出控制作用信号于被控对象。
给定值或指令信号r(t)是要求控制系统按一定规律变化的信号,是系统的输入信号。
干扰信号n(t)又称扰动值,是一种对系统的被控量起破坏作用的信号。
反馈信号b(t)是指被控量经测量元件检测后回馈送到系统输入端的信号。
偏差信号e(t)是指给定值与被控量的差值,或指令信号与反馈信号的差值。
闭环控制的主要优点是控制精度高,抗干扰能力强。
但是使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求包括稳定性、快速性和准确性。
稳定性和快速性反映了系统的过渡过程的性能,而准确性则是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章控制系统的数学模型拉氏变换是一种将时间域函数转换为复频域函数的数学工具。
单位阶跃函数1(t)、单位斜坡函数、等加速函数、指数函数e-at、正弦函数sinωt、余弦函数cosωt和单位脉冲函数(δ函数)都有其典型的拉氏变换。
拉氏变换的基本法则包括线性法则、微分法则、积分法则、终值定理和位移定理。
传递函数是线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比,称为系统或元部件的传递函数。
动态结构图及其等效变换包括串联变换法则、并联变换法则、反馈变换法则、比较点前移“加倒数”和比较点后移“加本身”,以及引出点前移“加本身”和引出点后移“加倒数”。
梅森公式是一种求解传递函数的方法,典型环节的传递函数包括比例(放大)环节、积分环节、惯性环节、一阶微分环节、振荡环节和二阶微分环节。
第三章时域分析法时域分析法是一种分析控制系统时域特性的方法。
其中,时域响应包括零状态响应和零输入响应。
自动控制原理知识点总结(通用4篇)
自动控制原理知识点总结第1篇频率特性分为两种,分别是A(ω) 幅频特性和 φ(ω) 相频特性。
对于一个一阶线性定常系统对正弦输入信号 Asinωt 的稳态输出 Ysin(ωt +ψ) ,仍是一个正弦信号,其特点:①频率与输入信号相同;②振幅 Y为输入振幅A的 |G(jω)| 倍;③相移为 ψ = ∠G(jω)。
振幅 Y 和相移 ψ都是输入信号频率 ω 的函数,对于确定的 ω 值来说,振幅Y和相移 ψ 都将是常量。
|G(jω)| = Y / A 正弦输出对正弦输入的幅值比—幅频特性∠G(jω) = ψ正弦输出对正弦输入的相移—相频特性理论上可将频率特性的概念推广的不稳定系统,但是,系统不稳定时,瞬态分量不可能消失,它和稳态分量始终同时存在,所以,不稳定系统的频率特性是观察不到的。
(1)幅相曲线:对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。
当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。
这条曲线就是幅相频率特性曲线,简称幅相曲线。
(2)幅频特性曲线:对数幅频特性曲线又称为伯德图(曲线)。
对数频率特性曲线的横坐标是频率 ω ,并按对数分度,单位是[rad/s] .对数幅频曲线的纵坐标表示对数幅频特性的函数值,线性分度,单位是[dB],此坐标系称为半对数坐标系。
对数相频特性曲线的纵坐标表示相频特性的函数值,线性分度 , 单位是 (0) 或(弧度),频率特性G(jω) 的对数幅频特性定义如下 L(ω) = 20lg |G(jω)| 对数分度优点:扩大频带、化幅值乘除为加减、易作近似幅频特性曲线图。
(3)对数幅相曲线(又称尼柯尔斯曲线):其特点是纵、横坐标都线性分度,对数幅相图的横坐标表示对数相频特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
自动控制原理知识点总结第2篇一阶系统的数学模型(1)单位阶跃响应——输入 r(t) = 1(t),输出 h(t) = 1 - e-t/T, t >0 特点:●可以用时间常数去度量系统的输出量的数值。
自动控制原理重点内容复习总结
N 1 G2 H1 G1G2 H 2
N
-H2 G1
G2
-H1 1
1Y
Y G1G2 R G1G2H2 N 1 G2 H1 G1G2 H2
例2 描述系统的微分方程组如下,已知初始条件全部为零。
画出系统的方块图,并求解Y(s)/R(s)。
x1 x 2
R H1 x 2 G2 x1 x1
线性系统的性质:可叠加性和均匀性(齐次性)。 本学期研究的主要是线性定常系统。
4、建立系统的数学模型的两种方法: (1)机理分析法:(2)实验辨识法:
二、传递函数
控制原理复习总结 第二章 控制系统的数学模型
定义:初始条件为零 的线性定常系统: 输出的拉普拉斯
变换与输入的拉普拉斯变换之比。
基本性质:
R( s)
表2 给定信号输入下的给定稳态误差esr
0 型系统 1 型系统 2 型系统
阶跃输入r(t)=1
1 K 1 Kp=K
0
Kp=∞
0
Kp=∞
斜坡输入r(t)=t 抛物线输入r(t)=1/2t2
∞
Kv=0
∞
1 K
Kv=K
∞
0
Kv=∞
1 K
Ka=0 Ka=0 Ka=K
Kp — 稳态位置偏差系数 Kv — 稳态速度偏差系数 Ka — 稳态加速度偏差系数
Y R
1 s2
1
H1 s
G2 s
G1 s
G2 H1
1 G2s G1S s(s H1 G2H1s)
控制原理复习总结
第三章 控制系统的时域分析方法
主要内容:
1、一阶惯性系统的单位阶跃响应,T、K的物理意义。 2*、标准二阶系统的单位阶跃响应,ζ和ωn、ωd 的物理意义。 3、高阶闭环主导极点的概念 4* 、控制系统单位阶跃响应过程的质量指标,ts,tp,σ,n 5 * 、劳斯稳定判据 6 * 、控制系统稳态误差 7、常规PID调节器的控制规律(调节器的形式和作用的定性分析)
自动控制原理总复习资料(完美)要点
第一章的概念1、典型的反馈控制系统基本组成框图:复合控制方式3、基本要求的提法:可以归结为稳定性(长期稳定性) 第二章要求:1、 掌握运用拉氏变换解微分方程的方法;2、 牢固掌握传递函数的概念、定义和性质;3、 明确传递函数与微分方程之间的关系;4、 能熟练地进行结构图等效变换;5、 明确结构图与信号流图之间的关系;6、 熟练运用梅逊公式求系统的传递函数;例1某一个控制系统动态结构图如下,试分别求系统的传递函数总复习、准确性(精度)和快速性(相对稳定性) C i (s ) C 2(s ) C 2(s ) G(S )复合控制方C i (s) _ G,s)C 2(s)R i (s)1 - G 1G 2G 3G 4 R i (s)-G 1G 2G 31 - G 1G 2G 3G 4C(s) C(s) E(s) E(S) R(s),N(s),R(s),N(s)例3: 例2某一个控制系统动态结构图如下,试分别求系统的传递函数:EG.7)► * kG 1(S )G2(S )C(s) _R(s) 1 G 1(s)G 2(s)H(s) C(s)-G 2 (s) N(s) 一 1 G,S )G 2(S )H(S )r(t) - u 1 (t) i (t) m「1(t ) R 115(t) = J 川dt)-i 2(t)]dtMy)J(t)R 2C(t)二 1 i 2(t)dtC2将上图汇总得到:R(s) +l i (s) +U i (s)l 2(s)U 1(s )*l 2(s)C(s)1 C 1sC(s)I i (s)U i (s)I2G)(b)例5如图RLC 电路,试列写网络传递函数U c (s)/U r (s).例6某一个控制系统的单位阶跃响应为:C(t) =1 -2e't • e ,,试求系统的传递函数、微分方程和脉冲响应。
解:传递函数:2〜、3s +2 八厶八、计 d c(t)丄小dc(t )丄小/八 cdr(t)丄“、 G(s),微分万程: 2 3 2c(t)=3 2r(t)(s + 2)(s+1)dt 2 dt dt脉冲响应:c(t)二-e‘ 4e'2tk =1例4、一个控制系统动态结构图如下,试求系统的传递函数。
东南大学《自动控制原理》复习总结
过阻尼系统( ζ
1):单位阶跃响应 c(t)
1
T2
1
1
e
t T1
T1
1
1
e
t T2
,t
0 ,T1
1 ωn(ζ ζ2
1)
,
T1
T2
T2
ωn(ζ
1 ζ2
1)
,调节时间
ts 最长,无超调;
临界阻尼系统( ζ 1):单位阶跃响应 c(t) 1 ωnteωnt eωnt ,t 0 ,调节时间 ts 较短,无超
出量能自动地跟踪给定量。减小了跟踪误差,提高了控制精度,此时系统抗干扰能力强,可 以抑制内外扰动。
开环控制系统
闭环控制系统
1-3 自动控制与自动控制系统 设计基本要求:在确保稳定性的前提下,要求系统的动态性能和稳态性能好,即快速、平稳、
准确,即响应动作要快,动态过程平稳,跟踪值要准确。 设计原则:保证系统的输出在给定性能要求的基础上跟踪输入信号,并且有一定的抗干扰能
微分环节:传递函数 G(s) s ;
一阶微分环节: G(s) Ts 1 ; 二阶微分环节: G(s) T 2s2 2ζTs 1 (T > 0 , 0 < ζ < 1);
一阶惯性环节: G(s) 1 ; Ts 1
二阶振荡环节: G(s)
s2
ωn2 2ζωns
ωn2
(ωn >
0
,
所有闭环的极点均具有负实部位于 s 左半平面(不包括虚轴)的系统为稳定系统(劳斯判据)。
3-6 控制系统的稳态误差分析
若系统的开环传递函数 Go(s)
Ko sυ
Gn(s) ,则系统的开环增益
Ko
lim sυ
自动控制原理知识点总结
自动控制原理知识点总结一、自动控制系统的基本概念自动控制,简单来说,就是在没有人直接参与的情况下,通过控制器使被控对象按照预定的规律运行。
一个典型的自动控制系统通常由控制对象、控制器、测量元件和执行机构等部分组成。
控制对象就是我们要控制的那个东西,比如一个电机、一个温度场或者一个生产过程。
控制器则是根据输入的偏差信号,按照一定的控制规律产生控制作用,去驱动执行机构。
测量元件负责测量被控量,并将其转化为电信号反馈给控制器。
执行机构接受控制器的控制信号,对控制对象施加作用。
自动控制系统按照有无反馈可以分为开环控制系统和闭环控制系统。
开环控制系统的输出量对系统的控制作用没有影响,结构相对简单,但控制精度较低。
闭环控制系统则将输出量反馈回来与给定值进行比较,形成偏差,然后根据偏差来调整控制作用,因此控制精度高,但系统相对复杂,可能会出现稳定性问题。
二、控制系统的数学模型要对一个控制系统进行分析和设计,首先要建立它的数学模型。
数学模型就是用数学语言来描述系统的输入、输出和内部状态之间的关系。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程是最基本的描述形式,但求解比较复杂。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它可以方便地分析系统的频率特性和稳定性。
状态空间表达式则能更全面地描述系统的内部状态和动态特性。
建立数学模型的方法有分析法和实验法。
分析法是根据系统的物理规律和结构,推导出数学方程。
实验法则是通过对系统施加输入信号,测量输出响应,然后用系统辨识的方法得到数学模型。
三、控制系统的时域分析时域分析是直接在时间域上研究系统的性能。
主要的性能指标有稳态误差、上升时间、峰值时间、调节时间和超调量。
稳态误差反映了系统的准确性,它与系统的类型和输入信号的形式有关。
对于单位阶跃输入, 0 型系统有稳态误差,1 型及以上系统稳态误差为零。
上升时间、峰值时间和调节时间反映了系统的快速性。
自动控制原理总结报告
自动控制原理总结报告自动控制原理是一门应用数学和物理学知识研究控制系统工作原理和设计方法的科学。
控制系统是一种能够测量被控对象的状态,并根据设定的目标对其进行调节和控制的系统。
控制系统的设计和运行对于现代工业及社会的发展起着至关重要的作用。
自动控制原理主要研究的内容包括系统建模、系统的稳定性分析和控制器设计三个方面。
系统建模是指将被控对象抽象为数学模型,以方程的形式描述系统的输入、输出和各种参数之间的关系。
系统的稳定性分析是指研究系统在不同的输入条件下是否稳定,即当系统受到外部扰动时,能否快速恢复到稳定状态。
控制器设计是指根据系统的数学模型和稳定性要求,设计出合适的控制器来实现对系统的控制。
在系统建模的过程中,常用的方法有经验法和物理定律法。
经验法是指通过试验和实验,利用专业知识和经验来确定系统的数学模型,常用于复杂系统和无法给出精确数学模型的系统。
而物理定律法则是利用系统的物理规律和数学方法来建立系统的数学模型,适用于物理规律和数学模型已经明确的系统。
在系统的稳定性分析中,常用的方法有传递函数法和状态空间法。
传递函数法是一种理论方法,通过将系统的输入与输出之间的关系转化为复变函数表示,来分析系统的稳定性。
状态空间法是一种数学方法,通过对系统的状态进行建模和描述,来分析系统的稳定性。
在控制器设计的过程中,常用的方法有比例控制、积分控制和微分控制等。
比例控制是根据系统的误差大小来调整控制器的输出,一般用于系统的快速响应;积分控制是根据系统的误差的积分值来调整控制器的输出,一般用于减小系统的稳态误差;微分控制是根据系统的误差的变化率来调整控制器的输出,一般用于减小系统的动态误差。
除了上述的基本方法外,自动控制原理还涉及到系统的优化和鲁棒性等问题。
系统优化是指通过合适的控制策略,使系统的性能指标达到最优,如最小化能耗或最大化生产效率等。
鲁棒性是指系统对参数变化和扰动具有一定的容忍性和稳定性,在系统工程中至关重要。
自考自动控制原理经典总结
1、扰动:当输入变化而引起被控量的变化。
2、偏差信号:输入信号与反馈信号的差值。
3、自动控制:应用控制装置自动的、有目的地控制或调节机器设备或生产过程,使之按照人们规定的或者希望的性能指标运行。
4、自动控制系统组成:比较元件、控制器、受控对象、测量、变送元件。
5、常规控制器:定值元件、比较元件、放大元件、反馈元件。
6、程序控制系统:被控量的给定值是一个已知的时间函数,控制的目的是要求被控量按照给定的定值的时间函数来改变。
7、动态过程:单调、衰减振荡、等幅振荡、渐扩振荡。
(稳定性、快速性、准确性)8、拉斯变换:单位阶跃:1/s;单位斜坡t:1/s2 ;e-at:1/s+a;te-at:1/(s+a)2;sinwt:w/s2+w2;Coswt:s/s2+w2;e-at sinwt:w/(s+a)2+w2;e-atcoswt:s+a/(s+a)2+w29、传递函数:只对线性定常系统,在零厨师条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比(分子阶数小于分母阶数因为系统中有较多的惯性元件)。
10、输出节点(陷点):只有输入支路的节点,它对应于因变量或输出信号。
11、混合节点:既有输入支路又有输出支路的节点。
12、回路和回路增益:回路就是闭通路,回路各支路传输的乘积称为回路增益。
13、前向通路和前向通路增益:从输入节点到输出节点的通路上,经过任一节点不多于一次的通路,前向通路中各支路传输的乘积为前向通路增益。
14、最大超调量σp:动态响应曲线偏离稳态值的最大偏差值;上升时间tr;峰值时间tp:响应曲线达到过调量的第一个峰值所需要的时间。
调整时间ts:响应曲线达到5%以内的时间。
15、稳态误差ess:响应的稳态值与希望的给定值之间的偏差。
16、二阶系统的单位阶跃响应:0<ξ<1:为一对实部为负的共轭复根;ξ=1:一对相等的负实数。
ξ>1:两个不相等的负实根。
ξ=0:一对共轭纯虚根。
-1<ξ<0:一对具有正实部的共轭复根。
自动控制原理知识点总结
自动控制原理知识点总结一、数学模型与传递函数1.系统的数学模型:数学模型是通过建立系统的数学方程来描述系统的物理特性和行为规律。
2.传递函数:传递函数是描述系统的输入和输出之间关系的函数,它是系统的拉普拉斯变换的比值。
二、系统的稳定性1.稳定性的概念:系统的稳定性是指系统在给定条件下的输出是否能够始终收敛到一个有限的范围内。
2.稳定性判据:稳定性可以通过判断系统的极点位置来确定,例如极点都位于左半平面时系统是稳定的。
3. 稳定性分析方法:常用的稳定性分析方法有根轨迹法、Nyquist稳定判据和Bode稳定判据。
三、系统的时间响应1.系统的单位冲击响应:单位冲击响应是系统对冲激信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
2.系统的单位阶跃响应:单位阶跃响应是系统对阶跃信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
3.响应特性参数:常用的响应特性参数有时间常数、峰值时间、峰值幅值、上升时间、超调量和稳态误差等。
四、控制系统的单一闭环反馈1.开环系统与闭环系统:开环系统是指没有反馈路径的系统,闭环系统是指存在反馈路径的系统。
2.单位负反馈控制系统:单位负反馈控制系统是指闭环系统中反馈信号与输入信号的比例为-1的系统。
3.闭环系统的稳态误差:稳态误差是指系统在达到稳定状态后,输出与期望输出之间的偏差。
4.稳态误差的计算和减小方法:可以通过增大控制增益、引入积分环节或者采用预估控制来减小稳态误差。
五、PID控制器1.PID控制器的结构和原理:PID控制器是由比例环节、积分环节和微分环节组成的控制器。
比例环节根据当前误差来调节输出,积分环节根据累积误差来调节输出,微分环节根据误差变化率来调节输出。
2.PID调节器参数整定方法:常用的整定方法有经验整定法、频域法和模拟优化等。
六、根轨迹法1.根轨迹的概念和性质:根轨迹是描述系统极点运动规律的图形,它是由系统的传递函数特征方程的根随一个参数的改变轨迹而形成的。
《自动控制原理》知识点资料整理总结
第一章绪论1.机械系统:以实现一定的机械运动、输出一定的机械能和承受一定的机械载荷为目的。
激励(输入):外界与系统的作用,如作用力(载荷)。
分为控制输入和扰动输入。
响应(输出):系统由于激励作用而产生的变形或位移。
2.机械工程控制论的研究对象和任务是什么?机械工程控制论实质上是研究机械工程中广义系统的动力学问题。
具体地说,是广义系统在一定的外界条件作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性所决定的整个动态历程,研究系统与其输入、输出三者之间的动态关系。
从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械控制工程论的任务可以分为以下五个方面:(系统分析问题)已知系统和输入,求系统的输出。
(最优控制问题)已知系统和理想输出,设计输入。
(最优设计问题)已知输入和理想输出,设计系统(滤波与预测问题)已知输出,确定系统,以识别输入或输出中的有关信息。
(系统辨识问题)已知输入和输出,求系统的结构与参数。
3.控制系统的基本要求(稳、准、快)稳定性:动态过程的振荡倾向和系统能够恢复平衡状态的能力。
稳定性是系统工作的首要条件。
准确性:在调整过程结束后输出量与给定的输入量之间的偏差。
衡量系统工作性能的重要指标。
快速性:系统输出量与希望值之间产生偏差时,消除这种偏差的快速程度。
控制的三要素:控制对象、控制目标、控制手段。
控制论的两个核心:信息和反馈需要解决的两大基本问题:控制系统的分析和控制系统的设计。
4.反馈:将系统的输出以一定的方式返回到系统的输入端并共同作用于系统的过程。
内反馈:系统或过程中存在的各种自然形成的反馈。
内反馈是造成机械系统存在动态特性的根本原因。
外反馈:在自动控制系统中,为达到某种控制目的而人为加入的反馈。
正反馈:能使系统的绝对值增大的反馈。
负反馈:能使系统的绝对值减小的反馈。
5.自动控制的本质:闭环自动控制系统的工作过程就是一个“检测偏差并纠正偏差”的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自动控制原理》总复习
第一章自动控制的基本概念
一、学习要点
1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对
象、控制器、反馈、负反馈控制原理等。
2.控制系统的基本方式:
①开环控制系统;②闭环控制系统;③复合控制系统。
3.自动控制系统的组成:由受控对象和控制器组成。
4.自动控制系统的类型:从不同的角度可以有不同的分法,常有:
恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。
5.对自动控制系统的基本要求:稳、快、准。
6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。
二、基本要求
1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。
2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制
系统稳、准、快三方面的基本要求。
3.了解控制系统的典型输入信号。
4.掌握由系统工作原理图画方框图的方法。
三、内容结构图
四、知识结构图
第二章 控制系统的数学模型
一、学习要点
1.数学模型的数学表达式形式
(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。
2.数学模型的图形表示
(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。
二、基本要求
1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变
量、输出变量、中间变量等概念,要准确掌握。
2、了解动态微分方程建立的一般方法及小偏差线性化的方法。
3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入
响应、零状态响应等概念有清楚的理解。
4、正确理解传递函数的定义、性质和意义。
熟练掌握由传递函数派生出来的系统开环传递函
数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
(#)
5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图
及结构图的简化,并能用梅逊公式求系统传递函数。
(##)
6、传递函数的求取方法:
1)直接法:由微分方程直接得到。
2)复阻抗法:只适用于电网络。
3)结构图及其等效变换,用梅逊公式。
4)信号流图用梅逊公式。
四、知识结构图
第三章控制系统的时域分析
一、学习要点
1.基本概念:稳定性、时域响应、动态性能指标、误差与稳态误差等。
2.控制系统的稳定性
(1)劳斯稳定判据;(2)赫尔维茨稳定判据。
3.控制系统的动态性能
(1)一阶系统的暂态响应;(2)二阶系统的暂态响应。
4.控制系统的稳态性能
(1)一般概念;(2)误差系数。
二、基本要求
1.了解线性定常系统的时域响应组成,熟悉控制系统暂态响应性能指标的定义(#)。
2.掌握一阶系统的暂态响应及性能指标,并能根据给出的指标确定满足要求的系统参数T。
(#)
3.掌握二阶系统的暂态响应分析及其与极点之间的关系,重点掌握二阶系统的暂态响应性
ω,尤其是改善能指标公式及计算,并能根据给出的指标确定满足要求的系统参数ζ和
n 二阶系统动态性能的两种措施。
(#)(#)
4.一般了解高阶系统的暂态响应,掌握闭环主导极点的概念。
5.了解稳定性的概念,掌握线性定常系统稳定的充要条件(#)。
6.重点掌握判断稳定性的Routh代数判据及应用(#)(#),对Hurwitz判据有一般了解。
能根据系统要求确定满足稳定的系统参数范围(#)(#)。
7.了解稳态误差的概念、定义、产生原因、类型。
8.重点掌握给定稳态误差终值的计算,稳态误差系数的计算,扰动稳态误差终值的计算及
减小稳态误差的方法,并能根据系统对稳态误差的要求确定系统参数。
(#)(#)
三、内容结构图
第四章控制系统的根轨迹法
一、学习要点
1.基本概念
(1)根轨迹定义
(2)根轨迹绘制的基本条件:幅值方程和相角方程。
2.绘制根轨迹的基本法则
(1)常规根轨迹的绘制法则
(2)参量根轨迹绘制
(3)零度根轨迹绘制
3.增加开环零极点对根轨迹的影响
4.利用根轨迹分析系统
①稳定性;②运动形式;③主导极点;④超调量;⑤调节时间;⑥实数零、极点的影响;
⑦偶极子及其处理。
二、基本要求
1.重点掌握绘制常规负反馈系统根轨迹的基本条件和基本法则;(#)(#)
2.理解参量根轨迹和零度根轨迹的绘制;
3.了解多回路控制系统的根轨迹;
4.掌握增加开环零极点对根轨迹的影响;(#)
5.能根据根轨迹分析系统性能随参数变化的趋势。
(#)
三、内容结构图
四、知识结构图
第五章控制系统的频率特性
一、学习要点
1.频率特性的定义
2.频率特性的几何表示
(1)极坐标图或奈奎斯特图(Nyquist图)
(2)对数频率特性曲线(Bode图)
3.典型环节的频率特性及最小相位系统
(1)典型环节频率特性
(2)最小相位系统与非最小相位系统
4.稳定判据
(1)奈奎斯特稳定判据
(2)对数频率特性的稳定判据
5.开环频域指标
(1)幅值裕度
(2)相角裕度
6.闭环频域指标
(1)零频幅值M(0)
ω
(2)带宽频率
b
ω
(3)谐振峰值M r和谐振频率
r
(4)闭环系统频域指标与时域指标的关系
7.开环对数频率特性与时域性能指标:
(1)三频段的概念
(2)开环系统频域指标与时域性能指标的关系
二、基本要求
1.正确理解频率特性的概念,掌握典型环节的频率特性并运用频率特性分析系统的稳态
响应。
(#)
(#)(#)。
2.熟练掌握绘制开环系统Nyquist图和Bode图的方法,会求剪切频率
c
3.重点掌握奈奎斯特稳定判据及其在系统分析中的应用。
(#)(#)
4.重点掌握相角裕度、幅值裕度的计算。
(#)(#)
5.掌握开环对数频率特性与系统性能之间的关系,正确理解三频段的概念。
(#)
6.正确理解并掌握用实验数据确定传递函数,由最小相位系统的Bode图确定系统的传
递函数的方法,会求开环放大系数K。
(#)(#)
三、内容结构图
四、知识结构图
1.。